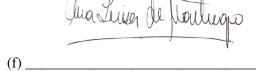
UNIVERSIDAD DEL VALLE DE GUATEMALA

Facultad de Ciencias y Humanidades

Diseño y validación de un método analítico para la cuantificación de quercetina glucosilada en cápsulas que poseen extractos de *Ginkgo biloba* L. como principio activo.

Trabajo de graduación en modalidad de tesis presentado por
Karla Michel Li Gan
para optar el grado académico de Licenciada en
Química Farmacéutica
Guatemala
2022

UNIVERSIDAD DEL VALLE DE GUATEMALA


Facultad de Ciencias y Humanidades

Diseño y validación de un método analítico para la cuantificación de quercetina glucosilada en cápsulas que poseen extractos de *Ginkgo biloba* L. como principio activo.

Trabajo de graduación en modalidad de tesis presentado por
Karla Michel Li Gan
para optar el grado académico de Licenciada en
Química Farmacéutica
Guatemala
2022

Vo. Bo.

Licda. Ana Luisa Mendizábal de Montenegro Asesora

Tribunal examinador

(f) ______ Licda. Ana Luisa Mendizábal de Montenegro

Licda. Ana Luisa Mendizábal de Montenegro Asesora

Licda. Maria José Bran Bonilla

Revisora

Prof. Dr. Elfego Rolando López García Director Química Farmacéutica

(f)

AGRADECIMIENTOS

A mi mamá y papá por el esfuerzo que han hecho para lograr culminar esta etapa de mi vida y por haberme permitido obtener este grado académico. Gracias por su amor, apoyo y compresión.

A mi hermana Sheidy por el cariño que siempre me ha dado, al igual que su paciencia y compresión a lo largo de mi formación universitaria.

A mis amigas y compañeras Alpha, Grecia, Valeria, Nancy, Mei y Margarita, por todos los momentos compartidos, el apoyo y la amistad durante estos últimos años.

A mis asesoras Ana Luisa y María José por su compartirme sus conocimientos, su tiempo y paciencia para lograr concluir este proyecto.

A la Universidad del Valle de Guatemala por haberme ayudado a completar esta formación académica y por haberme abierto las puertas para varias oportunidades.

ÍNDICE

LISTADO DE ECUACIONES	i
LISTADO DE FIGURAS	ii
LISTADO DE TABLAS	v
RESUMEN	vii
I. INTRODUCCIÓN	1
II. MARCO CONCEPTUAL	3
A. Antecedentes	
C. Pregunta de investigación	5
D. Alcance y limitantes	
1. Alcance	
2. Limitantes	5
IV. MARCO TEÓRICO	6
A. Ginkgo biloba L.	6
1. Componentes químicos	6
2. Usos terapéuticos, farmacología y reacciones adversas	8
3. Preparados galénicos y asuntos regulatorios	8
B. Cuantificación de quercetina	9
1. Métodos analíticos	9
2. Adulteración con quercetina en preparados comerciales de ginkgo	11
C. Extracción por ultrasonido	15
D. Cromatografía de alta resolución acoplado a un detector de arreglo de diodos (HPLC-DAD).	15
1. Cromatografía líquida de alta resolución (HPLC)	15
2. Equipo de cromatografía HPLC	16
3. Cromatografía de fase inversa	18
4. Detector UV/Vis y de arreglo de diodos	19
E. Validación de un método analítico	19
1. Especificidad o selectividad	20
2. Exactitud	20
3. Precisión	21
4. Linealidad	21
5. Límite de detección (LOD)	21
6. Límite de cuantificación (LOQ)	22
7. Robustez	22
V. MARCO METODOLÓGICO	23

A.	Objetivos	. 23
1.	. Objetivo general	. 23
2.	Objetivos específicos	. 23
B.	Hipótesis	. 23
C.	Variables	. 24
D.	Población y muestra	. 24
1.		
2.	. Muestra	. 24
E.	Procedimiento	
1.	1	
2.		
3.		
4.	. Cuantificación de quercetina glucosilada en las muestras comerciales de cápsulas de ginkgo	27
F.	Diseño de investigación	. 28
G.	Análisis estadísticos	. 28
VI. MA	ARCO OPERACIONAL	. 29
A.	Recolección y tratamiento de datos	. 29
B.	Recursos	. 29
1.	. Recursos humanos	. 29
2.	. Materiales y cristalería de laboratorio	. 29
3.	. Equipo	. 29
C.	Aspectos económicos	. 30
VII. RI	ESULTADOS	. 32
A.	Resultados de los parámetros de fase móvil evaluados	. 32
B.	Resultados de la validación	. 32
C.	Concentración de quercetina glucosilada en dos marcas comerciales de cápsulas de ginkgo	. 34
VIII. D	DISCUSIÓN DE RESULTADOS	. 35
A.	Determinación de los parámetros cromatográficos óptimos	. 35
B.	Validación del método analítico	. 36
C.	Concentración de quercetina glucosilada en dos marcas comerciales de cápsulas de ginkgo	. 38
IX. CO	NCLUSIÓN	. 40
X. REC	COMENDACIONES	.41
XI. BII	BLIOGRAFÍA	. 42
XII. Al	NEXOS	. 44
A.	Glosario	. 44

В.	Especificaciones del equipo	47
C.	Datos originales	48
D.	Cálculos	51
E.	Análisis estadísticos	56
1.	Estadística descriptiva	56
2.	Regresión lineal	58
3.	Análisis de Varianza (ANOVA) de un factor	59
F.	Cromatogramas	60
1.	Cromatogramas de la determinación de los parámetros cromatográficos óptimos	60
2.	Cromatogramas de la validación	62
3.	Cromatogramas de la muestra comercial de cápsula de ginkgo	69

LISTADO DE ECUACIONES

Ecuación No. 1. Factor de conversión de quercetina a quercetina glucosilada	10
Ecuación No. 2. Resolución de la columna (Rs).	20
Ecuación No. 3. Porcentaje de recuperación	20
Ecuación No. 4. Límite de detección (LOD)	22
Ecuación No. 5. Límite de cuantificación (LOQ).	22
Ecuación No. 6. Porcentaje de quercetina que se encontraba de forma glucosilada en la muestra	28

LISTADO DE FIGURAS

Figura No. 1. Estructura química de los ginkgólidos, bilobálido y flavonoides presentes en el extracto EGb
7616
Figura No. 2. Estructura química de las diferentes formas glucosiladas que se encuentra la quercetina en la
naturaleza7
Figura No. 3. Formas glucosiladas de la quercetina en el ginkgo
Figura No. 4. Sistema cromatográfico ideal para la cuantificación de quercetina en extracto glicólico e
hidroalcohólico de Calendula officinalis determinado por Muñoz Muñoz et al. (2015) 11
Figura No. 5. Concentración de la aglicona del flavonoide y de los flavonoides glucosilados de extractos
estandarizados de ginkgo analizados en el estudio de Sloley et al. (2013).
Figura No. 6. Área bajo la curva de seis glucósidos de flavonol analizados en los extractos comerciales del
estudio de Sloley et al. (2013).
Figura No. 7. Contenido de agliconas de los flavonoides de Ginkgo después de la hidrólisis ácida en el
estudio de Ding et al. (2006).
Figura No. 8. Contenido de flavonoides en algunos productos comerciales de Ginkgo biloba sin tratamiento
ácido en el estudio de Ding et al. (2006)
Figura No. 9. Cromatograma de un extracto de hojas naturales de Ginkgo biloba L., antes de hidrolizar (B-
pre) y después de hidrolizar (B-post)
Figura No. 10. Cromatograma de un producto comercial de ginkgo adulterado, antes de hidrolizar (B-pre)
y después de hidrolizar (B-post)
Figura No. 11. Cromatogramas de tres distintas columnas con diferente valor de resolución
Figura No. 12. Diagrama del equipo de un cromatógrafo HPLC
Figura No. 13. Regresión lineal del área bajo la curva (AUC) respecto a la concentración de un estándar
de quercetina, día 1
Figura No. 14. Regresión lineal del área bajo la curva (AUC) respecto a la concentración de un estándar
de quercetina, día 2
Figura No. 15. Cromatogramas de corrida no 1: isocrático, metanol y H ₃ PO ₄ 0.08% (80:20). No se observó
ningún pico después del minuto 5
Figura No. 16. Cromatogramas de la corrida no 2: gradiente, metanol (A) y H_3PO_4 0.08% (B). De 0 a 15 de 15 de 15 de 15 de 15 de 16 de
min: 100% A; de 16 a 40 min: 100% - 80% A (0 a 20% B); de 41 a 60 min: 80% - 60% A (20 a 40% B).
61

Figura No. 17. Cromatogramas de la corrida no 3: gradiente, metanol (A) y H ₃ PO ₄ 0.08% (B). De 0 a 1
min: 60% - 80% A (40 a 20% B); de 16 a 40 min: 80% - 100% A (20% a 0% B); de 41 a 60 min: 100% A
Figura No. 18. Cromatograma del estándar de quercetina a 1.602 ppm (L1), día 1
Figura No. 19. Cromatograma del estándar de quercetina a 1.602 ppm (L1), día 2
Figura No. 20. Cromatograma del estándar de quercetina a 3.203 ppm (L2), día 1
Figura No. 21. Cromatograma del estándar de quercetina a 3.203 ppm (L2), día 2
Figura No. 22. Cromatograma del estándar de quercetina a 4.805 ppm (L3), día 1
No. 23. Cromatograma del estándar de quercetina a 4.805 ppm (L3), día 2
Figura No. 24. Cromatograma del estándar de quercetina a 6.407 ppm (L4), día 1
Figura No. 25. Cromatograma del estándar de quercetina a 6.407 ppm (L4), día 2
Figura No. 26. Cromatograma del estándar de quercetina a 8.008 ppm (L5), día 1
Figura No. 27. Cromatograma del estándar de quercetina a 8.008 ppm (L5), día 2
Figura No. 28. Cromatograma del estándar de quercetina a 2.403 ppm (E1), día 1
Figura No. 29. Cromatograma del estándar de quercetina a 2.403 ppm (E1), día 2
Figura No. 30. Cromatograma del estándar de quercetina a 4.004 ppm (E2), día 1
Figura No. 31. Cromatograma del estándar de quercetina a 4.004 ppm (E2), día 2
Figura No. 32. Cromatograma del estándar de quercetina a 5.606 ppm (E3), día 1
Figura No. 33. Cromatograma del estándar de quercetina a 5.606 ppm (E3), día 2
Figura No. 34. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica
Figura No. 35. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica
Figura No. 36. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica 7
Figura No. 37. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica
Figura No. 38. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 37 nm, réplica 1
Figura No. 39. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 37 nm, réplica 2
Figura No. 40. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 37
nm, réplica 3

Figura No. 41. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 373 nm, réplica 4
Figura No. 42. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 1.
Figura No. 43. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 2.
Figura No. 44. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 3.
Figura No. 45. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 4.
Figura No. 46. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm, réplica 1
Figura No. 47. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm, réplica 2
Figura No. 48. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm, réplica 3
Figura No. 49. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm. réplica 4.

LISTADO DE TABLAS

Tabla No. 1. Resumen de los métodos analíticos reportados en la literatura para la cuantificación de
quercetina en preparados farmacéuticos de ginkgo
Tabla No. 2. Cuadro de operacionalización de variables del estudio. 24
Tabla No. 3. Parámetros de fase móvil evaluados para determinar el flujo óptimo del método
Tabla No. 4. Costo estimado y financiamiento del trabajo de investigación
Tabla No. 5. Resultados del tiempo de retención (t _R) y resolución de la columna (Rs) de las fases móviles
evaluadas
Tabla No. 6. Resultados de la especificidad del método analítico para la cuantificación de quercetina en
cápsulas de ginkgo.
Tabla No. 7. Resultados del modelo de regresión lineal del método analítico para la cuantificación de
quercetina en cápsulas de ginkgo, del día 1 y día 2.
Tabla No. 8. Resultados de la prueba de hipótesis para determinar la significancia del modelo de regresión
lineal del método analítico para la cuantificación de quercetina en cápsulas de ginkgo
Tabla No. 9. Resultados de la exactitud y precisión del método cromatográfico para la cuantificación de
quercetina en cápsulas de ginkgo.
Tabla No. 10. Estadística descriptiva del tiempo de retención (t _R) y área bajo la curva (AUC) de las
soluciones hijas de quercetina utilizadas para la linealidad
Tabla No. 11. Límite de detección (LOD) y límite de cuantificación (LOQ) del método cromatográfico
para la cuantificación de quercetina en cápsulas de ginkgo
Tabla No. 12. Promedio de la concentración de quercetina total, aglicona y su respectiva proporción en las
muestras
Tabla No. 13. Porcentaje de quercetina glucosilada en las muestras comerciales de cápsulas de ginkgo. 34
Tabla No. 14. Especificaciones del equipo de cromatografía utilizado para la investigación
Tabla No. 15. Cantidad pesada de estándar de quercetina dihidrato y muestra de cápsula de ginkgo 48
$\textbf{Tabla No. 16.} \ \ \text{Tiempo de retención } (t_R) \ \ y \ \ resolución \ de \ la \ columna \ de \ la \ muestra \ de \ las \ fases \ móviles$
evaluadas
Tabla No. 17. Datos para el cálculo de la resolución de la columna de la muestra A
Tabla No. 18. Datos para el cálculo de la resolución de la columna de la muestra B
Tabla No. 19. Datos utilizados para realizar la regresión lineal del método
Tabla No. 20. Datos utilizados para determinar la exactitud del método. 50
Tabla No. 21. Área bajo la curva del blanco utilizados para calcular el LOD y LOQ
Tabla No. 22. Datos de la muestra A utilizados para obtener el porcentaje de quercetina glucosilada 51

Tabla No. 23. Datos de la muestra B utilizados para obtener el porcentaje de quercetina gluco	silada 51
Tabla No. 24. Concentración final de las soluciones hijas de quercetina utilizadas para obtener	la regresión
lineal	52
Tabla No. 25. Estadística descriptiva de la resolución de la columna.	56
Tabla No. 26. Estadística descriptiva de la concentración experimental de quercetina de las solu	iciones hijas
de quercetina (exactitud), día 1.	56
Tabla No. 27. Estadística descriptiva de la concentración experimental de quercetina de las solu	iciones hijas
de quercetina (exactitud), día 2.	57
Tabla No. 28. Estadística descriptiva de la concentración de quercetina libre (aglicona), querce	etina total, y
glucosilada, en la muestra A.	57
Tabla No. 29. Estadística descriptiva de la concentración de quercetina libre (aglicona), querce	etina total, y
glucosilada, en la muestra B.	58
Tabla No. 30. Tabla ANOVA para la regresión lineal del día 1.	59
Tabla No. 31. Tabla ANOVA para la regresión lineal del día 2.	59

RESUMEN

Las hojas de *Ginkgo biloba* L. han sido utilizadas desde la antigüedad, y en la actualidad se considera como una opción ideal para el tratamiento y la prevención de enfermedades relacionadas con la vejez. Al ser un producto botánico de alto valor, los extractos de ginkgo pueden ser objeto de adulteración por motivos económicos. La Farmacopea Americana posee una monografía para productos orales de ginkgo, al igual que propone un método analítico para la cuantificación de sus principios activos, específicamente de los flavonoides glucosilados. Sin embargo, este se hace a partir de las aglicona del glucósido, lo que significa que el método no es capaz de detectar la adulteración del extracto de ginkgo que es fortificado con agliconas de flavonol.

En el presente trabajo de investigación se desarrolló y se validó un método analítico para la cuantificación de quercetina en cápsulas de ginkgo, por medio de cromatografía HPLC-DAD y mediante extracción con metanol y ultrasonido, seguido por una hidrólisis utilizando HCl. También se obtuvieron los parámetros de especificidad, linealidad, exactitud, repetitividad, precisión intermedia, límite de detección y cuantificación para el método. Por último, se determinó el porcentaje de quercetina glucosilada en dos marcas comerciales de cápsula de ginkgo de venta en Guatemala. Se sospecha que una de las muestras analizadas ha sido fortificada con quercetina libre, ya que la proporción de aglicona/quercetina total mostró ser demasiada alta para un extracto natural de ginkgo. Se sugiere valorar el método propuesto por la USP, ya que no permite distinguir entre un producto natural de ginkgo o adulterado. También se recomienda evaluar si el método propuesto permite cuantificar el kaempferol y la isorhamnetina, ya que es parte de los requerimientos que establece la monografía del ginkgo.

ABSTRACT

Ginkgo biloba L. leaves has been used since ancient times and is currently considered an ideal option for the treatment and prevention of diseases related to old age. Being a high value botanical product, ginkgo extracts can be subject to adulteration for economic reasons. The United States Pharmacopoeia has a monograph for oral ginkgo products, as well as an analytical method for the quantification of its active ingredients, specifically flavonoids glucosides. However, the method is based on the flavonoids aglycones, which means that is not capable of detecting adulteration of ginkgo extracts that are fortified with the free flavonoids.

In this research work, an analytical method was developed for the quantification of quercetin in ginkgo capsules, using an HPLC-DAD chromatography, extraction using methanol and ultrasound, followed by hydrolysis using HCl. Specificity, linearity, accuracy, repeatability, intermediate precision, detection limit, and quantification parameters for the method were also obtained. Finally, the percentage of glycosylated quercetin in two commercial products of ginkgo capsules sold in Guatemala was determined. One of the analyzed samples is suspected to have been fortified with free quercetin, since the aglycone/total quercetin ratio was shown to be too high for a natural ginkgo extract. It is suggested to evaluate the method proposed by USP, since it does not allow to distinguish between a natural ginkgo product or an adulterated one. It is also recommended to evaluate if the proposed method allows the quantification of kaempferol and isorhamnetin, since it is part of the requirements established by the ginkgo monograph

I. INTRODUCCIÓN

Los extractos de *Ginkgo biloba* L. (ginkgo) han sido utilizados para el tratamiento de varias enfermedades y dolencias, especialmente las que son relacionadas con la edad. Debido a su composición química, principalmente los flavonoides y terpenoides, los extractos de ginkgo actúan como antioxidantes eliminando los agentes tóxicos para las células, y al mismo tiempo, como antiinflamatorios. El sinergismo de estas actividades farmacológicas hace que el ginkgo sea una opción ideal para el tratamiento y la prevención de enfermedades neurológicas y cardiovasculares en la vejez (Hashiguchi et al., 2015).

Derivado a la incidencia y prevalencia de las enfermedades neurodegenerativas, cardiovasculares, y otras dolencias relacionadas con la edad, y debido a la efectividad y seguridad del ginkgo para su tratamiento y prevención, la industria farmacéutica ha desarrollado diversos preparados que contienen extractos de ginkgo. Entre ellas se encuentra el EGb 761, que es el extracto estandarizado de ginkgo desde 1965, y está constituido por 24% de flavonoides glucosilados y 6% de terpenoides (Luo & Cao, 2009).

Según los expertos de la Organización Mundial de la Salud (OMS), el uso de plantas medicinales resulta ser un desafío para la industria. Esto es debido a que los extractos vegetales poseen un contenido de compuestos químicos más complejo que los medicamentos convencionales, por lo que el aislamiento y cuantificación de cada principio activo puede resultar tedioso y con un alto costo económico (OMS, 2005). Diversos métodos analíticos se han desarrollado con la finalidad cuantificar los distintos compuestos activos del ginkgo. Sin embargo, la principal limitante para dichos ensayos es la poca disponibilidad de estándares de calibración en el mercado. Además, el ginkgo posee una alta variabilidad de los glucósidos de flavonoides, resultando imposible analizar cada heterósido.

En el caso de los flavonoides, la Farmacopea Americana (USP) cuenta con un método que consiste en cuantificar la aglicona del glucósido tras una hidrólisis ácida del extracto de ginkgo. Luego se multiplica el resultado por un factor de conversión, obtenido estequiométricamente entre el peso molecular promedio de los todos los flavonoides glucosídicos del ginkgo y el peso molecular del flavonoide de interés. Sin embargo, varios investigadores opinan que este método puede opacar los productos adulterados del ginkgo que son fortificados con la aglicona del glucósido (Demirezer et al., 2014; Dubber & Kanfer, 2004; Sloley et al., 2003; Wohlmuth et al., 2014).

La finalidad de esta investigación consiste en desarrollar y validar un método analítico para la cuantificación de quercetina en cápsulas que contienen extractos de ginkgo como principio activo, por medio de cromatografía líquida de alta eficacia acoplado a un detector de arreglo de diodos (HPLC-DAD). Se determinó las condiciones de la fase móvil que permitan efectuar el análisis de manera eficiente y en el menor tiempo de corrida, y se obtuvieron los parámetros de especificidad, linealidad, exactitud, repetitividad, precisión intermedia, límite de detección y cuantificación del método.

Por otro lado, se cuantificó la concentración de quercetina glucosilada en dos marcas comerciales de cápsulas que poseen extractos de ginkgo. La detección y cuantificación de quercetina glucosilada se efectúo en base a su forma libre, por lo que el tratamiento de la muestra consistió en una extracción en medio ácido para liberar la aglicona, y una extracción en medio neutro utilizando metanol para determinar la quercetina libre en la muestra. Para obtener el porcentaje de quercetina glucosilada se realizaron dos cálculos: 1) multiplicar por 2.51 la concentración de quercetina total (extracto hidrolizado), y 2) una resta entre la quercetina total y la porción de la aglicona obtenida en el extracto neutro. Este último representa el porcentaje de quercetina que se encontraba glucosilada en la muestra.

