UNIVERSIDAD DEL VALLE DE GUATEMALA

Facultad de Ingeniería

SELECCIÓN DE EQUIPOS PARA LA EXTRACCIÓN Y PURIFICACIÓN DE ÁCIDO LÁCTICO EN EL LABORATORIO DE OPERACIONES UNITARIAS UTILIZANDO EL HONGO *Rhizopus oryzae*

Trabajo de graduación presentado por Leslie María De León Mendoza para optar al grado académico de Licenciada en Ingeniería Química

Guatemala,

2021

UNIVERSIDAD DEL VALLE DE GUATEMALA

Facultad de Ingeniería

SELECCIÓN DE EQUIPOS PARA LA EXTRACCIÓN Y PURIFICACIÓN DE ÁCIDO LÁCTICO EN EL LABORATORIO DE OPERACIONES UNITARIAS UTILIZANDO EL HONGO *Rhizopus oryzae*

Trabajo de graduación presentado por Leslie María De León Mendoza para optar al grado académico de Licenciada en Ingeniería Química

Guatemala,

2021

Vo. Bo. :	
(ſ)	Jing, Östar Spenz,
Tribunal examinador:	
(f)	Ing. Gamiliel Zambrano
(f)	Ing. Luis Nuñez
(f)	- All me Oscar Sacnz

Fecha de aprobación: Guatemala, 18 de febrero de 2021

Prefacio

Este trabajo de graduación está dedicado a Dios y a mi familia. Agradezco toda su paciencia, comprensión, apoyo y amor en mi vida. Gracias por ser mi inspiración día a día y por ser parte de quien soy.

Agradezco al Ingeniero Gamaliel Zambrano, por todo el apoyo brindado durante la carrera, por sus consejos y por su compañía en el aprendizaje. Especialmente gracias por su apoyo y disponibilidad en este último año de carrera.

Agradezco al Ingeniero Oscar Sáenz, por su tiempo, consejos y asesoría.

Agradezco al Ingeniero Luis Núñez, por su disponibilidad y ayuda en todo momento. Especialmente en la coordinación de las pruebas de laboratorio que hicieron posible la realización de este trabajo.

Agradezco a la Licenciada Irma Orellana y a la Ingeniera Carmen Ortiz por su ayuda y conocimientos.

Gracias a Héctor Molina, Cristian García y especialmente a José Coc, por su trabajo, colaboración y disposición al realizar las pruebas de laboratorio de manera remota.

Por último, agradezco mis amigos por su apoyo, por el ánimo constante, por los valiosos aportes y por los buenos momentos.

A todos ellos reitero mi más sincero agradecimiento.

		Página
Pref	facio	i
List	a de cuadros	iv
List	a de figuras	XX
Resi	umen	xxiv
I.	Introducción	1
II.	Justificación	2
III.	Objetivos	4
	3.1 General	4
	3.2 Específicos	4
IV.	Marco teórico	5
	4.1 Ácido láctico	5
	4.2 Producción de ácido láctico	6
	4.2.1 Producción por vía sintética	6
	4.2.2 Producción por vía biotecnológica	6
	4.3 Procesos de separación de ácido láctico	7
	4.4 Ácido poliláctico (PLA)	9
	4.4.1 Reacción de polimerización	
	4.4.2 Policondensación indirecta	
	4.4.3 Policondensación directa	11
	4.5 Separación de biomasa	11
	4.5.1 Centrifugación	11
	4.5.2 Centrífugas de producción comercialmente disponibles	
	4.5.3 Filtración centrífuga	16
	4.6 Filtración	19
	4.7 Extracción líquido-líquido	19
	4.7.1 Principio	19
	4.7.2 Solventes utilizados para la extracción de ácido láctico	
	4.7.3 Equilibrio líquido-líquido	
	4.7.4 Diagrama ternario	
	4.7.5 Regla de mezclado	
	4.7.6 Solubilidad de los sistemas líquidos ternarios	
	4.7.7 Propiedades del solvente	
	4.7.8 Insolubilidad del disolvente	
	4.7.9 Configuraciones de operación	
	4.7.9.1 Contacto por etapas	
	4.7.9.2 Extracción multietapa a contracorriente continua	
	4.8 Equipo comercialmente disponible	
	4.8.1 Mezclador sedimentador	

Índice

		4.8.2 Extractores centrífugos	.33
	4.9	Destilación	.35
		4.9.1 Destilación por lotes	.35
		4.9.1.1 Intermitente o diferencial	.35
		4.9.1.2 Con enriquecimiento de vapor	.37
		4.9.2 Equipos comercialmente disponibles para operaciones de destilación por	
		lotes	. 39
		4.9.2.1 Columna	. 39
		4.9.2.2 Condensador	. 39
		4.9.2.3 Tubo y coraza	. 39
		4.9.2.4 Serpentín	.40
		4.9.2.5 Rehervidor	.46
		4.9.3 Equilibrio multicomponente	. 50
		4.9.3.1 Modelo no aleatorio de dos líquidos (NRTL)	. 50
		4.9.3.2 Curvas residuales	.51
		4.9.3.3 Mezclas azeotrópicas	.53
		4.9.3.4 Modelos de predicción	. 53
		4.9.3.5 Metodo riguroso	.33
		4.9.3.7 Tratamiento estadístico	54
V.	Ant	recedentes	57
VI.	Mei	todología	59
, 1,	61	Caracterización	59
	6.2	Determinación de la densidad	59
	6.3	Determinación de la viscosidad	59
	6.5	Determinación de nH	60
	6.5	Determinación de la concentración de ácido láctico	60
	0.5	Determinación de la humadad	60
	0.0	Determinación de la numedad.	.00
	6./	Determinación de las curvas de equilibrio	. 60
		6.7.1 Equilibrio líquido-líquido experimental	. 60
		6.7.2 Equilibrio líquido-líquido en Aspen Plus	. 62
		6.7.3 Regresión de datos experimentales para el equilibrio líquido-líquido en	
		Aspen Plus	. 63
		6.7.4 Equilibrio líquido-vapor en Aspen Plus	.63
		6.7.5 Dimensionamiento de equipo	.64
		6.7.6 Selección de equipo	.66
		6.7.7 Softwares utilizados	.66
VII.	Res	ultados	. 67
	7.1	Caracterización del caldo fermentado y del ácido láctico	.67
	7.2	Proceso seleccionado	.67
	7.3	Curvas de equilibrio	. 68
		1	-

