Publicación: Teorema de Riemann-Hurwitz
| dc.contributor.author | Escobar Rivera, Ana Sofía | |
| dc.contributor.educationalvalidator | Reyes Figueroa, Alan Gerardo | |
| dc.date.accessioned | 2025-10-27T18:34:14Z | |
| dc.date.issued | 2025 | |
| dc.description | Formato PDF digital — 51 páginas — incluye gráficos, tablas y referencias bibliográficas. | |
| dc.description.abstract | Este trabajo tiene como propósito exponer de manera clara y rigurosa la fórmula de RiemannHurwitz en el contexto de superficies de Riemann compactas. A través de una construcción cuidadosa de los conceptos fundamentales, como mapeos ramificados, triangulaciones y la característica de Euler, se busca proporcionar una demostración accesible del teorema, resaltando la relación entre el comportamiento local de los puntos críticos y las propiedades topológicas globales de las superficies. Asimismo, se pretende destacar el papel esencial que juegan los invariantes topológicos en la comprensión de los mapeos entre superficies de Riemann, y motivar el interés por continuar el estudio en áreas relacionadas como la geometría algebraica y el análisis complejo. El enfoque adoptado busca facilitar la comprensión del teorema a estudiantes en formación, proporcionando una base sólida para futuros desarrollos en la teoría de superficies. | spa |
| dc.description.abstract | The purpose of this work is to clearly and rigorously present the Riemann–Hurwitz formula in the context of compact Riemann surfaces. Through a careful construction of the fundamental concepts—such as branched mappings, triangulations, and the Euler characteristic—it seeks to provide an accessible demonstration of the theorem, highlighting the relationship between the local behavior of critical points and the global topological properties of the surfaces. Furthermore, it aims to emphasize the essential role that topological invariants play in understanding mappings between Riemann surfaces and to inspire interest in continuing studies in related areas such as algebraic geometry and complex analysis. The adopted approach seeks to facilitate comprehension of the theorem for students in training, providing a solid foundation for future developments in surface theory. | eng |
| dc.description.degreelevel | Pregrado | |
| dc.description.degreename | Licenciado en Matemática Aplicada | |
| dc.format.extent | 51 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://repositorio.uvg.edu.gt/handle/123456789/6165 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad del Valle de Guatemala | |
| dc.publisher.branch | Campus Central | |
| dc.publisher.faculty | Facultad de Ciencias y Humanidades | |
| dc.publisher.place | Guatemala | |
| dc.publisher.program | Licenciatura en Matemática Aplicada | |
| dc.relation.references | E. E. Moise. Geometric Topology in Dimensions 2 and 3. Graduate Texts in Mathematics 47. New York: Springer, 1977. | |
| dc.relation.references | A. M. Macbeath. “On a Theorem of Hurwitz”. En: Proceedings of the Glasgow Mathematical Association 5.1 (1961), <pp.-pp>. | |
| dc.relation.references | S. Lang. Complex Analysis. 4th ed. Graduate Texts in Mathematics 103. Springer, 1999. | |
| dc.relation.references | J. Jost. Compact Riemann Surfaces: An Introduction to Contemporary Mathematics. Springer, 2006. | |
| dc.relation.references | W. Fulton. Algebraic Topology: A First Course. Graduate Texts in Mathematics 153. Springer, 1995. | |
| dc.relation.references | H. M. Farkas e I. Kra. Riemann Surfaces. 2nd ed. Springer, 1992. | |
| dc.relation.references | R. Cavalieri y E. Miles. Riemann Surfaces and Algebraic Curves: A First Course in Hurwitz Theory. London Mathematical Society Student Texts 87. Cambridge University Press, 2016. | |
| dc.relation.references | S. Bosch. “The Riemann–Hurwitz Formula”. Bachelor’s thesis. Utrecht University, 2016. | |
| dc.relation.references | A. Block. Riemann–Hurwitz and Applications. Lecture notes. 2017. | |
| dc.relation.references | W. P. Barth et al. Compact Complex Surfaces. 2nd ed. Springer, 2004. | |
| dc.relation.references | E. Arbarello, M. Cornalba y P. A. Griffiths. Geometry of Algebraic Curves, Volume II. Springer, 2011. | |
| dc.relation.references | L. V. Ahlfors y L. Sario. Riemann Surfaces. Princeton University Press, 1960. | |
| dc.relation.references | N. A’Campo. Topological, Differential and Conformal Geometry of Surfaces. Springer, 2021. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.armarc | Riemann surfaces | |
| dc.subject.armarc | Algebraic topology | |
| dc.subject.armarc | Riemann hypothesis | |
| dc.subject.armarc | Euler characteristic | |
| dc.subject.armarc | Topología algebraica | |
| dc.subject.armarc | Superficies de Riemann | |
| dc.subject.ddc | 510 - Matemáticas::515 - Análisis | |
| dc.subject.ocde | 1. Ciencias Naturales | |
| dc.subject.ods | ODS 4: Educación de calidad. Garantizar una educación inclusiva y equitativa de calidad y promover oportunidades de aprendizaje permanente para todos | |
| dc.title | Teorema de Riemann-Hurwitz | |
| dc.title.translated | Riemann–Hurwitz Theorem | |
| dc.type | Trabajo de grado - Pregrado | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dc.type.visibility | Public Thesis | |
| dspace.entity.type | Publication |