El método facilitará los procesos de control de calidad para estos productos, al igual que la evaluación de su seguridad y eficacia. Por otro lado, el estudio proporciona información confiable respecto a la concentración actual de este compuesto activo en preparados de venta libre que se comercializan en Guatemala.

II. MARCO CONCEPTUAL

A. Antecedentes

El *Ginkgo biloba* L. (ginkgo) es un árbol perteneciente de la familia Ginkgoaceae, y ha existido desde hace más de 4,000 años atrás. En la actualidad es conocido como un "fósil viviente", ya que es la única especie sobreviviente de su familia, por lo que posee una alta resistencia contra la polución e infecciones. El uso de las hojas de ginkgo con fines medicinales se ha reportado desde la antigüedad. Hoy en día se ha recomendado el uso del ginkgo para como una alternativa natural para el tratamiento de enfermedades relacionadas con la vejez, entre ellas el Alzheimer, la demencia moderada y enfermedades cardiovasculares (European Medicines Agency, 2015; Hashiguchi et al., 2015; Luo & Cao, 2009; Pascual Mathey et al., 2018).

El ginkgo posee una diversidad de metabolitos secundarios, entre ellos se destacan los flavonoides y los terpenoides. En 1965, el médico y farmacéutico alemán Willmar Schwabe patentó el extracto EGb 761, que consiste en un extracto de ginkgo que posee 24% de flavonoides glucosilados y 6% de terpenoides. Entre los principales flavonoides se encuentran la quercetina, el kaempferol, la isorhamnetina, y sus derivados glucosilados. Por otro lado, el bilobálido y los ginkgólidos A, B, C, J y M representa la fracción terpénica. El EGb 761 se ha utilizado en los estudios clínicos del ginkgo, y en la actualidad se considera como un extracto estandarizado para este remedio natural (Luo & Cao, 2009).

Los principales efectos farmacológicos que tiene el EGb 761 es que actúa como un potente antioxidante, ya que los flavonoides tienen la capacidad de atrapar los radicales libre, disminuyendo el estrés oxidativo, la peroxidación lipídica, el daño en el ADN y la apoptosis. Mientras que los terpenoides poseen una acción antiinflamatoria. Derivado a estas propiedades, se ha recomendado el uso del ginkgo, como suplemento alimenticio, para diferentes dolencias, incluyendo el Alzheimer, problemas cardiovasculares, tinnitus, cáncer, y otras enfermedades relacionadas con la edad (Luo & Cao, 2009; Sierpina et al., 2003; Zuo et al., 2017).

En la actualidad, se encuentra distintas formas farmacéuticas sólidas y líquidas del ginkgo en el mercado, y como todo producto farmacéutico, estos preparados deben cumplir con estándares de calidad desde su desarrollo hasta su postcomercialización.

B. Justificación

Con base en los informes generados en la Organización Mundial de la Salud (OMS), el uso de plantas medicinales resulta ser un desafío, tanto para la industria farmacéutica como para el ente regulatorio. Dentro de los principales retos está la eficacia, el control de calidad de los productos terminados y el seguimiento de la seguridad a largo plazo. Esto se debe principalmente a que los extractos vegetales poseen un contenido de compuestos químicos más complejo que los medicamentos convencionales, por lo que el aislamiento y cuantificación de cada principio activo puede resultar tedioso y con un alto costo económico. Por otro lado, la calidad y el contenido de principio activo depende de varios factores que son difíciles de controlar por el fabricante. Tales factores pueden ser genéticos o ambientales, como la cantidad de radiación solar, la temporada de cosecha, la calidad del suelo en que se cultivó, etc. (Yang et al., 2018). Por último, el cumplimiento de la Buenas Prácticas de Manufactura (BPM) es otro desafío debido a la sanitización del material vegetal y la reproducibilidad del producto final (OMS, 2005).

La Farmacopea Americana (USP) posee un método para la determinación de los componentes químicos principales del ginkgo. En el caso de los flavonoides glucosilados, el procedimiento utiliza un equipo de cromatografía líquida de alta resolución (HPLC) acoplado a un detector UV/Vis. La muestra se extrae utilizando metanol, y se inyecta después de una hidrólisis en medio ácido, por lo que únicamente se cuantifica la aglicona liberada después de la reacción. A partir de este dato, se multiplica el resultado por un factor de conversión, que es obtenido a partir de una relación estequiométrica entre el peso molecular promedio de los todos los flavonoides glucosídicos del ginkgo y el peso molecular del flavonoide de interés (USP, 2019).

Sin embargo, varios autores han sospechado que al cuantificar los flavonoides después de una hidrólisis ácida puede opacar la adulteración de estos productos. En los análisis realizados por Demirezer et al. (2014), Dubber & Kanfer (2004), Sloley et al. (2003) y Wohlmuth et al., (2014), en donde inyectaron la muestra de ginkgo en medio neutro y ácido, han encontrado que la señal del equipo es relativamente alta cuando solamente se trata la muestra con metanol. Por lo que se cree que los fabricantes, o proveedores de ginkgo, añaden la forma libre de los flavonoides para aumentar la señal del equipo, ya que la cuantificación se efectúa después del tratamiento en medio ácido.

Debido a la importancia de mantener los parámetros de calidad de los productos farmacéuticos, en este trabajo de investigación se busca diseñar y validar un método analítico que permita la identificación y cuantificación de quercetina glucosilada en cápsulas que poseen extractos de ginkgo. Este método facilitará

los procesos de control de calidad de estos preparados, al igual que se proporcionará información confiable sobre la concentración actual de este compuesto activo en las cápsulas que se comercializan en Guatemala.

C. Pregunta de investigación

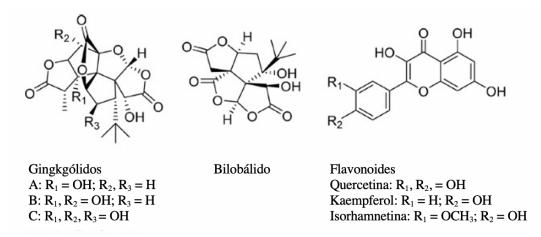
¿Es factible desarrollar y validar un método analítico para la identificación y cuantificación de quercetina glucosilada en cápsulas comerciales con extractos de ginkgo, mediante cromatografía líquida de alta eficacia acoplado a un detector de arreglo de diodos (HPLC-DAD)?

D. Alcance y limitantes

1. Alcance

Se identificó y se cuantificó únicamente quercetina en dos marcas comercial de cápsulas de ginkgo, mediante cromatografía líquida de alta resolución acoplado con un detector arreglo de diodos.

2. Limitantes


La validación del método analítico incluye los siguientes parámetros: especificidad, linealidad, exactitud, repetitividad, precisión intermedia, límite de detección y de cuantificación. Por otro lado, solamente se analizó un lote de dos marcas comerciales de cápsulas de ginkgo de venta libre en Guatemala.

IV. MARCO TEÓRICO

A. Ginkgo biloba L.

1. Componentes químicos

Como se mencionó anteriormente, el EGb 761 es el extracto estandarizado del ginkgo, y posee un contenido de 24% de flavonoides glucosilados y 6% de terpenoides. Los principales flavonoides se encuentran la quercetina, el kaempferol y la isorhamnetina. Por otro lado, el bilobálido y los ginkgólidos A, B, C, J y M representa la porción terpénica (ver Figura no. 1) (Luo & Cao, 2009). Según la Farmacopea Americana, las cápsulas/tabletas de ginkgo se preparan a partir de extracto de ginkgo en polvo y contienen, con respecto a la cantidad declarada del extracto, 22.0% a 27.0% de glucósidos de flavonol, específicamente, de quercetina, kaempferol e isorhamnetina; y 5.4% a 12.0% de lactonas terpénicas, que consisten en bilobalido, ginkgólido A, B y C (USP, 2019).

Figura No. 1. Estructura química de los ginkgólidos, bilobálido y flavonoides presentes en el extracto EGb 761.

(Zuo et al., 2017).

Por lo general, la quercetina se encuentra de forma glucosilada en la naturaleza, así como se observa en la Figura no. 2 (Zheng et al., 2017). La mayoría de estos poseen enlaces O-glucosilados, en donde uno o más grupos hidroxilo de la quercetina se unen a una o más moléculas de carbohidratos a través de la posición 3 o 7, esto hace que la aglicona sea fácilmente liberado en medio ácido (Dewick, 2002; Ding et al., 2006). Por otro lado, es importante considerar la forma química de los flavonoides al momento de ser

administrado, ya que se ha encontrado que la biodisponibilidad y farmacocinética entre el glucósido y la aglicona puede variar significativamente (Ding et al., 2006).

Figura No. 2. Estructura química de las diferentes formas glucosiladas que se encuentra la quercetina en la naturaleza.

(Zheng et al., 2017).

(Ding et al., 2006).

En estudios realizados anteriormente, se han encontrado la presencia de distintas formas glucosilados de la quercetina en el ginkgo, entre ellas está la quercetina-3-β-D-glucósido, quercetina-3-L-ramnósido (quercitrina) y quercetina 3-rutinósido (rutina) (ver Figura no. 3) (Ding et al., 2006).

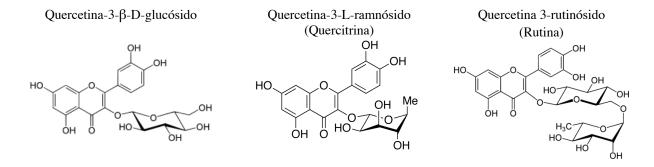


Figura No. 3. Formas glucosiladas de la quercetina en el ginkgo

2. Usos terapéuticos, farmacología y reacciones adversas

La actividad farmacológica del ginkgo se ha estudiado a lo largo de los años, y debido a que consisten en una mezcla compleja de principios activos, se ha demostrado que posee utilidad clínica en varias enfermedades neurodegenerativas y cardiovasculares. El principal efecto que tienen los flavonoides es que actúan como antioxidantes, eliminando los agentes tóxicos para las células, mientras que los terpenoides actúan como antagonistas del factor activador de plaquetas, ejerciendo un efecto antiinflamatorio. El sinergismo de estas actividades farmacológicas hace que el ginkgo sea una opción ideal para el tratamiento y la prevención de enfermedades neurológicas y cardiovasculares en la vejez (Hashiguchi et al., 2015).

En el caso del Alzheimer, se ha reportado que el ginkgo tiene efectos neuroprotectores, debido a que puede disminuir la liberación de glutamato, un neurotransmisor excitador (Pascual Mathey et al., 2018). También se ha determinado que los extractos pueden estimular la captación de colina en el hipocampo (Sierpina et al., 2003). Varios autores recomiendan el uso del ginkgo para el tratamiento del Alzheimer y la demencia, y estudios de meta-análisis realizados por Hashiguchi et al. (2015), han concluido que 240 mg diarios de ginkgo muestran mejorías en los síntomas del Alzheimer, en comparación de un placebo.

Por otro lado, se ha encontrado que los ginkgólidos y el bilobálido poseen acción antiinflamatoria. Entre sus principales efectos están: disminución de la agregación plaquetaria por medio del antagonismo del factor activador de plaquetas, regulador de las vías de señalización de la proteína quinasa activada por mitógenos en la respuesta inmune inflamatoria, y su acción anti-apoptosis (Li et al., 2020). Por último, se ha encontrado que el ginkgo posee efecto vasodilatador, ya que puede aumentar los niveles de óxido nítrico sanguíneo, tiene propiedades antiansiolíticas, antiestrés y anticancerígenas (Pascual Mathey et al., 2018).

Por lo general, las reacciones adversas del ginkgo son muy raras. Entre los más reportados son: náuseas, vómitos, diarrea, dolores de cabeza, debilidad y salpullido. La única interacción farmacológica que se ha determinado con el ginkgo es con la warfarina y algunos antiagregantes plaquetarios como el ácido acetilsalicílico. La combinación del ginkgo con estos fármacos puede aumentar el riesgo de sangrado en los pacientes (Sierpina et al., 2003).

3. Preparados galénicos y asuntos regulatorios

La Farmacopea Americana (USP) incluye la monografía de varios preparados farmacéuticos de ginkgo. Entre ellas, incluyen tabletas, cápsulas y extractos en polvo, todos de administración oral y

clasificados como suplementos alimenticios. Según la USP, las cápsulas de ginkgo se preparan a partir de extracto de ginkgo en polvo y contienen, con respecto a la cantidad declarada del extracto, no menos de 22.0% y no más de 27.0% de glucósidos de flavonol, específicamente, de quercetina, kaempferol e isorhamnetina; y no menos de 5.4% y no más de 12.0 % de lactonas terpénicas, que consisten en bilobalida (C₁₅H₁₈O₈), ginkgólido A (C₂₀H₂₄O₉), ginkgólido B (C₂₀H₂₄O₁₀) y ginkgólido C (C₂₀H₂₄O₁₁) (USP, 2019).

Por otro lado, el Comité de Medicamentos a Base de Plantas (Committee on Herbal Medicinal Products, HMPC) de la Agencia Europea de Medicamentos (EMA) publicó la monografía del *Ginkgo biloba* L. en el 2015. En el documento se menciona el uso preparados líquidos y sólidos de administración oral, y recomiendan su posología de 120 a 240 mg diarios por al menos 8 semanas (European Medicines Agency, 2015).

En Guatemala, según el Reglamento Técnico Centroamericano (RTCA) 11.03.64:1, el ginkgo se clasifica como Producto Natural Medicinal. Por otro lado, el RTCA 11.03.56:09, que establece la Verificación de la Calidad para los Productos Naturales Medicinales para Uso Humano, establece que las pruebas de control de calidad que se debe realizar a las cápsulas de gelatina dura y blanda son: características organolépticas, desintegración (para cápsulas duras), variación de peso, determinación del agua, identificación general o específica, pruebas de metales pesados (para cápsulas rellenas directamente con material triturado), y recuento microbiano (RTCA, 2007).

B. Cuantificación de quercetina

1. Métodos analíticos

La quercetina es un metabolito secundario categorizado como flavonoide, con una formula química de C₁₅H₁₀O₇. Su estado físico consiste en cristales sólidos de color amarillo, es estable a la luz, soluble en alcoholes como metanol y etanol, e insoluble en agua. Varios métodos se han validado para la cuantificación de su forma glucosilada en preparados farmacéuticos de ginkgo, como parte de su control de calidad (ver Tabla no. 1). El principal equipo utilizado es la cromatografía líquida de alta resolución (HPLC) acoplado a un detector UV/Vis o arreglo de diodos (DAD), y ultrasonido como técnica de extracción.

La quercetina se puede encontrar glucosilada de distintas formas en el ginkgo, y derivado a la limitante de los estándares de calibración, los métodos encontrados en la literatura consisten en la cuantificación del flavonoide en su forma libre o aglicona. La muestra es tratada por medio de una hidrólisis ácida, por lo

general con ácido clorhídrico acuoso, para liberar el enlace O-glucosídico. Según varios estudios realizados anteriormente, se ha determinado que el peso molecular promedio de los todos los flavonoides glucosídicos del ginkgo es de 760. A partir de este dato, y por medio de la estequiometria, se obtiene un factor de conversión que permite calcular la cantidad de los distintos flavonoides glucosilados a partir de su aglicona. En el caso de la quercetina, debido a que su peso molecular es de 302.24 g/mol, su factor de conversión sería de 2.51 (ecuación 1) (Sticher, 1992). Este factor de conversión fue utilizado por distintos autores, entre ellos Demirezer et al., (2014), Gray et al., (2005), Sloley et al., (2003) y el método oficial de la USP.

Ecuación No. 1. Factor de conversión de quercetina a quercetina glucosilada.

$$Factor\ de\ conversi\'on = \frac{760.00}{302.24} = 2.51$$

Con respecto a la fase móvil, en la literatura se ha utilizado una mezcla de un solvente orgánico polar, principalmente metanol, con una solución acuosa ácida con ácido fosfórico (Demirezer et al., 2014; Gray et al., 2005; Sloley et al., 2003; USP, 2019), ácido acético (Ding et al., 2006) o ácido fórmico (Dubber & Kanfer, 2004). Las distintas proporciones de la fase móvil se muestran en la Tabla no 1.

Tabla No. 1. Resumen de los métodos analíticos reportados en la literatura para la cuantificación de quercetina en preparados farmacéuticos de ginkgo.

	Preparación del estándar	Preparación de la muestra
Cromatógrafo HPLC-UV/Vis Columna con relleno L1 de 4.6 mm x 25 cm Longitud de onda de detección: 370 nm Fase móvil: mezcla de metanol, agua y ácido fosfórico (proporción 100:100:1) Velocidad de flujo: 1.5 ml/min	Estándar de quercetina USP a 0.2 mg/ml preparado utilizando metanol.	Transferir una cantidad de la muestra tableta en polvo, pesada con precisión, equivalente a aproximadamente 50 mg de glucósidos de flavonol a un balón de 50 ml. Agregar 20 ml de metanol y someter a ultrasonidos durante 3 min. Agregar 20 ml de HCl 1.5 N y volver a someter a ultrasonidos durante 10 min. Dejar enfriar a temperatura ambiente y aforar con metanol. Centrifugar una porción, y transferir e sobrenadante a un vial de vidrio con tapa de goma. Calentar en un baño de vapor durante 25 min y enfriar a temperatura ambiente en un baño de hielo. Cálculos: el resultado es multiplicado por un factor de conversión de 2.504, asumiendo que el peso molecular promedio de todos los flavonoides glucosilados es de 756.7.
Cromatógrafo HPLC-UV/Vis Columna Phenomenex Luna C18(150 x 4.6 mm x 3 µm) Longitud de onda de detección: 370 nm Fase móvil: elución isocrática, con acetonitrilo y una solución acuosa de 0.1% ácido fosfórico con 0.01% trietilamina (28:72)	Estándar de quercetina dihidrato. Forma de preparación no se menciona.	Se preparó una muestra de <i>Ginkgo biloba</i> a 4 mg/mL, usando una mezcla de HCl acuoso al 25% y metanol (10:70) como solvente. Las muestras se colocaron en una centrifuga, y se tomó 200 µL de esta solución en un recipiente de vidrio sellado, y se calentó a 100 °C durante 25 minutos. Las muestras se retiraron, se enfriaron y se inyectaron 10 µl directamente al sistema de HPLC.
	Columna con relleno L1 de 4.6 mm x 25 cm Longitud de onda de detección: 370 nm Fase móvil: mezcla de metanol, agua y ácido fosfórico (proporción 100:100:1) Velocidad de flujo: 1.5 ml/min Cromatógrafo HPLC-UV/Vis Columna Phenomenex Luna C18(150 x 4.6 mm x 3 µm) Longitud de onda de detección: 370 nm Fase móvil: elución isocrática, con acetonitrilo y una solución acuosa de 0.1% ácido fosfórico con 0.01%	Columna con relleno L1 de 4.6 mm x 25 cm Longitud de onda de detección: 370 nm Capacita de metanol, agua y ácido fosfórico (proporción 100:100:1) Velocidad de flujo: 1.5 ml/min Cromatógrafo HPLC-UV/Vis Columna Phenomenex Luna C18(150 x 4.6 mm x 3 μm) Longitud de onda de detección: 370 nm Estándar de quercetina USP a 0.2 mg/ml preparado utilizando metanol. Estándar de quercetina dihidrato. Forma de preparación no se menciona.