	7.4 Dimensionamiento de equipo	75
VIII.	. Análisis de resultados	91
IX.	Conclusiones	
X.	Recomendaciones	
XI.	Bibliografía	
XII.	Anexos	
X. XI. XII.	Recomendaciones Bibliografía Anexos	

Lista de cuadros

Página
Cuadro 1. Propiedades fisicoquímicas del ácido láctico
Cuadro 2. Especificaciones de calidad del ácido láctico
Cuadro 3. Comparación de tipos de centrífugas14
Cuadro 4. Propiedades fisicoquímicas del acetato de etilo
Cuadro 5. Propiedades fisicoquímicas del 1-octanol
Cuadro 6. Características fisicoquímicas del caldo fermentado libre de biomasa67
Cuadro 7. Características fisicoquímicas del ácido láctico
Cuadro 8. Desviaciones de las composiciones (p/p) en equilibrios experimentales con
respecto al modelo NRTL para el sistema agua – acetato de etilo – ácido láctico69
Cuadro 9. Desviaciones de las composiciones (p/p) en equilibrios experimentales con
respecto al modelo NRTL para el sistema agua – 1-octanol – ácido láctico
Cuadro 10. Rangos de selectividad y coeficientes de distribución según el disolvente
utilizado en la extracción líquido-líquido70
Cuadro 11. Comparación de equipo disponible comercialmente para los procesos de
separación sólido-líquido, líquido-líquido73
Cuadro 12. Comparación de equipo disponible comercialmente para los procesos de
separación líquido-vapor
Cuadro 13. Características y dimensiones de la centrífuga de canasta
Cuadro 14. Características y dimensiones de los extractores centrífugos79
Cuadro 15. Características y dimensiones del condensador para la recuperación de
disolvente
Cuadro 16. Características y dimensiones del rehervidor para la purificación de ácido
láctico
Cuadro 17. Concentraciones iniciales y finales de ácido láctico y rendimientos según la
etapa del proceso
Cuadro 18. Condiciones ambientales
Cuadro 19. Densidad de los disolventes
Cuadro 20. Concentración de ácido láctico y de biomasa en 15 L de caldo fermentado
producidos en el biorreactor

Cuadro 21. Peso de la masa del caldo fermentado y de ácido láctico en un volumen de $15 \pm$
0.3 mL
Cuadro 22. Propiedades del agua a 25°C112
Cuadro 23. Tiempos de desplazamiento de fluidos en un viscosímetro Ubbelhode 113
Cuadro 24. pH y humedad relativa del caldo fermentado113
Cuadro 25. pH y pureza del ácido láctico113
Cuadro 26. Características de la centrífuga de canasta
Cuadro 27. Características del caldo fermentado con biomasa en la centrífuga de
canasta
Cuadro 28. Volumen real de ácido láctico al 90% agregados para la preparación soluciones
de caldo fermentado - ácido láctico en un balón de aforo de 25 ± 0.040 mL previo a su
titulación turbidimétrica con acetato de etilo
Cuadro 29. Volumen real de ácido láctico al 90% y agregado para la preparación soluciones
de acetato de etilo - ácido láctico en un balón de aforo de 25 ± 0.040 mL previo a su
titulación turbidimétrica con caldo fermentado114
Cuadro 30. Concentración nominal y real de las soluciones de ácido láctico en caldo
fermentado previo a la titulación turbidimétrica con acetato de etilo
Cuadro 31. Concentración nominal y real de las soluciones de ácido láctico en acetato de
etilo previo a la titulación turbidimétrica con caldo fermentado
Cuadro 32. Peso de la masa de las soluciones de ácido láctico en caldo fermentado previo a
la titulación turbidimétrica con acetato de etilo a en un volumen de 25 ± 0.040 mL 116
Cuadro 33. Peso de la masa soluciones de ácido láctico en acetato de etilo previo a la
titulación turbidimétrica con caldo fermentado en un volumen de 25 ± 0.040 mL
Cuadro 34. Volumen de acetato de etilo para titular turbidimétricamente una alícuota de 10
± 0.1 mL de solución acuosa de caldo fermentado – ácido láctico
Cuadro 35. Volumen de caldo fermentado para titular turbidimétricamente una alícuota de
10 ± 0.1 mL de solución oleosa de acetato de etilo – ácido láctico
Cuadro 36. Concentraciones nominales de punto de mezcla para la determinación de las
líneas de unión del equilibrio líquido-líquido agua- acetato de etilo - ácido láctico
Cuadro 37. Volumen de sustancia agregados para la determinación de las líneas de unión
del equilibrio líquido-líquido agua- acetato de etilo - ácido láctico
Cuadro 38. Concentraciones reales de equilibrio en fase acuosa de las líneas de unión del
equilibrio líquido-líquido agua- acetato de etilo - ácido láctico
Cuadro 39. Concentraciones reales de equilibrio en fase oleosa de las líneas de unión del
equilibrio líquido-líquido agua- acetato de etilo - ácido láctico
Cuadro 40. Volumen real de ácido láctico al 90% agregados para la preparación soluciones
de caldo fermentado - ácido láctico en un balón de aforo de 10 ± 0.020 mL previo a su
titulación turbidimétrica con 1-octanol

Cuadro 41. Volumen real de ácido láctico al 90% y agregado para la preparación soluciones
de 1-octanol - ácido láctico en un balón de aforo de 25 ± 0.040 mL. previo a su titulación
turbidimétrica con caldo fermentado119
Cuadro 42. Concentración nominal y real de las soluciones de ácido láctico en caldo
fermentado previo a la titulación turbidimétrica con 1-octanol
Cuadro 43. Concentración nominal y real de las soluciones de ácido láctico en 1-octanol
previo a la titulación turbidimétrica con caldo fermentado120
Cuadro 44. Peso de la masa de las soluciones de ácido láctico en caldo fermentado previo a
la titulación turbidimétrica con 1-octanol a en un volumen de 10 ± 0.020 mL
Cuadro 45. Peso de la masa soluciones de ácido láctico en 1-octanol previo a la titulación
turbidimétrica con caldo fermentado en un volumen de 25 ± 0.040 mL121
Cuadro 46. Volumen de 1-octanol para titular turbidimétricamente una alícuota de 6 ± 0.1
mL de solución acuosa de caldo fermentado – ácido láctico
Cuadro 47. Volumen de caldo fermentado para titular turbidimétricamente una alícuota de
10 ± 0.1 mL de solución oleosa de 1-octanol – ácido láctico
Cuadro 48. Concentraciones nominales de punto de mezcla para la determinación de las
líneas de unión del equilibrio líquido-líquido agua- 1-octanol - ácido láctico122
Cuadro 49. Volumen de sustancia agregados para la determinación de las líneas de unión
del equilibrio líquido-líquido agua- 1-octanol - ácido láctico122
Cuadro 50. Concentraciones reales de equilibrio en fase acuosa de las líneas de unión del
equilibrio líquido-líquido agua- 1-octanol - ácido láctico123
Cuadro 51. Concentraciones reales de equilibrio en fase oleosa de las líneas de unión del
equilibrio líquido-líquido agua- 1-octanol - ácido láctico123
Cuadro 52. Características del extractor centrífugo
Cuadro 53. Características del vapor saturado
Cuadro 54. Características del condensador en la destilación124
Cuadro 55. Características del rehervidor para la destilación
Cuadro 56. Pesos promedio de la masa del caldo fermentado y de ácido láctico en un
volumen de 15 ± 0.1 mL
Cuadro 57. Densidad promedio del caldo fermentado y del ácido láctico152
Cuadro 58. Tiempos promedio de desplazamiento de fluidos en un viscosímetro
Ubbelohde
Cuadro 59. Viscosidad promedio obtenidas mediante un viscosímetro Ubbelohde
Cuadro 60. Parámetros de operación de la centrífuga de canasta
Cuadro 61. Perfil de caudal de la centrífuga de canasta en función del radio a la torta153
Cuadro 62. Perfil de tiempo de la centrífuga de canasta en función del radio de la torta 153
Cuadro 63. Momentos de inercia y potencia requerida para la centrífuga de canasta 153
Cuadro 64. Volumen nominal de ácido láctico al 90% a agregar para la preparación
soluciones de caldo fermentado - ácido láctico en un balón de aforo de 25 ± 0.040 mL
previas a la titulación turbidimétrica con acetato de etilo

Cuadro 65. Volumen nominal de ácido láctico al 90% a agregar para la preparación
soluciones de acetato de etilo -ácido láctico en un balón de aforo de 25 ± 0.040 mL previas
a la titulación turbidimétrica con caldo fermentado154
Cuadro 66. Densidad de las soluciones de caldo fermentado - ácido láctico previas a la
titulación turbidimétrica con acetato de etilo
Cuadro 67. Densidad de las soluciones de acetato de etilo - ácido láctico previas a la
titulación turbidimétrica con caldo fermentado155
Cuadro 68. Masa total de las soluciones de caldo fermentado - ácido láctico tituladas
(alícuota de 10 ± 0.1 mL) con acetato de etilo
Cuadro 69. Masa total de las soluciones de acetato de etilo - ácido láctico tituladas (alícuota
de 10 ± 0.1 mL) con caldo fermentado
Cuadro 70. Concentraciones en equilibrio del sistema agua – acetato de etilo – ácido láctico
para la sección acuosa de la curva binodal de solubilidad
Cuadro 71. Concentraciones en equilibrio del sistema agua – acetato de etilo – ácido láctico
para la sección oleosa de la curva binodal de solubilidad156
Cuadro 72. Densidad de la fase acuosa y oleosa de las líneas de unión del sistema agua –
acetato de etilo – ácido láctico
Cuadro 73. Coeficiente de distribución y selectividad de las líneas de unión del sistema
agua – acetato de etilo – ácido láctico
Cuadro 74. Composiciones en equilibrio para el sistema agua – acetato de etilo – ácido
láctico en fase acuosa
Cuadro 75. Composiciones en equilibrio para el sistema agua – acetato de etilo – ácido
láctico en fase oleosa
Cuadro 76. Volumen nominal de ácido láctico al 90% a agregar para la preparación
soluciones de caldo fermentado - ácido láctico en un balón de aforo de 10 ± 0.020 mL
previas a la titulación turbidimétrica con 1-octanol
Cuadro 77. Volumen nominal de ácido láctico al 90% a agregar para la preparación
soluciones de 1-octanol -ácido láctico en un balón de aforo de 25 ± 0.040 mL previas a la
titulación turbidimétrica con caldo fermentado159
Cuadro 78. Densidad de las soluciones de caldo fermentado - ácido láctico previas a la
titulación turbidimétrica con 1-octanol
Cuadro 79. Densidad de las soluciones de 1-octanol - ácido láctico previas a la titulación
turbidimétrica con caldo fermentado160
Cuadro 80. Masa total de las soluciones de caldo fermentado - ácido láctico tituladas
(alícuota de 6 ± 0.1 mL) con acetato de etilo
Cuadro 81. Masa total de las soluciones de 1-octanol - ácido láctico tituladas (alícuota de
$10 \pm 0.1 \text{ mL}$) con caldo fermentado
Cuadro 82. Concentraciones en equilibrio del sistema agua – 1-octanol – ácido láctico para
la sección acuosa de la curva binodal de solubilidad