Referencia	Parámetros cromatográficos	Preparación del estándar	Preparación de la muestra
Dubber & Kanfer (2004)	Cromatógrafo HPLC-DAD Columna Phenomenex Luna 5mm C18 (250 x 2.00 mm) Longitud de onda de detección: 350 nm Fase móvil: acetonitrilo y ácido fórmico (0.3%), en una proporción de 15:85 en los primeros 15 minutos, y 25:75 hasta los 33 minutos de corrida. Velocidad de flujo: 400 μL/min Temperatura de la columna: 45 °C	Curva de calibración a partir de disoluciones de un estándar de quercetina, pesando una cantidad exacta del estándar y aforando con una mezcla de metanol con agua (50:50).	Se pesaron 25 tabletas comerciales con extractos de <i>Gingko biloba</i> L. y se trituraron con un mortero y pistilo. Se peso una cantidad exacta del polvo, se añadió 25 ml de metanol y se colocó en un baño ultrasónico por una hora. La muestra fue centrifugada a 350 g por 15 minutos, y el sobrenadante fue aforado con metanol en agua (50:50).
Gray et al (2005)	Cromatógrafo HPLC -UV/Vis Columna Phenomenex Prodigy® ODS 5 μm, 4.6 × 250 mm Longitud de onda de detección: 370 nm Fase móvil: isocrático, metanol y ácido fosfórico 0.85% (1:1).	Curva de calibración utilizando quercetina dihidrato y diluido con metanol, a una concentración de 9.4, 18.8, 37.6, 75.2 y 150.4 µg/mL.	Se peso 15 mg (±1.5 mg) de extracto de polvo seco en un vial de vidrio transparente de 30 ml. Se agregó 5 ml de una mezcla etanol, agua y ácido clorhídrico (50:20:8) y se colocó en un baño ultrasónico durante 5 min. El extracto se hidrolizó en un horno a 90°C durante 60 min. Al culminar el tiempo, se dejó enfriar a temperatura ambiente, se transfirió el contenido a un balón aforado de 10 mL, y se aforó a volumen con metanol. La muestra fue inyectada en el equipo HPLC.
Ding et al (2006)	Cromatógrafo HPLC-UV/Vis Columna Luna C ₁₈ RP (100 x 4.6 mm x 5 μm)	Se preparó un estándar de quercetina a una concentración final de 200 mg/mL en metanol. Todas las soluciones se colocaron en un baño ultrasónico durante 10 minutos para	Se pesó 100 mg del complemento nutricional de <i>Ginkgo biloba</i> en un balón de 20 ml. Se añadió 20 mL de metanol a la muestra y se agitó brevemente para mezclar. Se colocó el vial de la muestra en un baño ultrasónico con una frecuencia de 42 kHz a 25 °C durante 50 min, y luego se centrifugó 1 ml de muestra por

Referencia	Parámetros cromatográficos	Preparación del estándar	Preparación de la muestra		
	Longitud de onda de detección: 250	garantizar que se disolvieran	10 min a 17 000 g para sedimentar el material		
	nm	por completo. Las soluciones	insoluble. Posteriormente, se extrajo un		
		de calibración se diluyeron con precisión con metanol	volumen de 100 μL del sobrenadante del vial de muestra y se analizaron 10 μL por HPLC.		
	Fase móvil: 0.1% de ácido acético en agua (A), acetonitrilo y metanol	justo antes de su uso. Todas	Para la hidrólisis ácida se llevó a cabo un reflujo por 5 horas de una muestra de 500 mg		
		las soluciones se			
	1:1 (B)	almacenaron a -20 °C.			
			de ginkgo en polvo y usando ácido clorhídrico		
	Elución por gradiente: 20% B		en metanol.		
	durante 5 min, 20–30% B durante				
	40 min, 30–35 %B durante 10 min				
	Velocidad de flujo: 0.8 mL/min				
	Temperatura de la columna: 35 °C				
	Cromatógrafo HPLC-DAD				
	Columna Dionex C ₁₈ (5 µm, 250 x				
	4.6 mm)		Se pesó una porción del polvo equivalente a		
	Longitud de onda: 370 nm	Se preparó una curva de	una tableta o cápsula y se hidrolizó con HCl 0. N durante 2 horas a 100 °C. La solución ácida se neutralizó con KOH al 10%, y luego se		
Demirezer et al	Velocidad de flujo: 1 ml/min	calibración utilizando estándar de quercetina a una	extrajo tres veces con acetato de etilo. Los extractos de acetato de etilo se combinaron y		
(2014)	Fase móvil: metanol (A) y agua	concentración de 200 ppm, 100 ppm, 50 ppm, 10 ppm y	evaporaron hasta sequedad al vacío.		
	desionizada ajustado a un pH 4 con	2 ppm, aforado con metanol.	El residuo se disolvió en metanol y se diluyó		
	ácido fosfórico (B).		hasta 50 ml. Las soluciones de muestra se		
			filtraron a través de un filtro de membrana de		
	Elución en gradiente: 40% A a 60%		0,45 μm antes de la inyección.		
	A en los primeros 10 minutos, 60%				
	A en minuto 11, 60% A a 40% A				
	por dos minutos				

Referencia	Parámetros cromatográficos	Preparación del estándar	Preparación de la muestra	
Wohlmuth et al. (2014)	Cromatógrafo HPLC-DAD			
	Columna Synergi C18 4 μ M (250 mm \times 4.6 mm)		Se colocaron aproximadamente 5.5 g de la muestra en polvo en un balón de 250 ml con 50 ml de etanol y 20 ml de agua para HPLC. Para	
	Longitud de onda: 270 nm	Se preparó un estándar de quercetina a 2.0 mg/mL disuelto en DMSO. Se prosiguió a realizar diluciones séricas aforadas	lograr la hidrólisis de los glucósidos de flavonol, se añadieron 8 ml de ácido clorhídrico	
	Elución por gradiente, que consiste en ácido fosfórico a 0.5% (fase A) y metanol (fase B).		al 37 % y la mezcla se calentó a reflujo a temperatura moderada en una campana extractora durante 2 h 15 min. Una vez enfriada, la solución se transfirió	
	Gradiente: A/B 60:40 a 50:50 por 40 minutos.	con metanol.	cuantitativamente a un matraz volumétrico de 100 ml y se diluyó a volumen con agua ultrapura. Las muestras no hidrolizadas se	
	Velocidad de flujo: 1.2 ml/min		trataron de forma idéntica, excepto por la adición de ácido clorhídrico.	
	Temperatura: 40 °C			

En otro método realizado por Muñoz et al. (2015), donde validó una metodología por HPLC-UV/Vis para cuantificar quercetina total en extractos de *Calendula officinalis*, utilizó una columna SilicaChrom C18 de 150 x 4.6 mm x 5 μm, y una longitud de onda de detección a 370 nm. Los autores realizaron diferentes pruebas para determinar la composición de fase móvil ideal, que el sistema cromatográfico que mostró resultados más satisfactorios se muestran la siguiente figura (Muñoz Muñoz et al., 2015).

Solventes F.M.		Gradiente	Fase estacionaria	Flujo (mL/min)	Temp (°C)	Vol. Inyec.	λ _{opt} (nm)
А	В		estacionaria	((µL)	(1111)
H ₃ PO ₄		0.0-1.5min; 35%B	Precolumna C-18 5µm	1.0	35	20	370
(p/v)	1.5-4.0min;35- 50%B	4.6x10mm					
		4.0-12.0min55%B					
		12.0-13.0min;50- 100%B	ColumnaC- 18 5µm 4.6x150mm				
	13.0-20.0min; 100%B						
	20.0-21.0min;						
		100%-35%B					
		21.0-30.0min; 35%B					

Figura No. 4. Sistema cromatográfico ideal para la cuantificación de quercetina en extracto glicólico e hidroalcohólico de *Calendula officinalis* determinado por Muñoz Muñoz et al. (2015).

2. Adulteración con quercetina en preparados comerciales de ginkgo

Investigaciones realizadas por Sloley et al. (2003) analizaron el contenido de diez diferentes extractos de ginkgo, certificados por el proveedor indicando que poseen un mínimo de 24% de flavonoides glucosilados y un 6% de terpenoides. Los flavonoides fueron cuantificados tras una hidrólisis en medio ácido (ver Figura no. 5), y por aparte, una extracción en medio neutro usando metanol para determinar los flavonoides glucosilados (ver Figura no. 6).

Supplier	Lot #	Quercetin % by weight	Kaempferol % by weight	Isorhamnetin % by weight	Total Flavonol Glycosides ∑aglycones X 2.51
1	1	6.22	5.57	0.88	31.8
2	1	6.95	4.62	0.90	31.3
	2	6.18	4.82	0.83	29.7
	3	7.28	4.84	0.95	32.8
3	1	8.34*	3.64	0.82	32.1
	2	6.46	5.16	0.97	31.6
	3	6.23	5.03	0.93	30.6
	4	5.82	4.98	1.04	29.7
4	1	6.83	5.20	1.13	33.0
5	1	N.D.	0.02	0.05	0.18

Figura No. 5. Concentración de la aglicona del flavonoide y de los flavonoides glucosilados de extractos estandarizados de ginkgo analizados en el estudio de Sloley et al. (2013).

Supplier	Lot #	RRGK	RGQ	RGK	RGI	CGRQ	CGRK
1	1	85	189	109	72	163	124
2	1	126	457	138	147	330	202
	2	134	373	142	142	285	194
	3	141	496	147	155	312	195
3	1	98	1322*	120	137	248	159
	2	152	323	161	163	334	214
	3	156	313	161	174	386	246
	4	166	308	171	172	316	192
4	1	169	335	163	177	370	221
5	1	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

Values are peak areas per sample in mAU and are the mean of analyses performed in duplicate. N.D. < 5 mAU

RRGK = 3-O-[2-O, 6-O-Bis(α -L-rhamnosyl)- β -D-glucosyl]kaempferol

RGQ = 3-O-[6-O-(α -L-Rhamnosyl)- β -D-glucosyl]quercetin = rutin

RGK = 3-O-[6-O-(α -L-Rhamnosyl)- β -D-glucosyl]kaempferol

RGI = 3-O-[6-O- $(\alpha$ -L-Rhamnosyl)- β -D-glucosyl]isorhamnetin

CGRQ = 3-O-[2-O-(6-O-{p-Coumaroyl}- β -D-glucosyl)- α -L-rhamnosyl]quercetin

CGRK = 3-O-[2-O-(6-O-{p-Coumaroyl}- β -D-glucosyl)- α -L-rhamnosyl]kaempferol

Figura No. 6. Área bajo la curva de seis glucósidos de flavonol analizados en los extractos comerciales del estudio de Sloley et al. (2013).

En sus resultados, encontraron que ocho de las diez muestras cumplían con las características de sus respectivos certificados. Mientras que el proveedor número 5 (supplier 5) tenía un perfil de compuestos químicos totalmente diferente a las del ginkgo, ya que solamente contenía 0.18% de flavonoides glucosilados, en donde la quercetina era indetectable. Por otro lado, la muestra del lote 1 del proveedor número 3 (supplier 3) tenía una concentración de rutina (una forma glucosilada de la quercetina) mucho mayor que los otros extractos y de lo reportado en la literatura, por lo que se considera que fue adulterado mediante la adición de rutina (Sloley et al., 2013).

Por otro lado, Ding et al. (2006) realizaron un análisis de cinco extractos comerciales de ginkgo. Estos autores contaban con distintos estándares: quercetina dihidrato (QD), kaempferol (KF), isorhamnetina (IR), quercetina-3-β-D-glucósido (QG), quercitrina (QH) y rutina (RH). También contaban con un extracto puro certificado de ginkgo (muestra número 5) y utilizaron un equipo de HPLC acoplado a

^{*:} Greater than two standard errors from the mean of authentic samples.

un detector de masas (HPLC-MS). La cuantificación de los flavonoides glucosilados fue realizada con el método de hidrólisis ácida, los resultados se muestran en la Figura número 7 y como se podrá observar, cumplen con el criterio de >24%. Sin embargo, al inyectar el extracto sin acidificar se observó que la muestra número 2 tenía un 7.978% de quercetina libre (aglicona) (ver Figura no. 8). Por lo que se sospecha que dicho extracto ha sido fortificado con quercetina para aumentar la señal de este analito en el equipo.

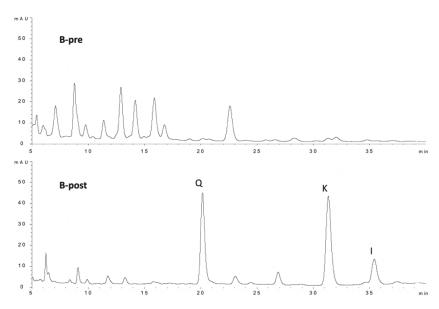
Sample no.	QD (%)	KF (%)	IR (%)	Total aglycones (%)	Total flavonoids (%) ^a
1	11.55	2.392	<loq<sup>b</loq<sup>	13.94	35.0
2	11.39	1.991	0.6741	14.06	35.3
3	5.806	4.349	1.275	11.43	28.7
4	6.542	3.613	1.023	11.18	28.1
5	8.741	1.855	0.5761	11.17	28.0

^a Total flavonoids = total aglycones \times 2.51.

Figura No. 7. Contenido de agliconas de los flavonoides de Ginkgo después de la hidrólisis ácida en el estudio de Ding et al. (2006).

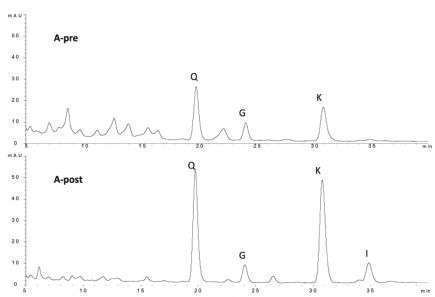
Sample no.	RH%	QG%	QH%	QD%	KF%	IR%	$TF\% \pm SD^b$
1	12.11	0.3485	0.1576	0.9781	0.3351	0.2299	14.16 ± 0.04
2	6.319	0.3864	0.2403	7.978	0.4134	0.3288	15.67 ± 0.03
3	6.276	0.5004	0.3217	0.4606	0.3339	0.1990	8.091 ± 0.02
4	10.29	0.3267	0.1676	0.6497	0.1088	0.1114	11.66 ± 0.02
5 (GBE ^c)	10.99	0.1039	0.08830	1.618	0.2351	0.1718	13.21 ± 0.03

^b TF, determined total flavonoids \pm SD; TF = RH + QG + QH + QD + KF + IR.


Figura No. 8. Contenido de flavonoides en algunos productos comerciales de Ginkgo biloba sin tratamiento ácido en el estudio de Ding et al. (2006).

Por otro último, en una investigación realizado por Wohlmuth et al. (2014), analizaron el contenido de tabletas y cápsulas comerciales de ginkgo en Australia. También contaban con hojas naturales de *Ginkgo biloba* L. como extracto estándar. Las muestras fueron extraídas con etanol y colocados en un reflujo por 2 h 15 min con HCl a 37%. Tanto el extracto etanólico como el acidificado de las hojas y las muestras fueron inyectados a un HPLC-DAD. En la Figura no. 9 se observa el cromatograma de una de las hojas de ginkgo y en la Figura no. 10 se muestra un cromatograma de un producto adulterado de ginkgo. La diferencia más importante entre estas gráficas es que en el extracto sin adulterar no se observa picos de los analitos antes de realizar la hidrólisis (B-pre). Mientras que en la Figura no. 10 sí es notorio el pico de las aglicona pre-

^bLOQ: limit of quantitation.


^cGBE, standardised *Ginkgo biloba* leaf extract.

hidrólisis, sospechando que puede estar adulterado mediante la adición de quercetina, genisteína y kaempferol.

Figura No. 9. Cromatograma de un extracto de hojas naturales de *Ginkgo biloba* L., antes de hidrolizar (B-pre) y después de hidrolizar (B-post).

(Wohlmuth et al., 2014).

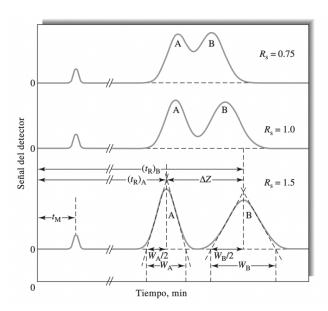
Figura No. 10. Cromatograma de un producto comercial de ginkgo adulterado, antes de hidrolizar (B-pre) y después de hidrolizar (B-post)

(Wohlmuth et al., 2014).

C. Extracción por ultrasonido

La extracción asistida por ultrasonido consiste en una maceración bajo las vibraciones del ultrasonido (frecuencia arriba de los 20 kHz). Este es uno de los métodos de extracción vegetal más rápidos, sencillos y reproducibles, en comparación de otros métodos convencionales. El mecanismo de extracción consiste en que las ondas del ultrasonido pueden causar una ruptura mecánica de la pared celular liberando las sustancias químicas que se encuentran dentro del citoplasma. Al mismo tiempo, el calentamiento local del solvente, provocado por las vibraciones, aumentan la difusión y disolución de los compuestos químicos en la interfase sólido-líquido (Camel, 2014).

D. Cromatografía de alta resolución acoplado a un detector de arreglo de diodos (HPLC-DAD)


1. Cromatografía líquida de alta resolución (HPLC)

La cromatografía es un método analítico que consiste en separar todas las especies químicas de una muestra, y posteriormente analizarlos por separado. Esta técnica consiste en una fase móvil, que puede ser un gas o un líquido, y pasa por una fase estacionaria inmiscible y fija en una columna o una superficie sólida. La fase móvil arrastra los componentes de la muestra hasta que sale de la columna, y debido a los diferentes grados de polaridad entre los compuestos químicos, la fase estacionaria y la fase móvil, los analitos se distribuyen y quedan retenidos en la columna en diferentes grados, haciendo que salgan en diferentes tiempos y logrando así la separación (Skoog et al., 2015).

En la cromatografía líquida de alta resolución (HPLC por sus siglas en inglés), la fase estacionaria se mantiene en un tubo delgado, o columna, y la fase móvil consiste en un líquido que es forzado a pasar a través del tubo por presión. Otra característica del HPLC es que la fase estacionaria se encuentra finamente dividida, donde el tamaño de partícula es de 3 a 10 μm, logrando obtener flujos con velocidad satisfactoria y con una alta resolución. Entre las ventajas del HPLC, a diferencia de la cromatografía de gases, es que permite identificar y cuantificar compuestos que no son volátiles o de alto peso molecular, siendo una de las técnicas más utilizada en la industria farmacéutica (Skoog et al., 2015).

Uno de los parámetros analíticos más importantes en HPLC es la eficiencia. Teóricamente, la eficiencia está relacionada con los procesos cinéticos que ocurren dentro de la columna. Una forma de medir la eficiencia y la resolución de la columna es por medio de los platos teóricos, la altura equivalente de un plato teórico y la resolución de la columna. Un plato teórico es una sección de la columna donde hay

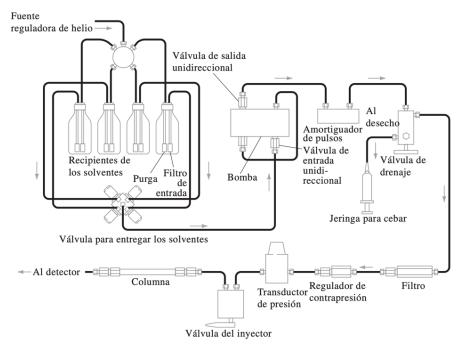

un equilibrio entre la fase estacionaria y la fase móvil. Entre mayor es el número de platos teóricos (N), mejor es la capacidad de la columna para separar dos compuestos. Por otro lado, la altura equivalente de un plato teórico (H) es igual a la longitud de la columna dividido entre el número de platos teóricos de la columna. Por último, la resolución de la columna (R_s) determina la capacidad de una columna cromatográfica para separar dos analitos, y está definida como la diferencia entre los tiempos de retención de dos picos divido entre sus anchos promedios (ecuación 1). Para que haya una buena separación de los analitos, se espera que el R_s sea alrededor de 1.5, así como se muestra en la Figura 11 (Skoog et al., 2015).

Figura No. 11. Cromatogramas de tres distintas columnas con diferente valor de resolución (Skoog et al., 2015).

2. Equipo de cromatografía HPLC

El equipo para cromatografía de HPLC se muestra en la Figura no. 12. El equipo está compuesto por: recipientes que contienen la fácil móvil y sistemas para su tratamiento, un sistema de bombeo, sistema de inyección de la muestra, una columna cromatográfica y un detector.

Figura No. 12. Diagrama del equipo de un cromatógrafo HPLC (Skoog et al., 2015).

Por lo general, los equipos HPLC poseen varios recipientes que contienen los solventes de la fase móvil. Estos a su vez están acoplado con un sistema que elimina los gases y sólidos disueltos en el líquido. Tanto las burbujas como el polvo pueden ocasionar flujos inestables, ensanchamiento de banda e interferir con la señal del detector. Este sistema de tratamiento consiste en un desgasificador y un filtro especial que permite eliminar los sólidos suspendidos. Por otro lado, la elución de la fase móvil puede darse de forma isocrática, en donde solamente se utiliza un solvente o una sola mezcla de solvente con concentración constante. Mientras que la elución con gradiente, la concentración del solvente aumenta a una velocidad programada, por lo que la polaridad de la fase móvil va cambiando durante la corrida, tal como se muestra en el estudio de Muñoz et al (2015). La ventaja de la elución por gradiente es que permite mejorar la separación del pico de interés y en menor tiempo (Skoog et al., 2015).

Los sistemas de bombeo tienen el propósito de generar presiones de hasta 6000 psi o 414 bares y tasas de flujo de 0.1 a 10 mL/min. Los principales sistemas de bombeo son de tipo reciprocante y bombas de desplazamiento. Las bombas reciprocantes son las más utilizadas en la actualidad y utiliza el movimiento de un pistón para generar la presión deseada. Por otro lado, los sistemas para inyección de muestra deben introducir una cierta cantidad muestra a la columna de forma reproductiva. Por lo general, los volúmenes de muestra son muy pequeñas, desde 1 µL a 500 µL, de lo contrario se observa ensanchamiento de banda

o taponamiento de la columna. En la actualidad, los equipos HPLC poseen autoinyectores que tienen la capacidad de inyectar muestras al cromatógrafo a partir de viales en un carrusel. La inyección es realizada por un rizo de muestreo que permite insertar la muestra a la columna y a la vez ser arrastrada por la fase móvil (Douglas. Skoog et al., 2015).

Por último, las columnas para HPLC consisten en un tubo de acero inoxidable de 5 a 25 cm de largo y con un diámetro interno de 3 a 5 mm. Las columnas analíticas por lo general poseen rellenos con un tamaño de partícula entre 3 a 5 µm y pueden generar alrededor de 40,000 a 70,000 platos/columna. En los equipos de HPLC también pueden tener una precolumna, este tiene la función de proteger la columna analítica eliminando los contaminantes y otros componentes de la muestra que se pueden unir irreversiblemente en la fase estacionaria (Skoog et al., 2015).