Cuadro 83. Concentraciones en equilibrio del sistema agua – 1-octanol – ácido láctico para
la sección oleosa de la curva binodal de solubilidad161
Cuadro 84. Densidad de la fase acuosa y oleosa de las líneas de unión del sistema agua – 1-
octanol – ácido láctico
Cuadro 85. Coeficiente de distribución y selectividad de las líneas de unión del sistema
agua – 1-octanol – ácido láctico162
Cuadro 86. Composiciones en equilibrio para el sistema agua – 1-octanol – ácido láctico en fase acuosa
Cuadro 87. Composiciones en equilibrio para el sistema agua – 1-octanol – ácido láctico en
fase oleosa
Cuadro 88. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua-
acetato de etilo – ácido láctico en base molar bajo el modelo NRLT en base molar
(m/m)
Cuadro 89. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua-
acetato de etilo – ácido láctico en base másica bajo el modelo NRLT
Cuadro 90. Datos de Aspen Plus para las líneas de unión del sistema agua- acetato de etilo
– ácido láctico en base molar bajo el modelo NRLT
Cuadro 91. Datos de Aspen Plus para las líneas de unión del sistema agua- acetato de etilo
- ácido láctico en base másica bajo el modelo NRLT
Cuadro 92. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua- 1-
octanol – ácido láctico en base molar bajo el modelo NRLT166
Cuadro 93. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua- 1-
octanol – ácido láctico en base másica bajo el modelo NRLT167
Cuadro 94. Datos de Aspen Plus para las líneas de unión del sistema agua- 1-octanol –
ácido láctico en base molar bajo el modelo NRLT
Cuadro 95. Datos de Aspen Plus para las líneas de unión del sistema agua- 1-octanol –
ácido láctico en base másica bajo el modelo NRLT168
Cuadro 96. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la
fase acuosa en equilibrio líquido-líquido para el sistema agua-acetato de etilo- ácido láctico
con respecto al modelo NRLT169
Cuadro 97. Regresión en Aspen Plus para la composición de acetato de etilo (p/p)
experimental en la fase acuosa en equilibrio líquido-líquido para el sistema agua-acetato de
etilo- ácido láctico con respecto al modelo NRLT169
Cuadro 98. Regresión en Aspen Plus para la composición de ácido láctico (p/p)
experimental en la fase acuosa en equilibrio líquido-líquido para el sistema agua-acetato de
etilo- ácido láctico con respecto al modelo NRLT170
Cuadro 99. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la
fase oleosa en equilibrio líquido-líquido para el sistema agua-acetato de etilo- ácido láctico
con respecto al modelo NRLT170

Cuadro 100. Regresión en Aspen Plus para la composición de acetato de etilo (p/p)
experimental en fase oleosa en equilibrio líquido-líquido para el sistema agua-acetato de
etilo- ácido láctico con respecto al modelo NRLT171
Cuadro 101. Regresión en Aspen Plus para la composición de ácido láctico (p/p)
experimental en fase oleosa en equilibrio líquido-líquido para el sistema agua-acetato de
etilo- ácido láctico con respecto al modelo NRLT171
Cuadro 102. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la
fase acuosa en equilibrio líquido-líquido para el sistema agua- 1-octanol - ácido láctico. 172
Cuadro 103. Regresión en Aspen Plus para la composición de 1-octanol (p/p) experimental
en la fase acuosa en equilibrio líquido-líquido para el sistema agua- 1-octanol - ácido
láctico con respecto al modelo NRLT
Cuadro 104. Regresión en Aspen Plus para la composición de ácido láctico (p/p)
experimental en la fase acuosa en equilibrio líquido-líquido para el sistema agua- 1-octanol
- ácido láctico con respecto al modelo NRLT
Cuadro 105. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la
fase oleosa en equilibrio líquido-líquido para el sistema agua- 1-octanol - ácido láctico con
respecto al modelo NRLT173
Cuadro 106. Regresión en Aspen Plus para la composición de 1-octanol (p/p) experimental
en fase oleosa en equilibrio líquido-líquido para el sistema agua- 1-octanol - ácido láctico
con respecto al modelo NRLT174
Cuadro 107. Regresión en Aspen Plus para la composición de ácido láctico (p/p)
experimental en fase oleosa en equilibrio líquido-líquido para el sistema agua- 1-octanol -
ácido láctico con respecto al modelo NRLT174
Cuadro 108. Concentración de ácido láctico en el refinado para una extracción del 90% del
ácido láctico del caldo fermentado, punto de mezcla y solvente mínimos174
Cuadro 109. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 5:1 en 2 etapas175
Cuadro 110. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 2:1 en 2 etapas176
Cuadro 111. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:1 en 2 etapas177
Cuadro 112. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:2 en 2 etapas178
Cuadro 113. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:4 en 2 etapas179
Cuadro 114. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:6 en 2 etapas
Cuadro 115. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:10 en 2 etapas

Cuadro 116. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 5:1 en 3 etapas
Cuadro 117. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 2:1 en 3 etapas
Cuadro 118. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:1 en 3 etapas
Cuadro 119. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:2 en 3 etapas
Cuadro 120. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:4 en 3 etapas186
Cuadro 121. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:6 en 3 etapas187
Cuadro 122. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:10 en 3 etapas188
Cuadro 123. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 5:1 en 4 etapas
Cuadro 124. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 2:1 en 4 etapas190
Cuadro 125. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:1 en 4 etapas191
Cuadro 126. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:2 en 4 etapas192
Cuadro 127. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:4 en 4 etapas193
Cuadro 128. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:6 en 4 etapas194
Cuadro 129. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:10 en 4 etapas195
Cuadro 130. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:6 en 6 etapas196
Cuadro 131. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:6 en 10 etapas197
Cuadro 132. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:6 en 15 etapas198
Cuadro 133. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:6 en 20 etapas199
Cuadro 134. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:4 en 10 etapas
Cuadro 135. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:4 en 15 etapas201

Cuadro 136. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:4 en 20 etapas
Cuadro 137. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:10 en 6 etapas
Cuadro 138. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:10 en 10 etapas
Cuadro 139. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:10 en 15 etapas205
Cuadro 140. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico
en Aspen Plus para una relación F/S de 1:10 en 20 etapas
Cuadro 141. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 5:1 en 2 etapas
Cuadro 142. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 2:1 en 2 etapas
Cuadro 143. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:1 en 2 etapas
Cuadro 144. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:2 en 2 etapas
Cuadro 145. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:4 en 2 etapas
Cuadro 146. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:6 en 2 etapas
Cuadro 147. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:10 en 2 etapas
Cuadro 148. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 5:1 en 3 etapas
Cuadro 149. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 2:1 en 3 etapas
Cuadro 150. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:1 en 3 etapas
Cuadro 151. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:2 en 3 etapas
Cuadro 152. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:4 en 3 etapas
Cuadro 153. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:6 en 3 etapas
Cuadro 154. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:10 en 3 etapas
Cuadro 155. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 5:1 en 4 etapas

Cuadro 156. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 2:1 en 4 etapas
Cuadro 157. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:1 en 4 etapas
Cuadro 158. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:2 en 4 etapas
Cuadro 159. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:4 en 4 etapas225
Cuadro 160. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:6 en 4 etapas226
Cuadro 161. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:10 en 4 etapas
Cuadro 162. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:4 en 6 etapas
Cuadro 163. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:4 en 10 etapas
Cuadro 164. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:4 en 15 etapas
Cuadro 165. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:4 en 20 etapas
Cuadro 166. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:6 en 6 etapas
Cuadro 167. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:6 en 10 etapas
Cuadro 168. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:6 en 15 etapas
Cuadro 169. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:6 en 20 etapas
Cuadro 170. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:10 en 6 etapas
Cuadro 171. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:10 en 10 etapas
Cuadro 172. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:10 en 15 etapas
Cuadro 173. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:10 en 20 etapas
Cuadro 174. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en
Aspen Plus para una relación F/S de 1:5 en 3 etapas

Cuadro 175. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- acetato de etilo – ácido láctico en función de la relación de alimentación/disolvente
(F/S) para 2 etapas
Cuadro 176. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de la relación
de (F/S) para 2 etapas
Cuadro 177. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de
(F/S) para 2 etapas
Cuadro 178. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de la
(F/S) para 2 etapas
Cuadro 179. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de
la relación de (F/S) para 2 etapas
Cuadro 180. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- acetato de etilo – ácido láctico en función de (F/S) para 3 etapas245
Cuadro 181. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función (F/S) para 3
etapas
Cuadro 182. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de
(F/S) para 3 etapas
Cuadro 183. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de
(F/S) para 3 etapas
Cuadro 184. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de
(F/S) para 3 etapas
Cuadro 185. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- acetato de etilo – ácido láctico en función de (F/S) para 4 etapas247
Cuadro 186. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 4
etapas
Cuadro 187. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de
(F/S) para 4 etapas
Cuadro 188. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de
(F/S) para 4 etapas

Cuadro 189. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función
del número de etapas para 4 etapas
Cuadro 190. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de
1:4
Cuadro 191. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de
etapas para una F/S de 1:4
Cuadro 192. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del
número de etapas para una F/S de 1:4
Cuadro 193. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido en función del número
de etapas para una F/S de 1:4
Cuadro 194. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función
del número de etapas para una F/S de 1:4
Cuadro 195. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de
1:6
Cuadro 196. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de
etapas para una F/S de 1:6
Cuadro 197. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del
número de etapas para una F/S de 1:6
Cuadro 198. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido en función del número
de etapas para una F/S de 1:6
Cuadro 199. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función
del número de etapas para una F/S de 1:6
Cuadro 200. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de
1:10
Cuadro 201. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de
etapas para una F/S de 1:10

Cuadro 202. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del
número de etapas para una F/S de 1:10256
Cuadro 203. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- acetato de etilo – ácido en función del número
de etapas para una F/S de 1:10
Cuadro 204. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función
del número de etapas para una F/S de 1:10
Cuadro 205. Sensibilidad del balance de masa de la extracción líquido-líquido del sistema
agua- 1-octanol – ácido láctico en función de la relación de alimentación/disolvente (F/S)
para 2 etapas
Cuadro 206. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de la relación de
(F/S) para 2 etapas
Cuadro 207. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S)
para 2 etapas
Cuadro 208. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de la (F/S)
para 2 etapas
Cuadro 209. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de la
relación de (F/S) para 2 etapas
Cuadro 210. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- 1-octanol – ácido láctico en función de (F/S) para 3 etapas
Cuadro 211. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- 1-octanol – ácido láctico en función (F/S) para 3
etapas
Cuadro 212. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S)
para 3 etapas
Cuadro 213. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S)
para 3 etapas
Cuadro 214. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S)
para 3 etapas
Cuadro 215. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- 1-octanol – ácido láctico en función de (F/S) para 4 etapas