3. Cromatografía de fase inversa

La clasificación de la cromatografía líquida depende del material de relleno que posee la columna. En la cromatografía de fase inversa, la fase estacionaria es un material apolar, por lo general un hidrocarburo, mientras que la fase móvil es un solvente polar, como el metanol, agua, acetonitrilo o tetrahidrofurano. Al contrario, la cromatografía de fase normal utiliza un material de alta polaridad para la fase estacionaria y un solvente apolar como fase móvil. Por otro lado, en la cromatografía de fase inversa, la especie química más polar sale primero de la columna, a diferencia de la cromatografía de fase normal en donde el menos polar eluye primero. En la actualidad, la cromatografía de fase inversa es la más utilizada, ya que se puede utilizar agua como fase móvil, este solvente es barato, seguro y transparente con la radiación UV (Skoog et al., 2015).

El relleno para las columnas de fase inversa consiste en siloxanos, donde pueden tener un grupo R con una cadena de hidrocarburos n-octilo (C₈) o n-octildecilo (C₁₈). El efecto de la cadena de hidrocarburos afecta en el tiempo de retención del analito en la columna. Por lo general, las cadenas más largas originan rellenos con mayor retención, permitiendo separar más especies química y aumentado la eficacia del método. Entre los principales cuidados que se debe tener en este tipo de columnas es evitar tener solventes con pH mayores a 7.5 y menores a 2.5, ya que se podría formar silicatos solubles o provocar la hidrólisis ácida del siloxano, respectivamente, deteriorando la fase estacionaria (Skoog et al., 2015).

4. Detector UV/Vis y de arreglo de diodos

Conforme los k que genera una señal característica de la especie química analizada. El detector de espectroscopia molecular UV-Vis consiste en medir la cantidad de radiación ultravioleta o visible que absorbe el analito a cierta longitud de onda. Esta técnica está basada en la ley de Beer-Lambert, que establece que la relación entre la absorbancia y la concentración del analito es lineal a bajas concentraciones. Por lo general, estos detectores son de doble haz, en donde un rayo de luz atraviesa la celda del eluyente y el otro de referencia (Skoog et al., 2015).

Los detectores de arreglo de diodos poseen una gran ventaja con respecto a los detectores UV/Vis, y es que pueden detectar la absorbancia a diferentes longitudes de onda de manera simultánea. En estos equipos, el eluyente es excitado con radiación policromada, y luego, cada longitud de onda es separado por una rejilla de difracción y detectado por un fotodiodo de sílice, que tiene la capacidad de ampliar la corriente eléctrica de cada longitud de onda, generando una señal cuantificable (Skoog et al., 2015).

E. Validación de un método analítico

El Reglamento Técnico Centroamericano RTCA 11.03.39:06 define la validación de un procedimiento analítico como el procedimiento para establecer pruebas documentales que demuestren científicamente que un método analítico tiene las características de desempeño que son adecuadas para cumplir los requerimientos de las aplicaciones analíticas pretendidas. Implica la demostración de la determinación de las fuentes de variabilidad y del error sistemático y al azar de un procedimiento, no sólo dentro de la calibración sino en el análisis de muestras reales (RTCA, 2006). En otras fuentes oficiales, como la USP, define la validación como el proceso por el cual se establece, mediante estudios de laboratorio, que las características de desempeño del método cumplen con los requisitos para las aplicaciones analíticas previstas (USP, 2019).

El RTCA menciona algunas bibliografías para los lineamientos que se requiere para validar un método analítico. Entre ellas se encuentra la Conferencia Internacional de Harmonización (ICH por sus ciclas en inglés) y el capítulo general <1225> de la USP. Entre otras normas internacionales se encuentran Guía de la AOAC (Association of Official Analytical Chemists) para la Validación de Métodos Analíticos en Suplementos Dietéticos y Botánicos, y la Guía de Validación de Métodos Analíticos de EURACHEM (AOAC, 2002; EURACHEM, 1998).

1. Especificidad o selectividad

La especificidad o la selectividad es la capacidad que tiene el método para identificar cierta especie química y excluirla de los otros componentes, tales como impurezas, excipientes u otros compuestos en la matriz. Según la ICH, la especificidad se puede demostrar, en caso de cromatografía, utilizando un estándar de referencia y comparando los picos de retención entre el cromatograma de referencia y el de la muestra. Por otro lado, la AOAC recomienda calcular la resolución de la columna para demostrar que los picos de las otras especies químicas de la muestra estén alejados entre sí. Esto se puede obtener utilizando la ecuación número 2. Se suele buscar una resolución de al menos 1.5, pero se necesita que sea de al menos 1.0 para una separación mínima utilizable (AOAC, 2002; ICH, 1995).

Ecuación No. 2. Resolución de la columna (Rs).

$$R_{s} = 2 \left(\frac{\left[(t_{R})_{B} - (t_{R})_{A} \right]}{W_{\frac{1}{2}A} + W_{\frac{1}{2}B}} \right)$$

Donde: $(t_r)_B$ y $W_{1/2,B}$ es tiempo de retención y la mitad del ancho de base, respectivamente, del segundo pico; y $(t_r)_A$ y $W_{1/2,A}$ es el tiempo de retención y la mitad del ancho de base, respectivamente, del primer pico (AOAC, 2002).

2. Exactitud

La exactitud se expresa como la proximidad entre el valor verdadero, o el valor de referencia aceptado, y el valor encontrado a partir del método analítico utilizado. Este se reporta como el porcentaje de la cantidad recuperada obtenida a partir del análisis y la cantidad agregada conocida de analito en la muestra, o como la diferencia entre la media y el valor verdadero aceptado. En la ecuación 3 se muestra el cálculo para obtener el porcentaje de recuperación (ICH, 1995).

Ecuación No. 3. Porcentaje de recuperación

$$E_R = \frac{\overline{x}}{x_t} * 100\%$$

Donde: \overline{x} es el promedio del conjunto de análisis realizados y x_t es el valor verdadero (AOAC, 2002).

Para la determinación de este valor, la ICH recomienda realizar una prueba con un estándar de concentración conocida, hacer una mezcla del analito con excipientes de cantidad conocida, o mediante un agregado de una cantidad conocida de estándar a la muestra. También se recomienda realizar un mínimo

de 9 ensayos en 3 diferentes concentraciones diferentes del analito, como por ejemplo, 3 concentraciones diferentes con 3 réplicas cada una (ICH, 1995).

3. Precisión

La precisión es el grado de repetitividad o coincidencia entre los resultados obtenidos a partir de la misma muestra y utilizando los mismos parámetros. Por lo general se expresa en forma de varianza, desviación estándar o coeficiente de variación (CV). Según la ICH, la precisión se clasifica en tres niveles:

- a. Repetitividad: expresa la precisión al utilizar las mismas condiciones de análisis durante un breve intervalo de tiempo. Para evaluarlo, la ICH recomienda realizar 9 corridas en diferentes rangos, como por ejemplo, 3 concentraciones diferentes con 3 réplicas cada una (ICH, 1995).
- **b. Precisión intermedia:** expresa la precisión dentro del mismo laboratorio, por el ejemplo, los resultados obtenidos en diferentes días, diferentes analistas, etc. (ICH, 1995).
- c. Reproductividad: expresa la precisión entre diferentes laboratorios (ICH, 1995).

4. Linealidad

La linealidad de un método analítico es su capacidad (dentro de un rango dado) para obtener resultados de prueba que son directamente proporcionales a la concentración (cantidad) de analito en la muestra (ICH, 1995). Para evaluar la linealidad sobre el rango establecido, la ICH recomienda realizar una regresión lineal utilizando mínimo 5 concentraciones conocidas, y calculando el coeficiente de correlación, la intersección con el eje y, la pendiente de la regresión lineal y reportar la suma de cuadrados residual (ICH, 1995). Por otro lado, la AOAC recomienda el coeficiente de determinación mayor a 0.99 (AOAC, 2002).

5. Límite de detección (LOD)

Según la ICH, el límite de detección es *la cantidad más baja de analito en una muestra que se* puede determinar cuantitativamente con precisión y exactitud adecuadas (ICH, 1995). Este parámetro permite determinar que la cantidad de analito está por encima o por debajo de cierto nivel, y generalmente se expresa como la concentración de analito en la muestra.

Para obtener este valor en métodos instrumentales, la ICH recomienda calcular este parámetro mediante la siguiente ecuación:

Ecuación No. 4. Límite de detección (LOD).

$$LOD = \frac{3.3 \,\sigma}{S}$$

Donde: σ es la desviación estándar de la señal obtenida a partir de la medición de un blanco, y S es la pendiente de la curva de calibración (ICH, 1995). Para la obtención de σ, la ICH recomienda analizar un número apropiado de muestras de un blanco y calculando la desviación estándar de estas respuestas, mientras que la Guía para la Validación de Métodos Analíticos de Eurachem sugiere realizar 10 mediciones del blanco (EURACHEM, 1998).

6. Límite de cuantificación (LOQ)

El límite de cuantificación es la cantidad mínima del analito que se puede cuantificar utilizando el método analítico, con la precisión y exactitud adecuada (ICH, 1995). Esto se puede calcular mediante la siguiente expresión:

Ecuación No. 5. Límite de cuantificación (LOQ).

$$LOQ = \frac{10 \, \sigma}{S}$$

Donde: σ es la desviación estándar de la señal obtenida a partir de la medición de un blanco, y S es la pendiente de la curva de calibración (ICH, 1995).

7. Robustez

La USP define la robustez del método como la medida de su capacidad para no verse afectado por variaciones pequeñas, pero deliberadas, en los parámetros del método y proporciona una indicación de su confiabilidad durante el uso normal. La robustez del método analítico establecer las condiciones analíticas que se deben controlarse adecuadamente, e incluirse como una declaración de precaución en el procedimiento (ICH, 1995).

Algunas medidas de robustez que menciona la ICH se encuentran: estabilidad de las soluciones analíticas, tiempo de extracción, influencia de las variaciones de pH en una fase móvil, influencia de las variaciones en la composición de la fase móvil, el uso diferentes columnas (lotes y/o proveedores), la temperatura de la columna, etc. (ICH, 1995).

V. MARCO METODOLÓGICO

A. Objetivos

1. Objetivo general

- a. Diseñar un método válido y confiable para la identificación y cuantificación de quercetina en cápsulas que poseen extractos de *Ginkgo biloba* L. (ginkgo) como principio activo.
- Generar información científica y confiable respecto a la concentración de quercetina glucosilada en dos diferentes marcas comerciales de cápsulas de ginkgo de venta libre de Guatemala.

2. Objetivos específicos

- Estandarizar y validar un método químico analítico para la cuantificación de quercetina en cápsulas con extractos de ginkgo.
- Obtener los parámetros de especificidad, linealidad, exactitud, precisión, límite de detección, límite de cuantificación y robustez.
- c. Cuantificar la quercetina glucosilada, expresado en porcentaje por cantidad de ginkgo declarada por unidad posológica, en dos marcas comerciales de cápsulas que poseen extractos de ginkgo como principio activo de venta libre en Guatemala.
- d. Determinar los parámetros de fase móvil óptima, en donde el pico correspondiente a quercetina salga en el menor tiempo de corrida y con una buena resolución.

B. Hipótesis

Prueba de hipótesis para determinar la significancia estadística del modelo de regresión lineal del método analítico:

 $H_0 = la$ pendiente es igual a cero (m = 0).

 $H_1 = la$ pendiente es distinta a cero (m \neq 0).

C. Variables

Tabla No. 2. Cuadro de operacionalización de variables del estudio.

Variable	Definición conceptual	Indicador	Dimensionales	Instrumento de medición	Definición operacional
Fase móvil utilizada para el método.	Identificación del solvente y gradiente óptimo que permita la identificación y cuantificación de quercetina en el menor tiempo y con una buena resolución.	Tiempo de retención (R _T) del pico correspondiente a quercetina, y resolución de la columna (Rs).	$El\ R_T$ tiene dimensionales minutos, y el R_s es adimensional.	HPLC-DAD	Se evaluó la mezcla de fase móvil que permita una buena separación de los picos y en el menor tiempo necesario, de la siguiente forma: isocrático usando metanol y H ₃ PO ₄ 0.08% (80:20), en gradiente empezado con 40% H ₃ PO ₄ 0.08% y terminado con 100% metanol, y viceversa.
Cantidad de quercetina glucosilada en las cápsulas de ginkgo.	Determinar la cantidad de quercetina glucosilada en cápsulas de ginkgo.	Porcentaje de quercetina glucosilada, sobre la cantidad de ginkgo reportada en la etiqueta, por unidad posológica.	Porcentaje peso/peso (% p/p) de quercetina glucosilada, sobre la cantidad de ginkgo reportada en la etiqueta, por unidad posológica.	HPLC-DAD	Se utilizó el método de estándar externo, realizando una regresión lineal del área bajo la curva (AUC) del pico correspondiente a quercetina, respecto a la concentración.

D. Población y muestra

1. Población

Cápsulas con extractos de *Ginkgo biloba* L. (ginkgo) como principio activo que se comercializan en Guatemala.

2. Muestra

La muestra consiste en 1.0 gramo de los sólidos contenidos en las cápsulas de ginkgo pulverizadas, de un lote de dos marcas comerciales de venta libre en Guatemala.

E. Procedimiento

1. Preparación de la muestra

a. Preparación de la muestra en cápsulas

Se obtuvo el peso de 20 cápsulas comerciales de ginkgo. Los sólidos contenidos en las cápsulas se colocaron en una caja Petri, y se prosiguió a limpiar y pesar las cápsulas vacías para obtener el peso promedio del contenido de las cápsulas. A continuación, se llevó a cabo la extracción de la quercetina libre (aglicona) utilizando metanol, y una hidrólisis con HCl 1.5 N (ver inciso 1.2 y 1.3, respectivamente). Se efectuó el mismo procedimiento para ambas muestras.

b. Extracción de la quercetina libre o aglicona (extracto neutro)

Se pesó cuantitativamente 1 gramo del contenido de las cápsulas y se colocó en un balón aforado de 100.0 mL. Se añadió 50 ml de metanol y se colocó en un baño ultrasónico por 10 minutos. El extracto fue aforado a 100.0 mL con metanol y se agitó mecánicamente. Por último, el extracto fue colocado en una centrífuga hasta separar ambas fases. El sobrenadante se filtró por una membrana de poro 0.45 μm para HPLC y se colocó en un vial para HPLC (concentración del extracto = 10.0 mg/ml).

c. Hidrólisis de los glucósidos de quercetina (extracto ácido)

Se pesó cuantitativamente 1 gramo del contenido de las cápsulas, y se colocó en un balón aforado de 100.0 mL. Se añadió 50 ml de metanol y se colocó en un baño ultrasónico por 10 minutos. Se agregó 40 mL de HCl 1.5 N y nuevamente fue colocado en el baño ultrasónico por 10 minutos. El extracto fue aforado a 100.0 mL con metanol, se agitó mecánicamente, y fue colocado en una centrífuga hasta separar ambas

fases. Se recuperó el sobrenadante y se transfirió a un tubo de ensayo limpio, este se calentó a baño maría por 25 minutos a 100 °C. Al culminar el tiempo, se dejó enfriar a temperatura ambiente utilizando un baño de hielo, se filtró por una membrana de poro 0.45 μm para HPLC y se colocó en un vial para HPLC (concentración del extracto = 10.0 mg/ml) (USP, 2019).

2. Determinación de los parámetros cromatográficos óptimos

Se eligió al azar una de las muestras de cápsulas de ginkgo, este se utilizó para determinar la fase móvil óptima. Se prosiguió a filtrar el extracto metanólico y ácido de dicha muestra (realizado en la sección 1.2 y 1.3, respectivamente), y de un estándar de quercetina a 6 ppm (aforado con metanol), con un filtro de membrana de 0.45 µm para HPLC, y se colocó la disolución en un vial para HPLC, respectivamente. Se inyectó al equipo de cromatografía con los siguientes parámetros:

Cromatógrafo HPLC Perkin Elmer modelo LC300 con detector de arreglo de diodos

Fase móvil: como se muestran en la Tabla no. 3

Columna Waters XTerra RP18, 5µm tamaño de partícula, 4.6x150mm

Velocidad de flujo: 0.8 ml/min como inicio, y se estará variando hasta obtener el flujo ideal

Volumen de inyección: 20 μL

Longitud de onda de detección: según la longitud de onda con mayor absorbancia obtenido a partir del mapa del detector de diodos.

Tiempo de corrida: 60 minutos para iniciar, y se estará acortando, dependiendo de los resultados.

Tabla No. 3. Parámetros de fase móvil evaluados para determinar el flujo óptimo del método.

Corrida	Solvente fase móvil		Gradiente	Composición
	Solvente A	Solvente B		
1			Isocrático	Metanol y H ₃ PO ₄ 0.08% (80:20)
2				De 0 a 15 min: 100% A
			Gradiente	De 16 a 40 min: 100% - 80% A (0 a 20% B)
	——— Metanol	H_3PO_4		De 41 a 60 min: 80% - 60% A (20 a 40% B)
3	Wictanor	0.08%		De 0 a 15 min: 60% - 80% A (40 a 20% B)
			Gradiente	De 16 a 40 min: 80% - 100% A (20% a 0%
			Gradiente	B)
				De 41 a 60 min: 100% A

Se comparó los cromatogramas de las tres corridas, y se escogió las condiciones del cromatógrafo con un menor tiempo de retención del analito y manteniendo una buena separación de los picos ($R_s \ge 1.5$). A

partir de estos resultados, se llevó a cabo la validación y la cuantificación de quercetina en las muestras comerciales de cápsulas de ginkgo utilizando estos parámetros.

3. Validación del método analítico

a. Especificidad

Se comparó el tiempo de retención entre el estándar de quercetina con el de las muestras comerciales de ginkgo. También se calculó la resolución de la columna entre el pico correspondiente al tiempo de retención de la quercetina con el pico más cercano en el cromatograma de las muestras cápsula de ginkgo, utilizando la ecuación no. 2.

b. Linealidad del método

Se efectúo una regresión lineal utilizando un estándar de quercetina dihidrato a cinco diferentes concentraciones, y metanol como diluyente. Cada solución se filtró usando una membrana de 0.45 µm para HPLC y se colocó la disolución en un vial para HPLC. Se inyectó seis veces cada solución hija en el HPLC utilizando los parámetros obtenidos en el inciso 2. (Para la preparación de estas soluciones, ver Concentración corregida de las disoluciones estándar de quercetina, sección D en Anexos). Se obtuvo el modelo de regresión lineal utilizando el método de mínimos cuadrados, y se calculó su respectivo coeficiente de determinación (R²).

c. Exactitud

Se preparó tres disoluciones de un estándar de quercetina a una concentración conocida, y se inyectaron al equipo de HPLC utilizando los parámetros obtenidos en el inciso 2. Se evaluó la exactitud calculando el porcentaje de recuperación (ecuación 3) a partir de la concentración teórica de quercetina y el dato obtenido a partir de la regresión lineal (concentración experimental). (Para la preparación de estas soluciones, ver Concentración corregida de las disoluciones estándar de quercetina, sección D en Anexos).

d. Precisión

Repetitividad del método: las disoluciones de quercetina utilizadas en el apartado de linealidad y exactitud fueron inyectados seis veces en el mismo día. Se prosiguió a calcular el coeficiente de variación (%CV) del área bajo la curva (AUC) de cada solución hija.

Precisión intermedia: todas las disoluciones de estándar de quercetina (linealidad y exactitud) fueron inyectadas por seis veces en dos días diferentes, siendo el día 1 donde se prepararon las disoluciones hijas.

Estas soluciones fueron guardadas en un balón transparente y con su respectivo tapón, se cubrieron con parafilm y se almacenaron en condiciones normales de refrigeración (aproximadamente 13 °C) por 4 días. Al culminar el tiempo, estos fueron analizados nuevamente y los resultados se reportaron como día 2. Nuevamente se evaluó el %CV de los datos de ambos días y el R² de la regresión lineal.

e. Límite de detección

Se inyectó 10 veces un blanco de metanol al equipo, y a partir de los datos obtenidos del modelo de regresión lineal y del promedio del área bajo la curva del blanco, se utilizó la ecuación 4 para determinar el límite de detección del método.

f. Límite de cuantificación

A partir de los datos obtenidos del modelo de regresión lineal y del promedio del área bajo la curva del blanco, se utilizó la ecuación 5 para determinar el límite de cuantificación del método.

g. Robustez del método

Se evaluó la estabilidad de las soluciones estándar de quercetina. Las soluciones hijas y madre fueron almacenadas en condiciones de refrigeración normal por 4 días, utilizando balones transparentes con su respectivo tapón y cubiertos con parafilm. Al transcurrir el tiempo, estas fueron filtradas e inyectadas nuevamente para evaluar el área bajo la curva del pico correspondiente a quercetina.

4. Cuantificación de quercetina glucosilada en las muestras comerciales de cápsulas de ginkgo

Se escogieron dos muestras comerciales de cápsulas de ginkgo de venta libre en Guatemala. Se llevó a cabo una extracción siguiendo el procedimiento del apartado 1 y se inyectó al equipo utilizando los parámetros establecidos en la sección 2, en cuadruplicado. La concentración de quercetina en ambos extractos se calculó utilizando la regresión lineal.