Cuadro 216. Sensibilidad de las composiciones de agua en las corrientes de la extracción
etapas
Cuadro 217. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 4 etapas
Cuadro 218. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 4 etapas
Cuadro 219. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del
número de etapas para 4 etapas
Cuadro 220. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:4265
Cuadro 221. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas
para una F/S de 1:4
Cuadro 222. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del
número de etapas para una F/S de 1:4
Cuadro 223. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido en función del número de
etapas para una F/S de 1:4
Cuadro 224. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:4
Cuadro 225. Sensibilidad del balance masa de la extracción líquido-líquido del sistema
agua- 1octanol – ácido láctico en función del número de etapas para una F/S de 1:6 267
Cuadro 226. Sensibilidad de las composiciones de agua en las corrientes de la extracción
líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas
para una F/S de 1:6
Cuadro 227. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del
número de etapas para una F/S de 1:6
Cuadro 228. Sensibilidad de las composiciones de ácido láctico en las corrientes de la
extracción líquido-líquido del sistema agua- 1-octanol – ácido en función del número de
etapas para una F/S de 1:6
Cuadro 229. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de
la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del
número de etapas para una F/S de 1:6269

Cuadro 248. Simulación en Aspen Batch Modeler para la destilación simple del sistema Cuadro 249. Simulación en Aspen Batch Modeler para la destilación simple del sistema Cuadro 250. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas con una relación de reflujo de 2. 283 Cuadro 251. Simulación en Aspen Batch Modeler para la destilación simple del sistema Cuadro 252. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas con una relación de reflujo de 8.285 Cuadro 253. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas con una relación de reflujo de 10. 286 Cuadro 254. Equilibrio binario líquido vapor del sistema agua – ácido láctico a presión constante en composiciones molares (0.987 atm) obtenido mediante Aspen Plus bajo el Cuadro 255. Equilibrio binario líquido vapor del sistema acetato de etilo – ácido láctico a presión constante en composiciones molares (0.987 atm) obtenido mediante Aspen Plus Cuadro 256. Equilibrio binario líquido-líquido vapor del sistema acetato de etilo – agua a presión constante en composiciones molares (0.987 atm) obtenido mediante Aspen Plus Cuadro 257. Determinación de azeótropos mediante Aspen Plus para el sistema agua-Cuadro 258. Composiciones molares de las curvas residuales obtenidas mediante Aspen Cuadro 259. Composiciones molares de las curvas residuales obtenidas mediante Aspen Cuadro 260. Composiciones molares de las curvas residuales obtenidas mediante Aspen Cuadro 261. Composiciones molares de las curvas residuales obtenidas mediante Aspen Cuadro 262. Composiciones molares de las curvas residuales obtenidas mediante Aspen Cuadro 263. Materia en fase líquida en el calderín al final de la operación de destilación para una destilación simple sin reflujo del sistema agua- acetato de etilo -ácido láctico Cuadro 264. Perfil de temperatura, calor añadido y flujo de vapor en el calderín en función del tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo -ácido

Cuadro 265. Perfil de composiciones y retención del líquido en el calderín en función del
tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo -ácido
láctico según Aspen Plus
Cuadro 266. Perfil de temperatura, calor removido y flujo de líquido en el condensador en
función del tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo
-ácido láctico según Aspen Plus
Cuadro 267. Perfil de composiciones y retención del líquido en el destilado en función del
tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo -ácido
láctico según Aspen Plus
Cuadro 268. Sensibilidad de la composición de ácido láctico y la retención del líquido para
el calderín y en condensador en una destilación simple en función de la relación de
reflujo
Cuadro 269. Sensibilidad de la composición de ácido láctico y la retención del líquido para
el calderín y en condensador para una destilación sin reflujo en función del numero de
etapas
Cuadro 270. Balance de materia centrifugación de un lote de caldo fermentado proveniente
del biorreactor
Cuadro 271. Balance de materia extracción líquido-líquido a contracorriente para el sistema
agua- acetato de etilo – ácido láctico de 3 etapas con F/S de 1:6
Cuadro 272. Balance de materia en la destilación simple abierta del extracto obtenido al
inicio y al final de la operación
Cuadro 273. Características geométricas y de transferencia de calor en el condensador para
el proceso de destilación simple del sistema agua- acetato de etilo - ácido láctico a la
temperatura media de las corrientes
Cuadro 274. Características del balance de energía en el condensador para el proceso de
destilación simple del sistema agua- acetato de etilo - ácido láctico a la temperatura media
de las corrientes
Cuadro 275. Propiedades fisicoquímicas de los fluidos en el condensador para el proceso de
destilación simple del sistema agua- acetato de etilo - ácido láctico a la temperatura media
de las corrientes
Cuadro 276. Propiedades fisicoquímicas del extracto a la temperatura media en el
rehervidor para el proceso de destilación simple del sistema agua- acetato de etilo - ácido
láctico
Cuadro 277. Características del balance de energía y de la transferencia de calor en el
rehervidor proceso de destilación simple del sistema agua- acetato de etilo - ácido
láctico
Cuadro 278. Datos curva de calibración de ácido láctico para HPLC