Los datos obtenidos a partir del extracto metanólico representa la porción de quercetina libre, mientras que los extractos ácidos determinarán la cantidad de quercetina total (glucosilada y aglicona). Para calcular el porcentaje de quercetina glucosilada se utilizan dos métodos: 1) el uso del factor de conversión, que se reporta en los estudios realizados por Demirezer et al., (2014), Gray et al., (2005), Sloley et al., (2003) y

del método de la USP (2019), y 2) realizando una resta entre la concentración de quercetina total y de la aglicona, así como se muestra en la siguiente ecuación.

Ecuación No. 6. Porcentaje de quercetina que se encontraba de forma glucosilada en la muestra.

$$%QQ = %Q_T - %Q_A$$

Donde: %QQ es el porcentaje de quercetina glucosilada, por unidad posológica; % Q_T es el porcentaje de quercetina total, y % Q_A es el porcentaje de quercetina libre (aglicona).

F. Diseño de investigación

Se llevó a cabo una validación de una metodología para el análisis cuantitativo de quercetina en cápsulas de ginkgo, utilizando cromatografía HPLC acoplado a un detector de arreglo de diodos y el método de estándar externo. Para la validación se reportaron los siguientes parámetros: especificidad, linealidad, exactitud, precisión, límite de detección, límite de cuantificación y robustez.

Para determinar la cantidad de quercetina glucosilada en la muestra, se efectuó una extracción utilizando metanol, y proseguirá a realizar una hidrólisis en medio ácido utilizando el método de la USP (2019). Por otro lado, para la elección del flujo óptimo, se evaluó la mezcla de fase móvil que permita una mejor resolución en el menor tiempo necesario: isocrático, usando metanol y H₃PO₄ 0.08% (80:20), en gradiente empezado con 40% H₃PO₄ 0.08% y terminado con 100% metanol, y viceversa. Por último, se cuantificó la cantidad de quercetina glucosilada en dos diferentes marcas comerciales de cápsula de ginkgo.

G. Análisis estadísticos

Para obtener el parámetro de precisión, se calculó el porcentaje de coeficiente de variación (%CV) de cada AUC correspondiente al pico de quercetina en las disoluciones utilizadas para la linealidad y exactitud del día 1 y 2, respectivamente. Por otro lado, para establecer la linealidad, se obtuvo el promedio del AUC de cada disolución hija de estándar de quercetina, y luego se utilizó el programa de Excel para calcular la ecuación de la recta utilizando el método de mínimos cuadrados, y su respectivo coeficiente de determinación (R²). También se efectuó una prueba de hipótesis para determinar la significancia del modelo de regresión. Por último, se calculó el promedio y su desviación estándar de la cantidad de quercetina glucosilada, en porcentaje por unidad posológica, para cada muestra de cápsula de ginkgo.

VI. MARCO OPERACIONAL

A. Recolección y tratamiento de datos

La recolección de datos se realizará mediante el software SimplicityChrom CDS y utilizando el

cromatógrafo HPLC Perkin Elmer modelo LC300 con detector de arreglo de diodos (ver Tabla no. 14,

especificaciones del equipo). El tratamiento de los datos se llevó a cabo en el Excel, tanto para la estadística

descriptiva como la regresión lineal y el ANOVA.

B. Recursos

1. Recursos humanos

Tesista: Karla Michel Li Gan

Asesora: Licda. Ana Luisa Mendizábal

Revisora: Licda. María José Bran

2. Materiales y cristalería de laboratorio

Estándares: quercetina dihidrato, grado analítico

Reactivos: metanol HPLC, agua HPLC, ácido clorhídrico y ácido fosfórico

Muestras: 20 cápsulas de ginkgo, de dos diferentes marcas

Cristalería volumétrica

4 balones de 250.0 ml

• 2 balones de 100.0 ml

5 balones de 50.0 ml

• Pipeta volumétrica de 1.00, 2.00, 4.00, 5.00, 6.00, 8.00 y 10.00 ml

3. Equipo

Cromatógrafo HPLC Perkin Elmer modelo LC300 con detector de arreglo de diodos

Columna Waters XTerra RP18, 5µm, 4.6x150mm

Balanza analítica

Centrífuga

Baño ultrasónico

Baño maría

29

4. Aspectos económicos

El estudio se efectuó en el Laboratorio de Análisis Instrumental Avanzado de la Universidad del Valle de Guatemala. Los reactivos, estándares, cristalería y el equipo fueron financiados por la Universidad, mientras que los materiales que no se encuentran en la institución fueron pagados por la tesista.

Tabla No. 4. Costo estimado y financiamiento del trabajo de investigación.

	Material	Costo individual (Q)	Cantidad utilizada	Costo total (Q)	Financiamiento
Estándar de referencia	Estándar de quercetina dihidrato 10 gramos	380.40	150 mg	5.71	UVG
	Metanol HPLC (4 litros)	1434.88	4 L	1,434.88	UVG
Reactivos	Ácido fosfórico (1 litro)	874.00	240 mL	209.76	UVG
	Ácido clorhídrico fumante al 37% (2.5 litros)	551.00	100 mL	22.04	UVG
	Balones aforados de 250.0 mL	120.00	4	480.00	UVG
	Balones aforados de 100.0 mL	86.00	2	172.00	UVG
	Balones aforados de 50.0 mL	84.00	5	420.00	UVG
	Pipeta volumétrica de 1.00 mL	25.00	1	25.00	UVG
Cristalería	Pipeta volumétrica de 2.00 mL	24.00	1	24.00	UVG
volumétrica	Pipeta volumétrica de 4.00 mL	45.00	1	45.00	UVG
	Pipeta volumétrica de 5.00 mL	49.00	1	49.00	UVG
	Pipeta volumétrica de 6.00 mL	52.00	1	52.00	UVG
	Pipeta volumétrica de 8.00 mL	56.00	1	56.00	UVG
	Pipeta volumétrica de 10.00 mL	59.00	1	59.00	UVG

	Material	Costo	Cantidad	Costo total	Financiamiento
		individual (Q)	utilizada	(Q)	
	HPLC Perkin				
_	Elmer ® Modelo	38.01 por hora	80 horas	3,040.80	UVG
Depreciación	LC300				
del equipo	Columna Waters				UVG
	XTerra RP18,	0.41 por hora	80 horas	32.50	
	5μm, 4.6x150mm				
	Muestra 1:		1	105.00	Propia
	Cápsulas de	105.00			
	ginkgo 400 mg (20	103.00			
Muestras	unidades)				
Widesti us	Muestra 2:			32.00	ъ :
	Cápsulas de	22.00	1		
	ginkgo 400 mg (20	32.00	1		Propia
	unidades)				
Costo total				6,264.69	

VII. RESULTADOS

A. Resultados de los parámetros de fase móvil evaluados

Tabla No. 5. Resultados del tiempo de retención (t_R) y resolución de la columna (Rs) de las fases móviles evaluadas.

Corrida	Composición de la fase móvil	t _R del estándar (min)	Rs del cromatograma de la muestra	Cromatograma
1	Isocrático, metanol y $H_3PO_40.08\%$ (80:20)	3.383	4.0427	Figura no. 18
2	Gradiente, desde 100% metanol a 60:40 metanol y H ₃ PO ₄ 0.08%	No se logró determinar	No se logró determinar	Figura no. 19
3	Gradiente, desde 60:40 metanol y H ₃ PO ₄ 0.08%, a 100% metanol	10.157	No se logró determinar	Figura no. 20

B. Resultados de la validación

Tabla No. 6. Resultados de la especificidad del método analítico para la cuantificación de quercetina en cápsulas de ginkgo.

	Tiempo de retención¹		Resolución d	e la columna²	C	
	Promedio (min)	%CV	Promedio	%CV	- Cromatograma	
Estándar	3.330	0.228	No aplica	No aplica	Figura 21, 23, 25, 27 y 29	
Muestra A	3.358	0.578	2.6172	13.20	Figura 37 al 44	
Muestra B	3.350	0.200	3.3829	3.587	Figura 45 al 52	

¹ Se obtuvo el promedio del tiempo de retención de todas las soluciones hijas usadas para obtener la regresión lineal del primer día, y de los extractos neutros y ácidos de la muestra A y B, respectivamente.

Tabla No. 7. Resultados del modelo de regresión lineal del método analítico para la cuantificación de quercetina en cápsulas de ginkgo, del día 1 y día 2.

	Pendiente	Intercepto en y	\mathbb{R}^2
Día 1	66.8032 ± 0.1086	-2.1438 ± 0.5768	1.0000
Día 2	68.0394 ± 3.4988	8.5361 ± 18.5858	0.9921

² La Rs se calculó utilizando el cromatograma del extracto ácido, ya que el pico correspondiente a quercetina era mayor.

Tabla No. 8. Resultados de la prueba de hipótesis para determinar la significancia del modelo de regresión lineal del método analítico para la cuantificación de quercetina en cápsulas de ginkgo.

	Regresión	Valor-p	Nivel de significancia (α)	Conclusión
Día 1	y = 66.8032x - 2.1438	9.469 * 10-9	0.05	Rechazar H ₀
Día 2	y = 68.0394x + 8.5361	2.970 * 10-4	0.05	Rechazar H ₀

 H_0 : pendiente es igual a cero (m = 0)

 H_1 : pendiente distinto a cero (m \neq 0)

Criterio de rechazo: rechazar Ho si el valor-p es menor o igual al nivel de significancia ($\alpha = 0.05$) (Anderson et al., 2016).

Tabla No. 9. Resultados de la exactitud y precisión del método cromatográfico para la cuantificación de quercetina en cápsulas de ginkgo.

	Concentración	Concentración exp	erimental (ppm)	Porcentaje de
	teórica (ppm)	Promedio	%CV	recuperación (%)
	2.403	2.485	0.210	103.4
Día 1	4.00419	4.0416	0.239	100.9
	5.606	5.685	0.452	101.4
	2.403	2.323	1.42	96.68
Día 2	4.00419	3.926	0.533	98.043
	5.606	5.615	0.499	100.2

Tabla No. 10. Estadística descriptiva del tiempo de retención (t_R) y área bajo la curva (AUC) de las soluciones hijas de quercetina utilizadas para la linealidad.

Concentración		Día 1				Día 2			
de quercetina	t _R (m	in)	AUC	C	t _R (mi	in)	AU(C	
(ppm)	Promedio	%CV	Promedio	%CV	Promedio	%CV	Promedio	%CV	
1.602	3.337	0.110	104.8585	0.231	3.337	0.110	107.4591	2.103	
3.203	3.337	0.067	211.3210	0.340	3.337	0.067	248.2841	1.529	
4.805	3.330	0.057	319.5597	0.515	3.332	1.441	328.9296	0.806	
6.407	3.327	0.067	426.0209	0.473	3.327	0.067	438.7536	1.240	
8.008	3.327	0.341	532.4687	0.407	3.327	0.341	562.0896	0.489	

Tabla No. 11. Límite de detección (LOD) y límite de cuantificación (LOQ) del método cromatográfico para la cuantificación de quercetina en cápsulas de ginkgo.

	LOD (ppm)	LOQ (ppm)
Día 1	0.00169	0.00513
Día 2	0.00174	0.00528

C. Concentración de quercetina glucosilada en dos marcas comerciales de cápsulas de ginkgo

Tabla No. 12. Promedio de la concentración de quercetina total, aglicona y su respectiva proporción en las muestras.

Muestra	Quercetina total ¹ (% p/p)	Aglicona ² (% p/p)	Proporción aglicona/quercetina total
A	0.02761 ± 0.00015	0.000104 ± 0.00019	27.052
В	0.4764 ± 0.0019	0.4152 ± 0.0027	0.871

¹ Resultado obtenido a partir del extracto hidrolizado ² Resultado obtenido a partir del extracto neutro

Tabla No. 13. Porcentaje de quercetina glucosilada en las muestras comerciales de cápsulas de ginkgo.

Muestra	Cantidad de ginkgo declarado en la etiqueta	Porcentaje de quercetina glucosilada (%p/p) Quercetina total x 2.51	Porcentaje de quercetina glucosilada (%p/p) Quercetina total – aglicona
A	400 mg	0.0693 ± 0.0004	0.0266 ± 0.0001
В	400 mg	1.196 ± 0.005	0.0618 ± 0.0016

VIII. DISCUSIÓN DE RESULTADOS

A. Determinación de los parámetros cromatográficos óptimos

Entre los objetivos específicos del estudio es determinar los parámetros de fase móvil óptimo para el método, en donde el pico correspondiente a quercetina salga en el menor tiempo de corrida y con una buena resolución. Según los cromatogramas, se observó que los parámetros más adecuados correspondían al de la corrida número 1, que consiste en una elución isocrática de una mezcla de metanol y ácido fosfórico al 0.08% en proporción de 80:20. Con estos criterios, el tiempo de retención del analito fue de 3.330 minutos en promedio, con una resolución de la columna de 4.0427, indicando una buena separación (ver Figura no. 15 en la sección de Anexos).

Al utilizar los parámetros de la corrida número 2, se observa en el cromatograma de la muestra que todos los compuestos eluyeron al mismo tiempo, por lo que no hubo una buena separación de los analitos (ver Figura no. 16). Además, el cromatograma del estándar no muestra un pico definido, haciendo que no se pudiera determinar el tiempo de retención de la quercetina utilizando estos parámetros. Por otro lado, en la corrida número 3, el estándar de quercetina eluía en el minuto 10.157, mientras que en el cromatograma de la muestra no se presentaba ningún pico en ese tiempo (ver Figura no. 17). Derivado a estas razones, se escogió los parámetros de fase móvil de la corrida 1 para realizar la validación del método, y se acortó el tiempo de corrida a 5 minutos. Cabe mencionar que se utilizó la muestra acidificada para realizar las pruebas, debido a que se ha encontrado en la literatura que la concentración de quercetina libre en el ginkgo es relativamente bajo o casi indetectable (Wohlmuth et al, 2014).

En otros métodos encontrados en la literatura, como el de Ding et al (2006), la quercetina eluyó después de los 30 minutos; en el de Dubber y Kanfer (2004), el analito eluía en el minuto 19.879; y en el método de Gray et al (2005) a los 11 minutos, lo cual muestra que el método diseñado y validado posee una mejor eficiencia. Por otro lado, la longitud de onda para la cuantificación fue de 373 nm, lo cual concuerda con el valor reportado en varios estudios (ver Tabla 1 en la sección de Marco teórico) y también con el que recomienda la USP (λ = 370 nm).

B. Validación del método analítico

1. Especificidad

Para determinar la especificidad, se comparó el tiempo de retención en el cromatograma del estándar con el de la muestra, al igual que se calculó la resolución de la columna para ambas muestras. El tiempo de retención promedio para el estándar fue de 3.330 minutos, lo cual es un valor similar para la muestra A (3.358 minutos) y para la muestra B (3.350 minutos), por lo que se logró identificar el analito de interés.

La resolución de la columna permite evaluar la separación del analito de los otros compuestos en la matriz (Skoog et al., 2015). Según la AOAC se suele buscar una resolución de al menos 1.5, aunque se puede utilizar un valor de 1.0 para una separación mínima utilizable; mientras que la Administración de Drogas y Alimentos de los Estados Unidos (FDA, por sus siglas en inglés) sugiere una resolución de al menos 2. Según los resultados de la Tabla no. 6, la resolución promedio fue de 2.6172 y 3.3829 para la muestra A y B, respectivamente. Por lo que el método consiguió separar la quercetina de los otros compuestos en la matriz en ambas muestras.

2. Linealidad

Para demostrar la linealidad del método, se efectuó una regresión lineal utilizando el estándar de quercetina y el método de mínimos cuadrados, y se calculó el coeficiente de determinación (R²) para determinar la bondad de ajuste del modelo (Anderson et al., 2016; D. Skoog et al., 2015). En la Tabla no. 7 se muestra el modelo de regresión utilizando los datos del día 1 y 2, respectivamente. La AOAC recomienda que el R² sea mayor de 0.99 (>0.99). Según los resultados, tanto las ecuaciones del día 1 y 2 cumplen con este criterio. Sin embargo, se puede observar que el valor de R² es más alto en el día 1.

Por otro lado, se llevó a cabo una prueba de hipótesis para determinar la significancia estadística del modelo de regresión. En esta prueba se busca comprobar que la pendiente es distinta a cero, y por lo tanto demostrar que hay una relación lineal entre x y y. Como se puede observar en la Tabla no. 8, todas las regresiones establecen que H_0 es rechazado, por lo que se puede concluir que el modelo de regresión sí tiene una relación lineal, estadísticamente significativa, entre la concentración del analito y el área bajo la curva de la quercetina.

3. Exactitud

Para evaluar la exactitud, se calculó el porcentaje de recuperación del analito utilizando tres estándares de quercetina a una concentración conocida. Las mismas disoluciones fueron inyectadas en dos días diferentes, de la misma forma en que se llevó a cabo para la linealidad. Según los resultados que se muestran en la Tabla no. 9, se obtuvo una recuperación arriba del 100% para el día 1, por lo que se considera que el método tiene una exactitud aceptable. Sin embargo, luego de almacenar los estándares por cuatro días en condiciones de refrigeración normal, el porcentaje de recuperación disminuyó (ver Tabla no. 9, día 2).

Los flavonoides son caracterizados por ser antioxidantes, ya que tienen la capacidad de captar los radicales libres (Dewick, 2002). Debido a que los estándares se almacenaron en balones aforados transparentes, la luz pudo haber afectado la estabilidad química, provocando la disminución en el porcentaje de recuperación. Se recomienda utilizar balones ámbar para proteger los estándares de la luz, y así poder determinar si es un factor que afecta la robustez del método.

4. Precisión

Según la ICH (1995), la precisión se puede clasificar en tres niveles: repetitividad, precisión intermedia y reproductividad. En este trabajo de investigación se enfocó en la repetitividad y la precisión intermedia del método.

Para evaluar la repetitividad, se obtuvo el porcentaje del coeficiente de variación (%CV) del área bajo la curva de las disoluciones estándar de quercetina utilizadas para la linealidad y la exactitud. Como se puede observar en la Tabla no. 9 y 10, respectivamente, el %CV del AUC de las soluciones hijas de quercetina que se utilizó para calcular la regresión lineal y los resultados de exactitud muestran un valor menor al 1%. Por lo que hay repetitividad en los datos y el valor de la media sí es representativo para la muestra. Esto último también le da mayor validez al modelo de regresión, ya que se calculó utilizando la media del AUC de las disoluciones hijas de quercetina.

Para determinar la precisión intermedia del método, se determinó el %CV del AUC y del tiempo de retención de las disoluciones hijas, y el R² de la regresión lineal en dos días diferentes. Con respecto a la linealidad del día 2, el R² de la regresión lineal mostró tener una disminución en su valor, aunque todavía cumple con el criterio de aceptación que establece la AOAC (R² > 0.99). La significancia del modelo de regresión siguió siendo significativa, aunque el valor-p aumentó. Por último, %CV del AUC y del tiempo de retención de las disoluciones hijas mostraron ser mayores a comparación del día 1 (ver Tabla no. 10).

Derivado al aumento de la variabilidad de los datos obtenidos del equipo, y la disminución de la bondad de ajuste, se recomienda realizar el análisis el mismo día en que fueron preparadas las disoluciones.

5. Límite de detección y cuantificación

Por último, se calculó el LOD y LOQ para el método y se muestran en la Tabla no. 11. A pesar de que el RTCA establece que el LOD y LOQ solamente es necesario para los ensayos de impurezas, en esta investigación se decidió tomarlo en cuenta ya que en un producto herbolario la concentración del principio activo puede variar. Por lo que el LOD y LOQ se puede tomar como una referencia en caso de que el porcentaje del analito se encuentre debajo de este valor.

C. Concentración de quercetina glucosilada en dos marcas comerciales de cápsulas de ginkgo

El segundo objetivo general del estudio consiste cuantificar la quercetina glucosilada en dos marcas comerciales de cápsulas de ginkgo de venta libre en Guatemala. Derivado a los estudios que se encuentran en la literatura (ver la sección de Adulteración con quercetina en preparados comerciales de ginkgo en el Marco teórico), la concentración de quercetina glucosilada se calculó de dos formas: 1) multiplicar por 2.51 la concentración de quercetina total (muestra hidrolizada) y 2) una resta entre la quercetina total y la porción de aglicona. Este último se llevó a cabo con el supuesto de que el resultado representa la concentración de quercetina que se encontraba de forma glucosilada en la muestra.

Para obtener los resultados de las Tablas no. 12 y 13, se utilizó la regresión lineal del día 1, debido a que tenía un R² con la mejor bondad de ajuste, al igual que las AUC de cada disolución hija tenían una menor variabilidad. Por otro lado, el porcentaje de recuperación mostraba tener valores más cercanos al 100% al utilizar este modelo.