Lista de figuras

P	Página
Figura 1. Estructura molecular del ácido láctico	5
Figura 2. Reacciones estequiométricas involucradas en la biorreacción de producción	de
L(+) ácido láctico	7
Figura 3. Estructura molecular del ácido láctico	10
Figura 4. Síntesis de ácido poliláctico por policondensación indirecta	10
Figura 5. Tipos comunes de centrífugas. (a) tubular, (b) multicámara, (c) discos, inyec	ctor,
(d) discos, descarga intermitente, (e) espiral y (f) canasta	14
Figura 6. Criterio de selección de centrífugas en función del tamaño de partícula y la	
velocidad de sedimentación	15
Figura 7. Geometría cilíndrica centrífuga de canasta	16
Figura 8. Estructura molecular acetato de etilo	20
Figura 9. Estructura molecular 1-octanol	21
Figura 10. Coordenadas triangulares equiláteras	22
Figura 11. Regla de mezclado	23
Figura 12. Sistema de tres líquidos, A y B parcialmente solubles	24
Figura 13. Efecto de la temperatura en los equilibrios ternario para el sistema de tres	
líquidos, A y B parcialmente solubles	25
Figura 14. Extracción a contracorriente en multietapa	
Figura 15. Extracción a contracorriente en varias etapas	30
Figura 16. Disolvente mínimo para la extracción a contracorriente	31
Figura 17. Sedimentadores por gravedad (a) sencillo, (b) y (c) con coalescedor	33
Figura 18. Extractor centrífugo de Podbielniak	
Figura 19. Extractor centrífugo de Luwesta	34
Figura 20. Extractor centrífugo multietapa a contracorriente	35
Figura 21. Destilación sencilla por lotes	
Figura 22. Columna de destilación por lotes con enriquecimiento de vapor	
Figura 23. Intercambiador de calor de tubo y coraza vertical	40
Figura 24. Intercambiador de calor de serpentín	41
Figura 25. Vista de sección del corte horizontal de un intercambiador de calor de	
serpentín	41
Figura 26. Rehervidor Kettle	47
Figura 27. Rehervidor de termosifón vertical (a) y horizontal (b)	48
Figura 28. Rehervidor de circulación forzada	48
Figura 29. Rehervidor enchaquetado	49
Figura 30. Tipos de nodos en las curvas de residuo	52
Figura 31. Equilibrio ternario líquido-líquido experimental y teórico del sistema agua-	-
acetato de etilo-ácido láctico.	68

Figura 32. Equilibrio ternario líquido-líquido experimental y teórico del sistema agua-1-
octanol-ácido láctico
Figura 33. Equilibrio líquido vapor a presión constate para el sistema agua-ácido láctico. 70
Figura 34. Equilibrio líquido-vapor a presión constante para el sistema agua-ácido acetato
de etilo
Figura 35. Equilibrio líquido-vapor a presión constante para el sistema agua-acetato de
etilo
Figura 36. Equilibrio líquido vapor a presión constante para el sistema agua-acetato de etilo
Figura 37. Fracción de recuperación de ácido láctico en función de la relación
alimentación/disolvente (F/S) considerando 2, 3 y 4 etapas para el sistema agua-acetato de
etilo-ácido láctico
Figura 38. Fracción de recuperación de ácido láctico en función del número de etapas
considerado relaciones F/S de 1:4, 1:6 v 1:10 para el sistema agua-acetato de etilo-ácido
láctico
Figura 39 Rendimiento de la extracción líquido-líquido en función de la relación F/S para
3 etanas en el sistema agua-acetato de etilo-ácido láctico
Figura 40. Fracción de recuperación de ácido láctico en función de la relación
alimentación/disolvente (F/S) considerando 2, 3 v 4 etanas para el sistema agua-1-octanol-
ácido láctico
Figure 41 Fracción de recuperación de ácido láctico en función del número de etanas
considerado relacionas E/S de 1:4, 1:6 y 1:10 para el sistema eque 1 estenol ácido
téstice
Tacuco.
Figura 42. Rendimiento de la extracción inquido-inquido en función de la relación F/S para
3 etapas en el sistema agua-1-octanol-acido lactico
Figura 43. Fracción de recuperación de ácido láctico en función de la relación F/S para 3
etapas utilizando acetato de etilo y 1-octanol como disolvente
Figura 44. Curvas residuales para el sistema ternario agua- acetato de etilo- ácido láctico. 82
Figura 45. Perfil de temperatura y calor añadido en el rehervidor para un sistema de
destilación simple abierta
Figura 46. Perfil de retención de líquido en el rehervidor y en el destilado para un sistema
de destilación simple abierta
Figura 47. Perfil de composición en el rehervidor para un sistema de destilación simple
abierta
Figura 48. Perfil de composición en el destilado para un sistema de destilación simple
abierta
Figura 49. Análisis de sensibilidad de la variación de número de etapas en función del
tiempo sin reflujo y de la variación de la relación de reflujo en función del tiempo para 2
etapas para obtener una concentración en el rehervidor de ácido láctico de 0.89
(kmol/kmol)