En la muestra A, se calculó que la concentración de quercetina glucosilada promedio es de $0.0693\% \pm 0.0004\%$ al utilizar el factor de conversión, mientras que el $0.0266\% \pm 0.0001\%$ de la quercetina en la muestra se encontraba de forma glucosilada. Al analizar la proporción de aglicona/quercetina total, este tiende a un valor muy grande (27.0519), por lo que significa que la gran mayoría de la quercetina se encontraba en su estado glucosilado. Por otro lado, en los cromatogramas del extracto neutro y ácido (ver Figuras no. 34 al 41), se observa que las gráficas se asimilan mucho al de la Figura no. 9, por lo que puede deducir que el extracto es de origen natural. Según la literatura, por lo general, la cantidad de flavonoides libres en el ginkgo es bajo e incluso indetectable (Demirezer et al., 2014; Dubber & Kanfer, 2004; Sloley

et al., 2003; Wohlmuth et al., 2014). Sin embargo, en esta muestra todavía se logró cuantificar la aglicona, ya que la concentración todavía estaba arriba del LOQ del método (ver la sección de Cálculos en Anexos).

Caso contrario con la muestra B, la proporción de aglicona/quercetina total era de 0.8709, por lo que la quercetina se encontraba de forma libre, sospechando que fue fortificado mediante la adición de la aglicona para aumentar la señal del equipo. Además, al comparar el cromatograma de la muestra (Figuras no. 42 al 49) con el de la Figura no. 10 se observar que la muestra se asemeja más al de un extracto de ginkgo adulterado (Figura 10 en la sección de marco teórico). Al utilizar el método de la USP, se obtiene un resultado de 1.1964% ± 0.0046% de quercetina glucosilada, lo cual es mucho mayor que la cantidad calculada en la muestra A. Sin embargo, el perfil cromatográfico de la muestra A tiene una mayor similitud al de un extracto de ginkgo natural.

Entre las principales limitantes de este estudio es que solamente se contaba con un estándar de los tres flavonoides que debe tener los productos de ginkgo, al igual que no se consideró las concentraciones de los ginkgólidos debido a la falta de recursos. Para poder determinar si las muestras analizadas cumplen con los criterios de un extracto de ginkgo en su monografía, este debe contener más de >24% de flavonoides glucosilados de kaempferol, quercetina e isorhamnetina, y >6% de ginkgólidos.

Se recomienda evaluar si el método propuesto también permite separar, identificar y cuantificar el kaempferol y la isorhamnetina con una buena resolución y en el menor tiempo de corrida. Por otro lado, para los futuros análisis de calidad de los productos de ginkgo, se propone efectuar el tratamiento de la muestra tanto en medio ácido como neutro, con la finalidad de distinguir entre un producto natural o adulterado con la aglicona del flavonoide. Para calcular la concentración real de quercetina glucosilada, se sugiere multiplicar por el factor de conversión (2.51) luego de efectuar la resta entre el flavonoide total y la aglicona.

IX. CONCLUSIÓN

- 1. Con base en los resultados obtenidos, se diseñó y se validó un método analítico para cuantificar quercetina en cápsulas comerciales de ginkgo con una buena resolución de columna y con un tiempo de corrida menor que los otros métodos encontrados en la literatura.
- 2. Los parámetros cromatográficos que permiten un análisis con una buena resolución de columna y un tiempo de corrida menor consisten en: un gradiente isocrático utilizando metanol y ácido fosfórico a 0.08% en una proporción 80:20, una velocidad de flujo de 0.8 mL/min y una longitud de onda de detección a 373 nm. Con estos parámetros, el tiempo de corrida es de 5 minutos con una resolución de columna mayor a 2.
- 3. Se logró determinar la especificidad, linealidad, exactitud y precisión del método, y estos cumplen con los criterios que establecen las guías de la ICH y AOAC para la validación de métodos analíticos. También se logró calcular el límite de detección y cuantificación del método propuesto.
- 4. Se cuantificó el flavonoide quercetina en dos muestras comerciales de cápsulas de ginkgo de venta libre en Guatemala. Se sospecha que la muestra B puede estar adulterado con quercetina libre, ya que la concentración de aglicona mostró ser demasiada alta para un extracto de ginkgo natural.

X. RECOMENDACIONES

- Efectuar el análisis el mismo día en que fueron preparados los estándares de calibración, debido a que se observa un aumento de la variabilidad del AUC obtenida por el equipo al momento de inyectar la soluciones luego de que estas estuvieran almacenadas en balones trasparentes, por cuatro días en condiciones de refrigeración normal.
- 2. Utilizar balones ámbar para almacenar los estándares de quercetina, con la finalidad de protegerlo de la luz y evitar su degradación.
- 3. Evaluar si el método propuesto también permite separar, identificar y cuantificar el kaempferol y la isorhamnetina en los productos comerciales de ginkgo, ya que la monografía de la USP especifica que la combinación de la concentración de los flavonoides glucosilados de quercetina, kaempferol e isorhamnetina debe ser mayor del 24% en tabletas/cápsulas de ginkgo.
- 4. Valorar el método analítico propuesto por la USP, ya que no permite distinguir entre un producto de ginkgo natural o adulterado con la aglicona del flavonoide.
- 5. Para los futuros análisis de calidad de los productos de ginkgo, se propone efectuar el tratamiento de la muestra tanto en medio ácido como neutro, con la finalidad de distinguir entre un producto natural o adulterado con la aglicona del flavonoide.

XI. BIBLIOGRAFÍA

- 1. Anderson, D., Sweeney, D., Williams, T., Camm, J., & Cochran, J. (2016). *Estadística para negocios y economía* (12th ed.). Cengage Learning.
- 2. AOAC. (2002). Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. *AOAC International*, 1–38.
- 3. Camel, V. (2014). Extraction Methodologies: General Introduction. In K. Hostettmann (Ed.), *Handbook of Chemical and Biological Plant Analytical Methods*. John Wiley & Sons Ltd.
- 4. Demirezer, L. Ö., Büyükkaya, A., Uçaktürk, E., Kuruüzüm-Uz, A., Güvenalp, Z., & Palaska, E. (2014). Adulteration determining of pharmaceutical forms of Ginkgo biloba extracts from different international manufacturers. *Records of Natural Products*, 8(4), 394–400.
- 5. Dewick, P. (2002). *Medicinal Natural Products: A Biosynthetic Approach* (2nd ed.). John Wiley & Sons Ltd.
- Ding, S., Dudley, E., Plummer, S., Tang, J., Newton, R. P., & Brenton, A. G. (2006). Quantitative determination of major active components in Ginkgo biloba dietary supplements by liquid chromatography/mass spectrometry. *Rapid Commun. Mass Spectrom*, 24, 1457–1466. https://doi.org/10.1002/rcm
- 7. Dubber, M.-J., & Kanfer, I. (2004). High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. *J Pharm Pharmaceut Sci*, 7(3). https://sites.ualberta.ca/~csps/JPPS7(3)/I.Kanfer/ginkgo.htm
- 8. EURACHEM. (1998). The Fitness for Purpose of Analytical Methods A Laboratory Guide to Method Validation and Related Topics (1.0). EURACHEM Working Group.
- 9. European Medicines Agency. (2015). European Union herbal monograph on Ginkgo biloba L., folium. www.ema.europa.eu/contact
- Gray, D., Levanseler, K., & Pan, M. (2005). Determination of Flavonol Aglycones in Ginkgo biloba Dietary Supplement Crude Materials and Finished Products by High-Performance Liquid Chromatography: Single Laboratory Validation. *Journal of AOAC International*, 88(3), 692. https://doi.org/10.1093/jaoac/88.3.692
- 11. Hashiguchi, M., Ohta, Y., Shimizu, M., Maruyama, J., & Mochizuki, M. (2015). Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. *Journal of Pharmaceutical Health Care and Sciences*, *1*(1). https://doi.org/10.1186/S40780-015-0014-7
- 12. ICH. (1995). *ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology*. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf
- 13. Li, C., Liu, K., Liu, S., Aerqin, Q., & Wu, X. (2020). Role of Ginkgolides in the Inflammatory Immune Response of Neurological Diseases: A Review of Current Literatures. *Frontiers in Systems Neuroscience*, 14, 45. https://doi.org/10.3389/FNSYS.2020.00045/BIBTEX
- 14. Luo, Y., & Cao, Z. (2009). Ginkgo biloba Extract in Prevention of Age-Associated Diseases in Elderly Population. In *Complementary and Alternative Therapies in the Aging Population* (1st ed.). Elseiver.
- 15. Muñoz Muñoz, J. A., Morgan Machado, J. E., & Trujillo González, M. (2015). Validación de una metodología por HPLC para cuantificar quercetina total en extractos de Calendula officinalis Validation of an HPLC method for quantification of total quercetin in Calendula officinalis extracts. *Revista Cubana de Farmacia*, 49(1), 91–102. http://scielo.sld.cu

- 16. Organización Mundial de la Salud. (2005). *National policy on traditional medicine and regulation of herbal medicines*. https://apps.who.int/iris/bitstream/handle/10665/43229/9241593237.pdf
- Pascual Mathey, L. I., Juárez Aguilar, E., Espinoza, J. L., Molina Jimenez, T., & Acosta Hernández, M. E. (2018). Usos terapéuticos del Ginkgo biloba: ventajas, desventajas y perspectivas. *Revista Médica de La Universidad Veracruzana*, 18(2).
- 18. PerkinElmer. (2020). Liquid Chromatography LC 300 Liquid Chromatography System.
- 19. RTCA. (2006). PRODUCTOS FARMACÉUTICOS. VALIDACIÓN DE MÉTODOS ANALÍTICOS PARA LA EVALUACIÓN DE LA CALIDAD DE LOS MEDICAMENTOS. *Reglamento Técnico Centroamericano*, 2006(188), 1–8.
- 20. RTCA. (2007). PRODUCTOS FARMACEUTICOS. MEDICAMENTOS PARA USO HUMANO. VERIFICACION DE LA CALIDAD.
- 21. Sierpina, V. S., Wollschlaeger, B., & Blumenthal, M. (2003). Ginkgo Biloba American Family Physician. *American Family Physician*, 68(5). www.aafp.org/afp
- 22. Skoog, D., West, D., Holler, F., & Crouch, S. (2015). *Principios de análisis instrumental* (6th ed.). Cengage Learning.
- 23. Skoog, Douglas., West, D., Holler, F. J., & Crouch, S. R. (2015). *Fundamentos de Química Analítica* (9na ed.). Cengage Learning.
- 24. Sloley, B. D., Tawfik, S. R., Scherban, K. A., & Tam, Y. K. (2003). Quality control analyses for Ginkgo extracts require analysis of intact flavonol glycosides. *Journal of Food and Drug Analysis*, 11(2), 102–107. https://doi.org/10.38212/2224-6614.2718
- 25. Sticher, O. (1992). Quality of Ginkgo Preparations. Planta Med, 59(1).
- 26. USP. (2019). Farmacopea de Estados Unidos (42nd ed.). The United States Pharmacopeial Convention.
- 27. Wade, L., & Simek, J. . (2017). Química Orgánica (9na ed.). Pearson Education.
- 28. Waters. (2022). *Shop XTerra Shield RP18 Columns* | *4.6mm X 250mm* | *186000496* | *Waters*. https://www.waters.com/nextgen/us/en/shop/columns/186000496-xterra-shield-rp18-column-125a-5-m-46-mm-x-250-mm-1-pk.html
- 29. Wohlmuth, H., Savage, K., Dowell, A., & Mouatt, P. (2014). Adulteration of Ginkgo biloba products and a simple method to improve its detection. *Phytomedicine*, 21(6), 912–918. https://doi.org/10.1016/j.phymed.2014.01.010
- 30. Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. *Molecules: A Journal of Synthetic Chemistry and Natural Product Chemistry*, 23(4). https://doi.org/10.3390/MOLECULES23040762
- 31. Zheng, Y. Z., Deng, G., Liang, Q., Chen, D. F., Guo, R., & Lai, R. C. (2017). Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. *Scientific Reports 2017 7:1*, 7(1), 1–11. https://doi.org/10.1038/s41598-017-08024-8
- 32. Zuo, W., Yan, F., Zhang, B., Li, J., & Mei, D. (2017). Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases. *Aging and Disease*, 8(6), 812. https://doi.org/10.14336/AD.2017.0615

XII. ANEXOS

A. Glosario

- 1. Aglicona: molécula no glucosídica de un heterósido o glucósido (Dewick, 2002).
- 2. Análisis de Varianza (ANOVA): colección de procedimientos estadísticos para el análisis de resultados experimentales. El ANOVA de un factor permite comparar más de dos medias poblacionales (Skoog et al., 2015).
- **3.** Coeficiente de determinación (R²): medida de la bondad de ajuste de la ecuación de regresión estimada. Se interpreta como la proporción de la variabilidad en la variable dependiente y que se explica por la ecuación de regresión estimada (Anderson et al., 2016).
- **4.** Coeficiente de variación: medida de variabilidad relativa calculada al dividir la desviación estándar entre la media y multiplicar por 100 (Anderson et al., 2016).
- **5.** Cromatografía: métodos de separación que se fundamentan en la interacción de especies químicas con una fase estacionaria mientras son transportados por una fase móvil (Skoog et al., 2015).
- **6.** Cromatograma: gráfica donde se representan la señal de un analito proporcional a la concentración, o masa, en función del tiempo o volumen de elución (Skoog et al., 2015).
- 7. Cromatografía de columna: método cromatográfico en el cual la fase estacionaria se mantiene entre la superficie de un tubo estrecho o sobre él, y la fase móvil es forzada a través del tubo donde se lleva a cabo la separación del compuesto (Skoog et al., 2015).
- 8. Cromatografía líquida de alta eficacia (HPLC): cromatografía de columna en la cual la fase móvil es un líquido forzado a pasar a través de una fase estacionaria mediante presión (Skoog et al., 2015).
- **9. Desviación estándar:** medida de variabilidad que se calcula al obtener la raíz cuadrada positiva de la varianza (Anderson et al., 2016).
- **10. Distribución t de student:** distribución de probabilidad que se utiliza para obtener una estimulación por intervalo de la media poblacional cuando se conoce la desviación estándar poblacional y se estima mediante la desviación estándar muestral (Anderson et al., 2016).
- 11. Elución por gradiente: elución de fase móvil en donde se varía su composición (Skoog et al., 2015).
- **12. Elución isocrática:** elución realizada con un solo disolvente móvil (Skoog et al., 2015).
- **13. Eluyente:** fase móvil en una cromatografía y que se utiliza para transportar solutos a través de la fase estacionaria (Skoog et al., 2015).
- **14.** Error tipo I: error de rechazar H₀ cuando es verdadera (Anderson et al., 2016).
- **15. Error tipo II:** error de aceptar H₀ cuando es falsa (Anderson et al., 2016).
- **16. Exactitud:** medida de concordancia entre un resultado analítico y el valor verdadero o aceptado de la cantidad medida. Esta concordancia es medida en términos del error (Skoog et al., 2015).

- 17. Fase estacionaria: en cromatografía, un sólido o líquido inmovilizado en el cual las especies químicas del analito son particionadas durante el recorrido de la fase móvil (Skoog et al., 2015).
- **18. Fase móvil:** en cromatografía, es un líquido o gas que transporta analitos a través de una fase estacionaria sólida o líquida (Skoog et al., 2015).
- **19. Flavonoide:** metabolito secundario provenientes de plantas, que posee un esqueleto C₆-C₃-C₆, y sintetizadas a partir de fenilalanina y malonil-CoA (Dewick, 2002).
- **20. Fotodiodo de sílice:** detector de fotones basado sobre un diodo de silicio de polarización inversa; la exposición, a la radiación genera nuevos huecos y electrones; por lo tanto, aumenta la corriente eléctrica (Skoog et al., 2015).
- **21. Heterósido o glucósido:** moléculas orgánicas, por lo general de origen vegetal, compuesta por un glucósido (azúcar) y un no glucósido (como un flavonoide) (Dewick, 2002).
- **22. Hidrólisis ácida:** reacción química, catalizada por un ácido, en donde se da la ruptura de un enlace químico de una molécula, seguida por la incorporación de una molécula de agua. (Wade & Simek, 2017).
- **23. Hipótesis alternativa (H₁):** hipótesis que se concluye como verdadera cuando la hipótesis nula es rechazada (Anderson et al., 2016).
- **24. Hipótesis nula** (**H**₀): hipótesis que se supone tentativamente verdadera en una prueba de hipótesis (Anderson et al., 2016).
- **25. Método de mínimos cuadrados:** procedimiento para obtener una regresión lineal simple, obtenido por medio de la reducción al mínimo la suma de los cuadrados de los residuos de todos los puntos (Anderson et al., 2016; D. Skoog et al., 2015).
- **26. Muestras pareadas:** muestras en las que cada valor de dato de una muestra está pareado con el correspondiente valor de dato de otra muestra (Anderson et al., 2016).
- **27. Nivel de significancia:** probabilidad de cometer un error tipo I cuando la hipótesis nula es verdadera (Anderson et al., 2016).
- **28. Radiación policromada:** radiación electromagnética que consiste en más de una longitud de onda (Skoog et al., 2015).
- **29. Regresión lineal simple:** análisis de regresión en el que participan una variable independiente y una variable dependiente, y la relación entre estas variables se aproxima mediante una recta (Anderson et al., 2016).
- **30. Precisión:** medida de concordancia entre datos individuales en un conjunto de réplicas de observaciones (Skoog et al., 2015).
- **31. Producto natural medicinal:** producto procesado, industrializado y etiquetado con propiedades medicinales, que contiene en su formulación ingredientes obtenidos de las plantas, animales, minerales

- o mezclas de estos. Puede contener excipientes además del material natural. Los productos naturales medicinales a los que se les adicionen sustancias activas de síntesis química o aislada de material natural como responsables de la actividad farmacológica, no son considerados como productos naturales medicinales (RTCA 11.03.64:11).
- **32. Promedio** (**media**): medida de posición central que se calcula al sumar los valores de los datos y dividirlo entre el número de observaciones (Anderson et al., 2016).
- **33. Resolución de la columna (Rs):** determina la capacidad de una columna cromatográfica para separar dos analitos; definida como la diferencia entre los tiempos de retención de dos picos dividido entre sus anchos promedio (Skoog et al., 2015).
- **34. Tabla ANOVA:** en el análisis de varianza, tabla que se usa para resumir los cálculos asociados con la prueba F de significancia (Anderson et al., 2016).
- **35. Tiempo de retención:** tiempo que transcurre entre la inyección de una muestra en una columna cromatográfica y la llegada del máximo pico del analito al detector (Skoog et al., 2015).
- **36.** Validación: establecimiento de la evidencia documental que un procedimiento analítico conducirá con un alto grado de seguridad a la obtención de resultados precisos y exactos dentro de las especificaciones y atributos de calidad previamente establecidos (RTCA, 2006).
- 37. Validación de un procedimiento analítico: procedimiento para establecer pruebas documentales que demuestren científicamente que un método analítico tiene las características de desempeño que son adecuadas para cumplir los requerimientos de las aplicaciones analíticas pretendidas. Implica la demostración de la determinación de las fuentes de variabilidad y del error sistemático y al azar de un procedimiento, no sólo dentro de la calibración sino en el análisis de muestras reales (RTCA, 2006).
- **38.** Varianza: medida de variabilidad basada en las desviaciones cuadradas de los valores de los datos con respecto a la media (Anderson et al., 2016).
- **39.** Valor-*p*: probabilidad que proporciona una medida de evidencia, dada por la muestra, contra la hipótesis nula. Entre menor sea un valor-*p*, mayor será la evidencia contra H₀ (Anderson et al., 2016).

B. Especificaciones del equipo

Tabla No. 14. Especificaciones del equipo de cromatografía utilizado para la investigación.

Equipo	Cromatógrafo Líquido de Alta Resolución (HPLC)
Marca	Perkin Elmer ®
Modelo	LC300
Rango de presión	0 a 10,000 psi/0 a 690 bar
Solvente	Bomba cuaternaria (hasta 4 solventes)
Rango de flujo	1 a 3,000 μL/min
Precisión del flujo	≤ 0.075% RSD o 0.005 minutos
Rango de pH	1.0 a 10.0
Detector	Arreglo de Diodos Perkin Elmer ®
Rango y precisión de la longitud de onda	$190.0 \text{ a } 790.0 \text{ nm} \pm 0.5 \text{ nm}$
Lámpara	Lámpara de Deuterio
Columna	XTerra Shield RP18
	ATCHA SHCIU KI 10
Marca	Waters ®
Marca	Waters ®
Marca Tipo de columna	Waters ® C18 Fase inversa
Marca Tipo de columna Dimensiones	Waters ® C18 Fase inversa 4.6 x 150 mm
Marca Tipo de columna Dimensiones Tamaño de partícula	Waters ® C18 Fase inversa 4.6 x 150 mm 5 μm
Marca Tipo de columna Dimensiones Tamaño de partícula Forma de la partícula	Waters ® C18 Fase inversa 4.6 x 150 mm 5 µm Esférica

Fuente: realizado a partir de la información obtenida de PerkinElmer (2020) y Waters (2022)

C. Datos originales

Tabla No. 15. Cantidad pesada de estándar de quercetina dihidrato y muestra de cápsula de ginkgo.

Cantidad pesada de estándar de quercetina dihidrato (gramos) (± 0.00001g)	Cantidad pesada de muestra A (gramos) (± 0.00001g)	Cantidad pesada de muestra B (gramos) (± 0.00001g)
0.04483	Extracto neutro: 1.04361	Extracto neutro: 1.09002
0.04463	Extracto ácido: 1.05152	Extracto ácido: 1.12700

Tabla No. 16. Tiempo de retención (t_R) y resolución de la columna de la muestra de las fases móviles evaluadas.

Corrida	Tiempo de retención	W (min)	
Corrida	(min)	Pico 1	Pico 2 (quercetina)
1	3.383	0.950	0.360
2	No se logró determinar	No se logró determinar	No se logró determinar
3	No se logró determinar	No se logró determinar	No se logró determinar

Tabla No. 17. Datos para el cálculo de la resolución de la columna de la muestra A.

	Pico 1			Pico 2 (quercetina)		
	t _R (min)	W (min)	W _{1/2} (min)	t _R (min)	W (min)	W _{1/2} (min)
1	2.093	1.816	0.9080	3.368	0.3200	0.1600
2	2.094	1.739	0.8695	3.370	0.3290	0.1645
3	2.093	1.526	0.7630	3.369	0.3190	0.1595
4	2.092	1.293	0.6465	3.371	0.3310	0.1655

Tabla No. 18. Datos para el cálculo de la resolución de la columna de la muestra B.

	Pico 1 (quercetina)		Pico 2			
	t _R (min)	W (min)	W _{1/2} (min)	t _R (min)	W (min)	W _{1/2} (min)
1	3.347	0.5750	0.2875	4.364	0.6180	0.3090
2	3.347	0.5750	0.2875	4.361	0.7020	0.3510
3	3.350	0.5750	0.2875	4.366	0.6360	0.3180
4	3.350	0.5750	0.2875	4.370	0.6070	0.3035

Tabla No. 19. Datos utilizados para realizar la regresión lineal del método.

Concentración de]	Día 1	I	Día 2
quercetina (ppm)	t _R (min)	AUC a 373 nm	t _R (min)	AUC a 373 nm
	3.343	104.4696	3.439	107.5609
	3.337	104.7714	3.424	107.9575
1.602	3.333	105.0670	3.314	102.1768
1.002	3.333	104.6482	3.395	108.1243
	3.337	104.9456	3.386	107.2568
	3.337	105.0671	3.380	107.3573
	3.337	210.5391	3.372	245.4646
	3.337	212.3778	3.369	250.3708
3.203	3.333	211.5480	3.364	245.5263
3.203	3.340	211.6750	3.361	246.1973
	3.337	211.0939	3.356	253.7182
	3.337	210.5235	3.352	252.9362
	3.333	322.2137	3.349	328.6237
	3.330	318.8870	3.345	327.0276
4.805	3.330	322.3433	3.340	329.2355
4.003	3.330	319.3276	3.338	332.8616
	3.330	318.7047	3.336	326.2972
	3.327	319.7917	3.335	332.1050
	3.330	426.6532	3.334	436.9937
	3.327	422.5786	3.334	445.6869
6.407	3.323	423.8270	3.331	430.9766
0.407	3.327	425.8000	3.330	433.2928
	3.327	426.2418	3.328	440.5135
	3.327	428.1492	3.328	441.2040
	3.327	529.4071	3.327	565.0299
	3.300	533.8652	3.326	562.4881
8.008	3.327	532.7081	3.324	560.2256
0.000	3.327	532.2292	3.322	558.6432
	3.330	534.7337	3.324	565.8084
	3.327	529.6922	3.324	561.6910

Tabla No. 20. Datos utilizados para determinar la exactitud del método.

Concentración de		Día 1		Día 2
quercetina teórico (ppm)	t_{R} (min)	AUC a 373 nm	t_{R} (min)	AUC a 373 nm
	3.323	163.1284	3.346	163.1627
	3.323	163.9528	3.346	167.3569
2 402	3.327	163.8296	3.345	168.5180
2.403	3.323	164.1158	3.345	168.8508
	3.330	163.5758	3.346	165.0567
	3.327	163.8362	3.340	165.1194
	3.330	268.9726	3.341	275.3149
	3.330	267.7947	3.338	275.2549
4.004	3.330	267.8953	3.338	274.1151
4.004	3.330	267.0493	3.336	276.5494
	3.330	267.5950	3.337	277.4393
	3.330	268.2145	3.336	273.4606
	3.327	381.4040	3.336	389.2160
	3.327	379.3287	3.332	391.1630
5.000	3.327	377.5494	3.332	387.6073
5.606	3.330	377.7045	3.335	388.8187
	3.330	377.4608	3.333	391.3993
	3.330	376.7358	3.335	392.6939

Tabla No. 21. Área bajo la curva del blanco utilizados para calcular el LOD y LOQ.

	Día 1		Ι	Día 2
	t _R (min)	AUC a 373 nm	t _R (min)	AUC
1	3.363	7.8438 * 10-2	3.240	3.0278 * 10-2
2	3.359	1.8341 * 10-2	3.218	1.7410 * 10-2
3	3.367	3.2972 * 10-2	3.235	4.4646 * 10-2
4	3.363	1.1630 * 10-1	3.253	1.2570 * 10-1
5	3.350	3.3250 * 10-2	3.210	0.000000
6	3.361	3.5775 * 10-2	3.273	2.2605 * 10-2
7	3.365	2.1005 * 10-2	3.250	2.4453 * 10-2
8	3.370	9.5196 * 10-2	3.210	2.9698 * 10-15
9	3.363	3.3981 * 10-2	3.230	3.0902 * 10-2
10	3.353	2.8781 * 10-2	3.221	1.5831 * 10-2
Promedio	3.363	3.3616 * 10-2	3.233	2.3529 * 10-2
Desviación estándar	0.00608	0.0343	0.0205	0.0359

Tabla No. 22. Datos de la muestra A utilizados para obtener el porcentaje de quercetina glucosilada.

	Extracto ácido		Extracto neutro	
	$t_{ m R}$	AUC	$t_{ m R}$	AUC
1	3.371	190.3564	3.328	3.328
2	3.369	192.8165	3.347	6.0491
3	3.370	192.2304	3.333	5.973
4	3.368	191.4045	3.331	4.188

Tabla No. 23. Datos de la muestra B utilizados para obtener el porcentaje de quercetina glucosilada.

	Extracto ácido		Extracto neutro	
	t_{R}	AUC	t_{R}	AUC
1	3.350	355.7983	3.367	297.9447
2	3.350	358.7486	3.357	302.7414
3	3.347	355.9474	3.350	300.5326
4	3.347	357.4602	3.350	299.8751

D. Cálculos

1. Resolución de la columna

Resolución de la columna de la fase móvil isocrático (ver tabla no. 5).

$$R_s = 2 * \left(\frac{3.415 - 2.091}{0.4750 + 0.1800} \right) = 4.0427$$

Se efectuó el mismo cálculo para obtener la resolución de la columna de la muestra A y B, y poder realizar la estadística descriptiva (ver Tabla no. 25).

2. Concentración corregida de las disoluciones estándar de quercetina

Concentración de quercetina de la solución madre

$$\frac{44.83\ mg\ Quercetina\ 2\ H_2O}{0.100\ L}*\frac{1\ mmol\ Q\ 2\ H_2O}{338.37\ mmg\ Q\ 2\ H_2O}*\frac{1\ mmol\ quercetina}{1\ mmol\ Q\ 2\ H_2O}$$

$$*\frac{302.23\ mg\ quercetina}{1\ mmol\ quercetina}=400.42\ ppm$$

Concentración de quercetina de la solución intermedia

$$C_2 = \frac{(400.42 \ ppm)(10.00 \ mL)}{100.0 \ mL} = 40.042 \ ppm$$

Concentración de quercetina de las soluciones hijas

$$C_2 = \frac{(40.042 \ ppm)(2.0 \ mL)}{50.0 \ mL} = 1.602 \ ppm$$

Se efectuó el mismo cálculo, con sus respectivos datos, para obtener los datos de la siguiente tabla.

Tabla No. 24. Concentración final de las soluciones hijas de quercetina utilizadas para obtener la regresión lineal.

Solución	Volumen de aforo (mL)	Volumen de alícuota de solución intermedia (mL)	Concentración final de la solución hija (ppm)
L1	50.00	2.00	1.602
L2	50.00	4.00	3.203
L3	50.00	6.00	4.805
L4	50.00	8.00	6.407
L5	50.00	10.00	8.008
E1	50.00	3.00	2.403
E2	50.00	5.00	4.00410
E3	50.00	7.00	5.606

3. Exactitud del método

Concentración de quercetina experimental, día 1, utilizando la regresión con intercepto.

$$x = \frac{163.8329 + 2.1438}{66.8032} = 2.485 \, ppm$$

Porcentaje de recuperación (%)

$$%R = \frac{2.485}{2.403} * 100\% = 103.4\%$$

Se efectuó el mismo cálculo para obtener los resultados de la Tabla no. 26 y 27. La exactitud del día 2 se determinó utilizando la regresión lineal del día 2.

4. Límite de detección

Límite de detección, obtenido a partir de los datos de la regresión lineal del día 1, con intercepto.

$$LOD = \frac{3.3 * (0.0343)}{66.8032 \frac{1}{ppm}} = 0.00170 \ ppm$$

Se efectuó el mismo calculo utilizando los datos de la regresión del día 1 con b = 0, y con la regresión del día 2.

5. Límite de cuantificación

Límite de cuantificación, obtenido a partir de los datos de la regresión lineal del día 1, con intercepto.

$$LOQ = \frac{10 * (0.0343)}{66.8032 \frac{1}{ppm}} = 0.00513 \ ppm$$

Se efectuó el mismo cálculo utilizando los datos de la regresión del día 1 con b = 0, y con la regresión del día 2.

6. Porcentaje de quercetina glucosilada en la muestra A

Concentración de quercetina en el extracto ácido

Concentración de quercetina en el balón de 100.00 mL

$$x = \frac{190.3564 + 2.1438}{66.8032} = 2.8816 \, ppm$$

mg de quercetina en el balón de 100.00 mL

$$100.00 \ ml \ sol * \frac{2.8816 \ mg}{1000 \ ml \ sol} = 0.2882 \ mg$$

Porcentaje de quercetina total en la muestra (% p/p)

$$\frac{0.2882 \, mg}{1051.52 \, mg \, mx} * 100\% = \mathbf{0.02740}\%$$

Concentración de quercetina en el extracto neutro

Concentración de quercetina en el balón de 100.00 mL

$$x = \frac{3.328 + 2.1438}{66.8032} = 0.08190 \, ppm$$

mg de quercetina en el balón de 100.00 mL

$$100.00 \ ml \ sol * \frac{0.08190 \ mg}{1000 \ ml \ sol} = 0.008191 \ mg$$

Porcentaje de quercetina (aglicona) en la muestra (% p/p)

$$\frac{0.008191 \, mg}{1043.61 \, mg \, mx} * 100\% = \mathbf{0.0007849}\%$$

Concentración de quercetina glucosilada (quercetina total x 2.51)

$$0.02740\% * 2.51 = 0.06877\%$$

Concentración de quercetina glucosilada (quercetina total - aglicona)

$$0.02740\% - 0.0007849\% = 0.02662\%$$

Se efectuó el mismo cálculo para determinar el promedio de la concentración de quercetina glucosilada de la muestra A (ver Tabla no. 28).

7. Porcentaje de quercetina glucosilada en la muestra B

Se efectuó una dilución de la muestra, tomando una alícuota de 5.00 mL a un balón de 50.00 mL, para obtener una concentración dentro del rango de la regresión lineal.

Concentración de quercetina en el extracto ácido

Concentración de quercetina en el balón de 50.00 mL

$$x = \frac{355.7983 + 2.1438}{66.8032} = 5.3582 \, ppm$$

Concentración de quercetina en la alícuota de 5.00 mL.

$$C_2 = \frac{(5.3582 \ ppm)(50.00 \ mL)}{5.00 \ mL} = 53.582 \ ppm$$

mg de quercetina en el balón de 100.0 mL

$$100.0 \ ml \ sol * \frac{53.582 \ mg}{1000 \ ml \ sol} = 5.3582 \ mg$$

Porcentaje de quercetina total en la muestra (% p/p)

$$\frac{5.3582 \, mg}{1127.0 \, mg \, mx} * 100\% = \mathbf{0.4754}\%$$

Concentración de quercetina en el extracto neutro

Concentración de quercetina en el balón de 50.00 mL

$$x = \frac{297.9447 + 2.1438}{66.8032} = 4.4921 \, ppm$$

Concentración de quercetina en la alícuota de 5.00 mL.

$$C_2 = \frac{(4.4921 \ ppm)(50.00 \ mL)}{5.00 \ mL} = 44.921 \ ppm$$

mg de quercetina en el balón de 100.0 mL

$$100.0 \ ml \ sol * \frac{44.921 \ mg}{1000 \ ml \ sol} = 4.4921 \ mg$$

Porcentaje de quercetina (aglicona) en la muestra (% p/p)

$$\frac{4.4921 \, mg}{1090.02 \, mg \, mx} * 100\% = \mathbf{0.4121}\%$$

Concentración de quercetina glucosilada (quercetina total x 2.51)

$$0.4754\% * 2.51 = 1.193\%$$

Concentración de quercetina glucosilada (quercetina total – aglicona)

$$0.4754\% - 0.4121\% = 0.0633\%$$

Se efectuó el mismo cálculo para determinar el promedio de la concentración de quercetina glucosilada de la muestra B (ver Tabla no. 29).

E. Análisis estadísticos

1. Estadística descriptiva

Tabla No. 25. Estadística descriptiva de la resolución de la columna.

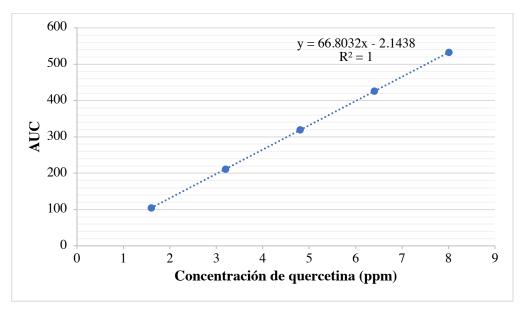
	Muestra A	Muestra B
1	2.388	3.410
2	2.468	3.176
3	2.766	3.356
4	3.150	3.452
Promedio	2.617	3.383
Desviación estándar	0.346	0.121
Coeficiente de variación (%)	13.20	3.587

Tabla No. 26. Estadística descriptiva de la concentración experimental de quercetina de las soluciones hijas de quercetina (exactitud), día 1.

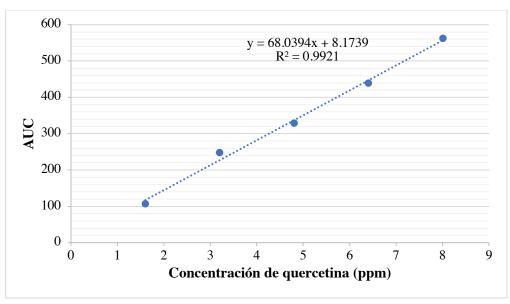
Concentración de		ón experimen ón con interc		Concentración experimental (ppm), regresión con b = 0		
quercetina teórica (ppm)	Concentración experimental (ppm)	Promedio (ppm)	Desviación estándar (ppm)	Concentración experimental (ppm)	Promedio (ppm)	Desviación estándar (ppm)
	2.474 2.486 2.485		0.00521	2.455 2.468 2.466		0.005235
2.403	2.489 2.481 2.485	2.485		2.470 2.462 2.466	2.466	
4.00419	4.0584 4.0408 4.0423 4.0296 4.0378 4.0471	4.0416	0.00964	4.0485 4.0307 4.0323 4.0195 4.0277 4.0371	4.0315	0.009696
5.606	5.741 5.710 5.684 5.686 5.682 5.672	5.685	0.0257	5.741 5.710 5.683 5.685 5.681 5.670	5.684	0.02584

Tabla No. 27. Estadística descriptiva de la concentración experimental de quercetina de las soluciones hijas de quercetina (exactitud), día 2.

Concentración		ón experiment ón con interco		Concentración experimental (ppm), regresión con b = 0		
de quercetina teórica (ppm)	Concentración experimental (ppm)	Promedio (ppm)	Desviación estándar (ppm)	Concentración experimental (ppm)	Promedio (ppm)	Desviación estándar (ppm)
2.403	2.278 2.340 2.357 2.362	2.323	0.03307	2.350 2.410 2.427 2.432	2.394	0.03241
	2.306 2.306 2.307 3.926			2.432 2.377 2.378 3.965		
4.00419	3.925 3.909 3.944	3.926	0.02171	3.964 3.948 3.983	3.965	0.02127
	3.957 3.899 5.600			3.996 3.939 5.606		
5.606	5.629 5.577 5.594	5.615	0.02802	5.634 5.583 5.600	5.620	0.02745
	5.632 5.651			5.637 5.656	-	


Tabla No. 28. Estadística descriptiva de la concentración de quercetina libre (aglicona), quercetina total, y glucosilada, en la muestra A.

	Quercetina	Quercetina libre	Quercetina glucosilada	Quercetina glucosilada
	total	(aglicona)	(%p/p)	(%p/p)
	(%p/p)	(%p/p)	Quercetina total x 2.51	Quercetina total – aglicona
1	0.02725	0.0004800	0.06839	0.02677
2	0.02760	0.0008724	0.06928	0.02673
3	0.02752	0.0008615	0.06907	0.02666
4	0.02740	0.0006040	0.06877	0.02679
Promedio	0.02746	0.0007328	0.06892	0.02675
Desviación estándar	0.00015	0.0001944	0.00004	0.00006
%CV	0.5567	26.53	0.5567	0.2270


Tabla No. 29. Estadística descriptiva de la concentración de quercetina libre (aglicona), quercetina total, y glucosilada, en la muestra B.

	Quercetina	Quercetina libre	Quercetina glucosilada	Quercetina glucosilada
	total	(aglicona)	(%p/p)	(%p/p)
	(%p/p)	(%p/p)	Quercetina total x 2.51	Quercetina total – aglicona
1	0.4752	0.4114	1.193	0.0638
2	0.4791	0.4180	1.203	0.0611
3	0.4754	0.4150	1.193	0.0604
4	0.4774	0.4141	1.198	0.0633
Promedio	0.4764	0.4145	1.196	0.0622
Desviación estándar	0.0019	0.002732	0.005	0.00165
%CV	0.3905	0.6589	0.391	2.66

2. Regresión lineal

Figura No. 13. Regresión lineal del área bajo la curva (AUC) respecto a la concentración de un estándar de quercetina, día 1.

Figura No. 14. Regresión lineal del área bajo la curva (AUC) respecto a la concentración de un estándar de quercetina, día 2.

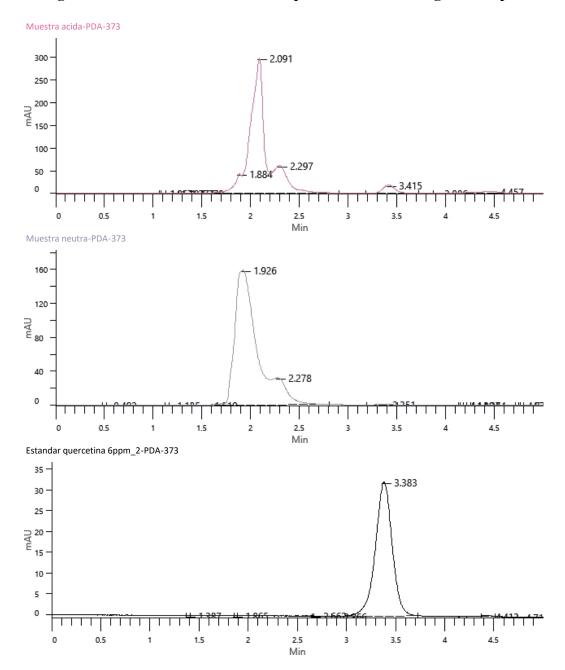
3. Análisis de Varianza (ANOVA) de un factor

Se determinó la significancia del modelo de regresión utilizando ANOVA de un factor. La hipótesis nula H_0 consiste en que la pendiente es igual a cero (m = 0), mientras que la hipótesis alternativa H_1 establece lo contrario (m \neq 0). Se utilizó como criterio de rechazo: rechazar Ho si el valor-p es menor o igual al nivel de significancia (α = 0.05) (Anderson et al., 2016).

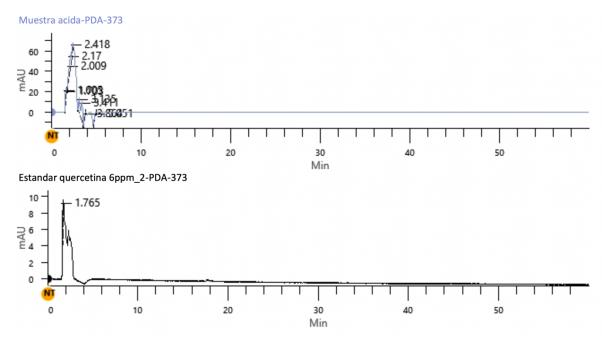
Tabla No. 30. Tabla ANOVA para la regresión lineal del día 1.

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	Fo	Fcrit
Regresión	1.145 * 10 ⁵	1	1.145 * 105	3.785 * 105	9.469 * 10-9
Error	9.0720 * 10-1	3	3.0240 * 10-1		
Total	1.145 * 10 ⁵	4			

Fcrit = valor-p de la prueba F de significancia.


Tabla No. 31. Tabla ANOVA para la regresión lineal del día 2.

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	Fo	Fcrit
Regresión	1.187 * 105	1	1.187 * 105	3.782 * 102	2.970 * 10-4
Error	9.420 * 102	3	3.140 * 10-2		
Total	1.197 * 10 ⁵	4			


Fcrit = valor-p de la prueba F de significancia.

F. Cromatogramas obtenidos en el estudio

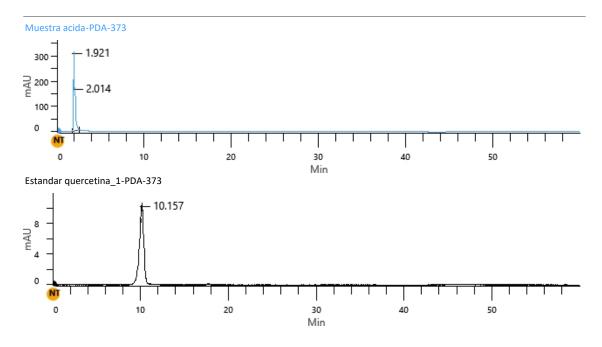

1. Cromatogramas de la determinación de los parámetros cromatográficos óptimos

Figura No. 15. Cromatogramas de corrida no 1: isocrático, metanol y H₃PO₄ 0.08% (80:20). No se observó ningún pico después del minuto 5.

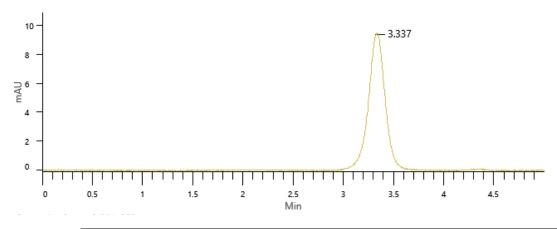
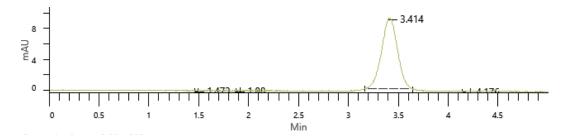

Figura No. 16. Cromatogramas de la corrida no 2: gradiente, metanol (A) y H₃PO₄ 0.08% (B). De 0 a 15 min: 100% A; de 16 a 40 min: 100% - 80% A (0 a 20% B); de 41 a 60 min: 80% - 60% A (20 a 40% B).

Figura No. 17. Cromatogramas de la corrida no 3: gradiente, metanol (A) y H₃PO₄ 0.08% (B). De 0 a 15 min: 60% - 80% A (40 a 20% B); de 16 a 40 min: 80% - 100% A (20% a 0% B); de 41 a 60 min: 100% A.


2. Cromatogramas de la validación

2.1. Cromatogramas de la linealidad

	Peak Name	Retention Time (min)	Area (mAU·s)	Height (mAU)	Area Percent(%)
1	UNKNOWN 1	3.337	104.7714	9.3732	100

Figura No. 18. Cromatograma del estándar de quercetina a 1.602 ppm (L1), día 1.

		Peak Name	Retention Time (min)	Area (mAU·s)	Height (mAU)	Area Percent(%)
1	L	UNKNOWN 1	1.473	5.0388E-002	4.9071E-002	0.05
2	2	UNKNOWN 2	1.88	6.2086E-002	4.6903E-002	0.06
3	3	UNKNOWN 3	3.414	102.1768	9.2368	99.78
4	1	UNKNOWN 4	4.176	0.1140	4.2883E-002	0.11

Figura No. 19. Cromatograma del estándar de quercetina a 1.602 ppm (L1), día 2.

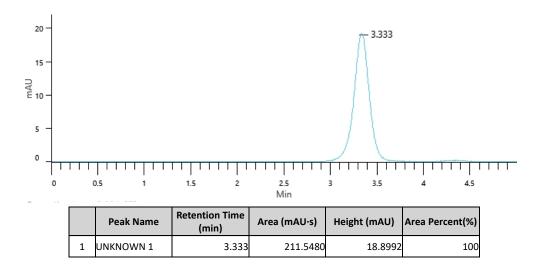


Figura No. 20. Cromatograma del estándar de quercetina a 3.203 ppm (L2), día 1.

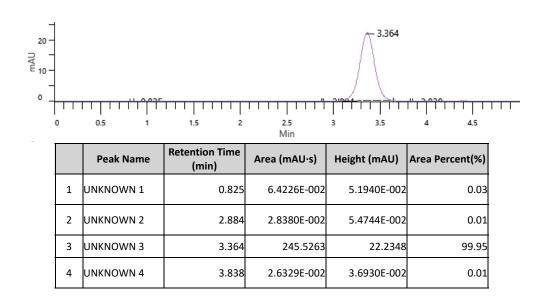


Figura No. 21. Cromatograma del estándar de quercetina a 3.203 ppm (L2), día 2.

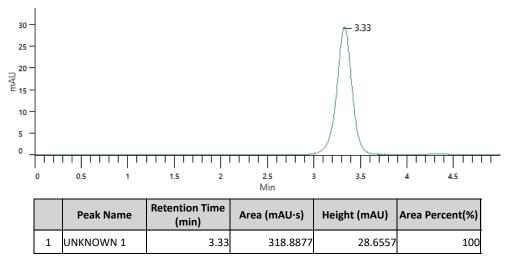
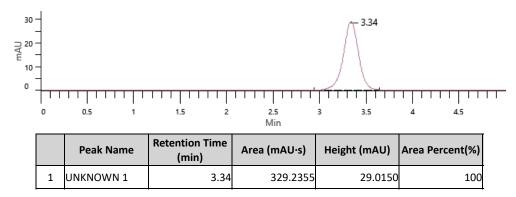



Figura No. 22. Cromatograma del estándar de quercetina a 4.805 ppm (L3), día 1.

No. 23. Cromatograma del estándar de quercetina a 4.805 ppm (L3), día 2.

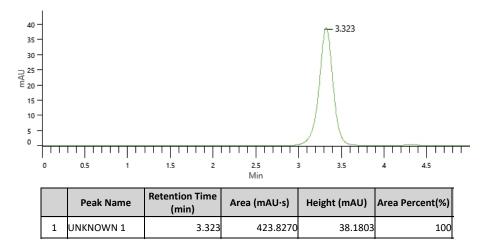


Figura No. 24. Cromatograma del estándar de quercetina a 6.407 ppm (L4), día 1.

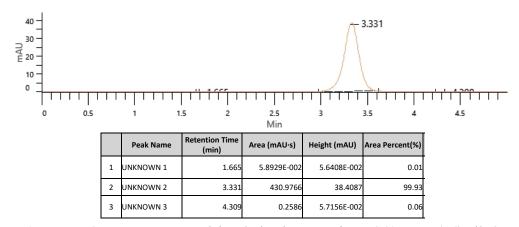


Figura No. 25. Cromatograma del estándar de quercetina a 6.407 ppm (L4), día 2.

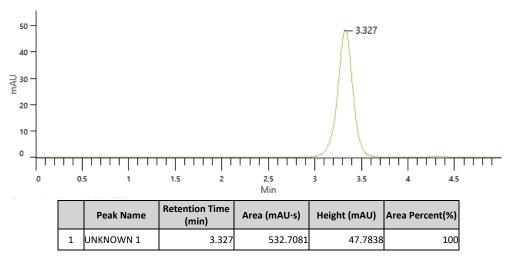


Figura No. 26. Cromatograma del estándar de quercetina a 8.008 ppm (L5), día 1.

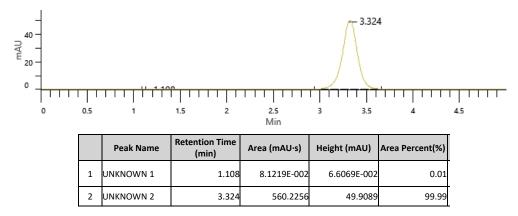


Figura No. 27. Cromatograma del estándar de quercetina a 8.008 ppm (L5), día 2.

2.2. Cromatogramas de la exactitud

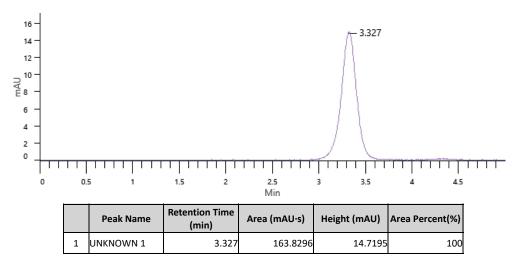


Figura No. 28. Cromatograma del estándar de quercetina a 2.403 ppm (E1), día 1.

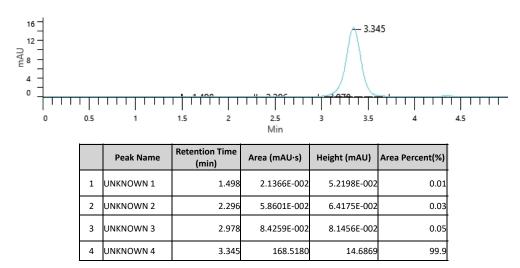


Figura No. 29. Cromatograma del estándar de quercetina a 2.403 ppm (E1), día 2.

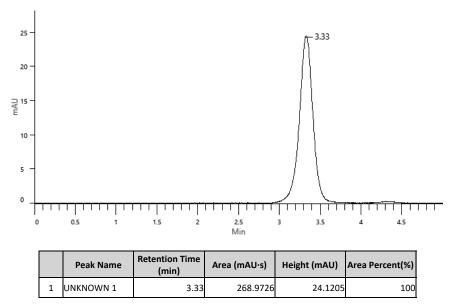


Figura No. 30. Cromatograma del estándar de quercetina a 4.004 ppm (E2), día 1.

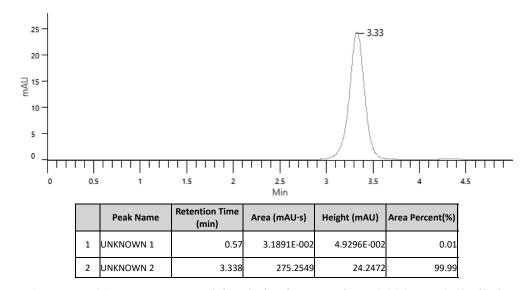


Figura No. 31. Cromatograma del estándar de quercetina a 4.004 ppm (E2), día 2.

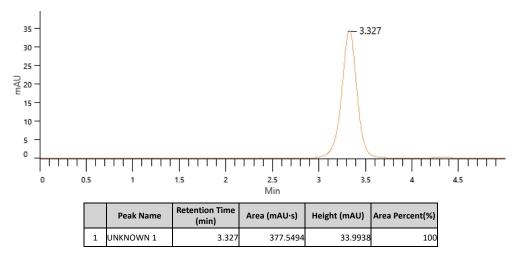


Figura No. 32. Cromatograma del estándar de quercetina a 5.606 ppm (E3), día 1.

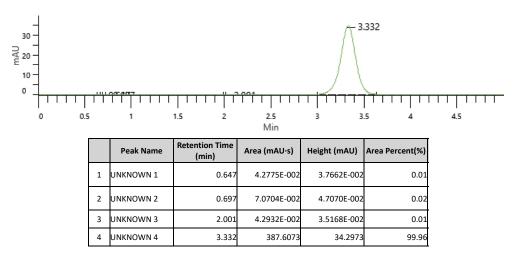


Figura No. 33. Cromatograma del estándar de quercetina a 5.606 ppm (E3), día 2.

3. Cromatogramas de la muestra comercial de cápsula de ginkgo

3.1. Muestra A

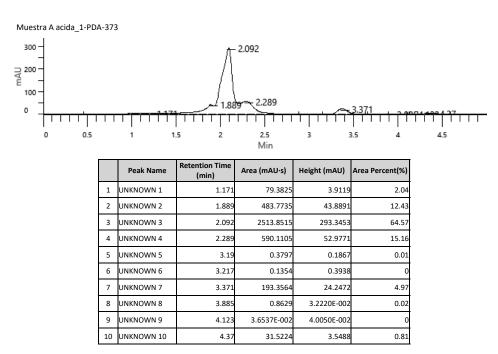


Figura No. 34. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica 1.

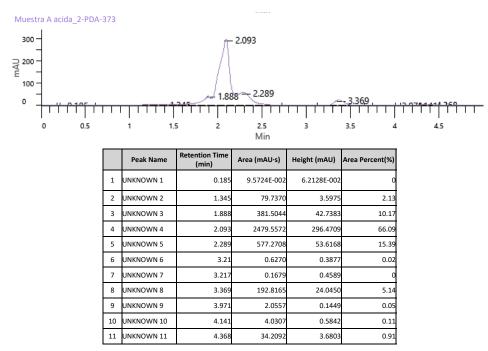


Figura No. 35. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica 2.

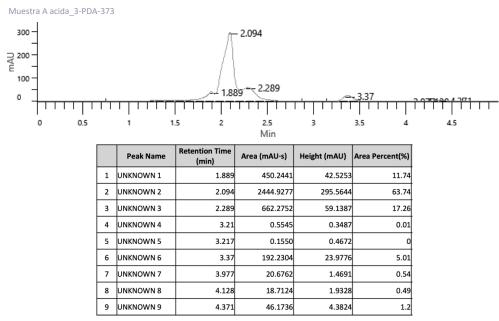
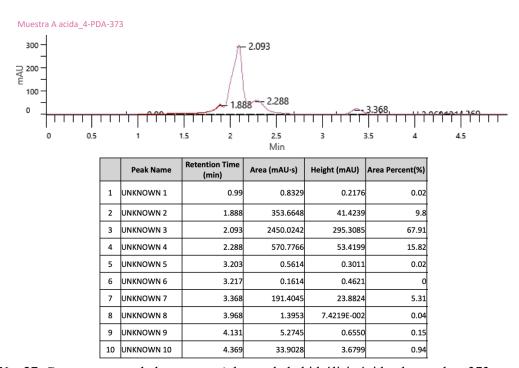
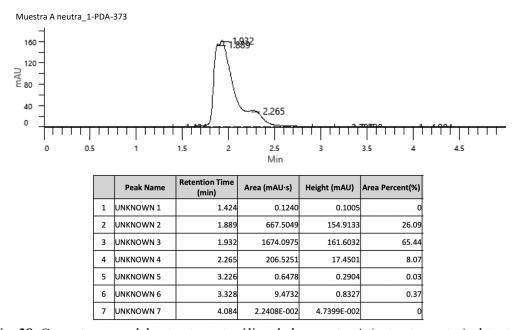
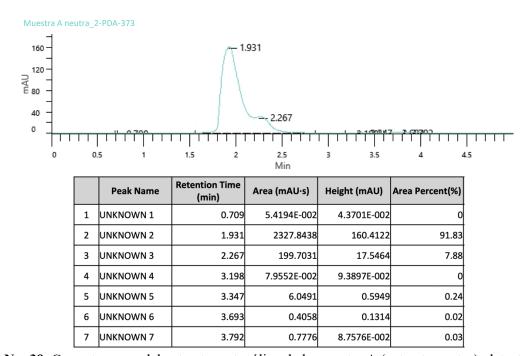
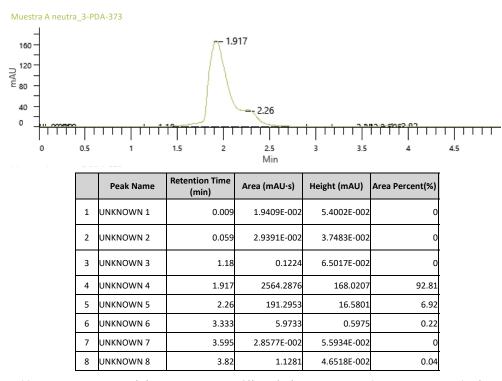


Figura No. 36. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica 3.


Figura No. 37. Cromatograma de la muestra A luego de la hidrólisis ácida, detectado a 373 nm, réplica 4.

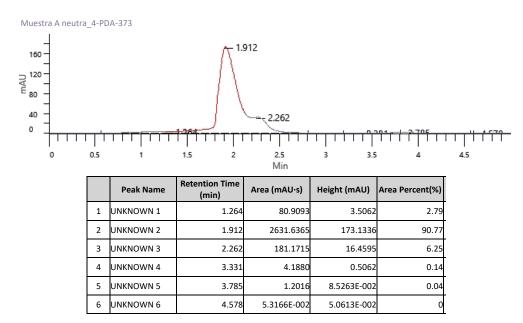

Figura No. 38. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 373 nm, réplica 1.

Figura No. 39. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 373 nm, réplica 2.

Figura No. 40. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 373 nm, réplica 3.

Figura No. 41. Cromatograma del extracto metanólico de la muestra A (extracto neutro), detectado a 373 nm, réplica 4.

3.2. Muestra B

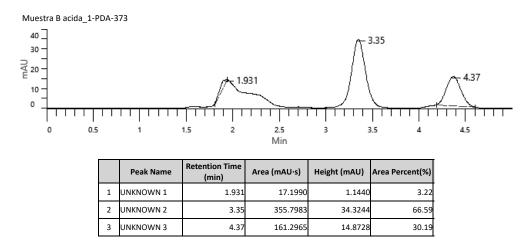


Figura No. 42. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 1.

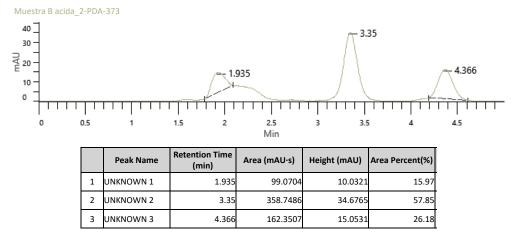


Figura No. 43. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 2.

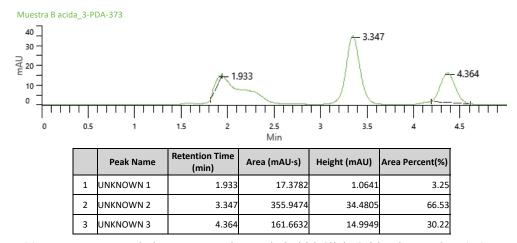
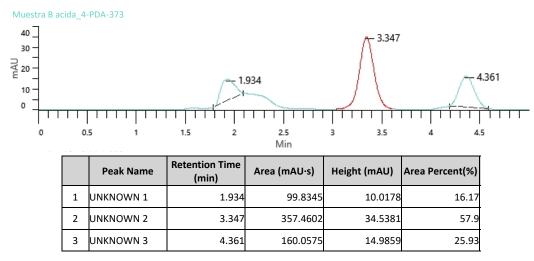
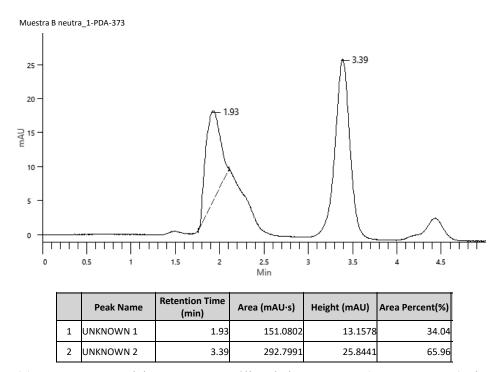
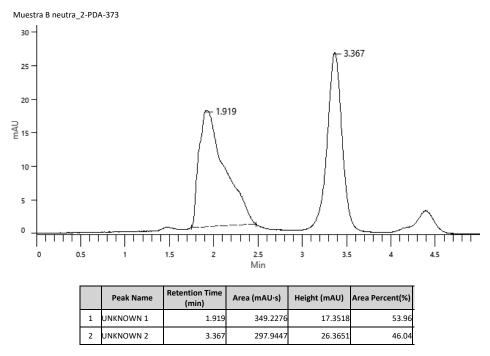
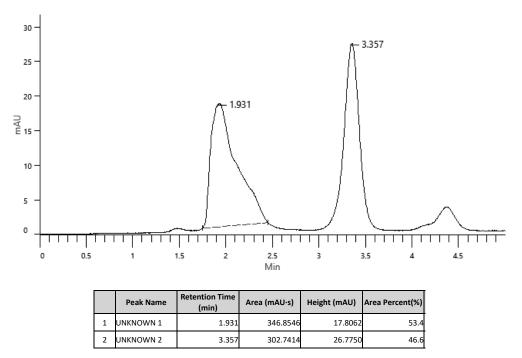


Figura No. 44. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 3.


Figura No. 45. Cromatograma de la muestra B luego de la hidrólisis ácida, detectado a 373 nm, réplica 4.

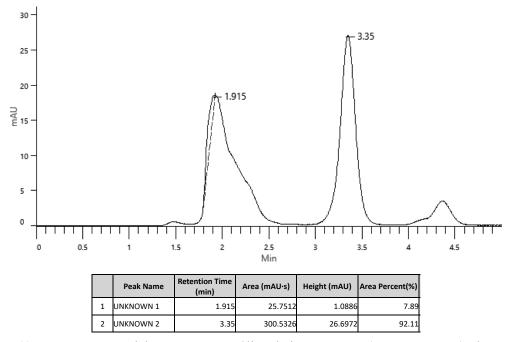

Figura No. 46. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm, réplica 1.

Figura No. 47. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm, réplica 2.

Figura No. 48. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm, réplica 3.

Figura No. 49. Cromatograma del extracto metanólico de la muestra B (extracto neutro), detectado a 373 nm, réplica 4.