Figura 50. Análisis de sensibilidad de la composición de disolvente en el destilado en		
función del número de etapas sin reflujo y de la relación de reflujo para 2 etapas para		
obtener una concentración en el rehervidor de ácido láctico de 0.898 (kmol/kmol)		
Figura 51. Análisis de sensibilidad de la retención en el destilado en función del número de		
etapas sin reflujo y de la relación de reflujo para 2 etapas para obtener una concentración en		
el rehervidor de ácido láctico de 0.898 (kmol/kmol)		
Figura 52. Esquema de flujo del proceso de extracción y purificación de ácido láctico		
considerando un flujo total de 10 L/h en el proceso de extracción líquido-líquido (AE) 89		
Figura 53. Determinación visual de la composición de mezcla mínima para la extracción de		
ácido láctico en una solución acuosa con acetato de etilo como disolvente		
Figura 54. Determinación visual de la composición de mezcla mínima para la extracción de		
ácido láctico en una solución acuosa con 1-octanol de etilo como disolvente		
Figura 55. Elección del número de etapas y relación F/S (eje x) a para una recuperación de		
ácido láctico mínima del 90% (eje y) en el sistema agua – acetato de etilo – ácido		
láctico		
Figura 56. Elección del número de etapas y relación F/S (eje x) a para una recuperación de		
ácido láctico mínima del 90% (eje y) en el sistema agua – 1-octanol – ácido láctico 147		
Figura 57. Equilibrio líquido-líquido en base molar para el sistema agua- acetato de etilo		
ácido láctico		
Figura 58. Equilibrio líquido-líquido en base molar para el sistema agua- 1-octanol- ácido		
láctico		
Figura 59. Diagrama de composiciones en fase líquida y vapor para el sistema en equilibrio		
agua – ácido láctico		
Figura 60. Diagrama de composiciones en fase líquida y vapor para el sistema en equilibrio		
acetato de etilo – ácido láctico		
Figura 61. Notación de los esquemas de flujo del proceso		
Figura 62. Esquema de flujo del proceso de extracción y purificación de ácido láctico		
considerando como base de cálculo un lote de caldo fermentado proveniente del		
biorractor		
Figura 63. Sistema experimental titulación turbidimétrica para la determinación del		
equilibrio líquido-líquido		
Figura 64. Separación de fases líquidas en equilibrio en embudo de decantación		
Figura 65. Sistema experimental de destilación simple de acetato de etilo		
Figura 66. Ficha técnica centrífuga de canasta		
Figura 67. Ficha técnica extractores centrífugos		
Figura 68. Ficha técnica destilación simple		
Figura 69. Curva de calibración de ácido láctico para HPLC		
Figura 70. Ejemplo de cromatograma de ácido láctico en HPLC		
Figura 71. Procedimiento en Aspen Plus para construir diagramas ternarios		
igura 71. Procedimiento en Aspen Plus para construir diagramas ternarios		

Figura 73. Procedimiento equilibrios binarios Aspen Plus	314
Figura 74. Procedimiento curva residual Aspen Plus	314
Figura 75. Procedimiento simulación extracción líquido-líquido Aspen Plus	315
Figura 76. Procedimiento simulación destilación en Aspen Batch Modeler	315
Figura 77. Modelo 3D centrífuga de canasta. *Medidas en metros (m)	316
Figura 78. Modelo 3D de los extractores centrífugos en serie a contracorriente. *Medic	las
en metros (m)	316
Figura 79. Modelo 3D de la destilación simple abierta. *Medidas en metros (m)	317
Figura 80. Cotización de 3 extractores centrífugos en serio con bombeo de 2 fases	318

Resumen

Se seleccionaron los equipos necesarios para la extracción y purificación de ácido láctico proveniente de una biofermentación de melaza con el hongo *Rhizopus Oryzae*. El caldo fermentado y el ácido láctico fueron caracterizados mediante sus propiedades fisicoquímicas. Para el caldo fermentado su densidad fue de 1.062 ± 0.02139 g/mL, viscosidad de 0.0021 ± 0.0000032 N*s/m², pH de 5.03 ± 0.01 , humedad de 97.92 ± 0.01 % y su concentración de ácido láctico fue de 1.69 ± 0.0732 % (p/p). Para el ácido láctico se obtuvo una densidad de 1.148 ± 0.02296 g/mL, viscosidad de 0.0357 ± 0.000499 N*s/m², pH de 3.9 ± 0.01 y pureza del 90%.

La separación sólido líquido se dimensionó bajo en fundamento teórico del análisis sigma y de la ley de D'arcy para separar la biomasa del caldo fermentado. Los equilibrios líquido-líquido para el proceso de extracción se realizaron a escala laboratorio evaluando dos disolventes: acetato de etilo y 1-octanol. Se realizaron los diagramas triangulares ternarios para describir el comportamiento del equilibrio y comparar ambos disolventes. Los datos experimentales obtenidos se regresaron en el software Aspen Plus y se determinó que estos datos se ajustan al modelo NRLT mediante el criterio estadístico de la RMSE y MAD. A partir del análisis de las propiedades del disolvente y del equilibrio se determinó que el solvente a utilizar será acetato de etilo debido a su fácil recuperabilidad. Se requiere de una relación de alimentación/disolvente de 1:6 y de tres etapas teóricas para la extracción del 90% del ácido láctico. Los equilibrios líquido vapor ternario se obtuvieron mediante el programa Aspen Plus. Se determinó que la operación está limitada al comportamiento del azeótropo binario del sistema acetato de etilo – agua y que se tiene una amplia diferencia de volatilidad entre los componentes.

El equipo seleccionado para la separación sólido líquido fue una centrífuga de canasta, para la extracción líquido-líquido fueron tres extractores centrífugos que operan a contracorriente y para la purificación fue un rehervidor de destilación simple con condensador.

I. Introducción

Actualmente la utilización de residuos agroindustriales como materias primas de bajo costo. Estas pueden aprovecharse en procesos biotecnológicos para la obtención de producto de vapor agregado obteniendo bioproductos que son económica o técnicamente inviables de obtener por síntesis química como el ácido láctico (AL). El ácido láctico es el precursor de un biopolímero de gran interés conocido como ácido poliláctico (PLA). Sin embargo, para obtener un alto de grado de conversión y alta calidad de PLA se requiere de ácido láctico de alta pureza. Los procesos biotecnológicos tienen como resultado un caldo fermentado de muy baja pureza. Es por lo anterior que en este trabajo se seleccionaron los equipos para el proceso de extracción y purificación de ácido láctico tomando como base la escala de producción actual de ácido láctico en el Laboratorio de Operaciones Unitarias de la Universidad del Valle de Guatemala (UVG).

En este trabajo se caracterizó el caldo fermentado y el ácido láctico. A partir de esto se plantearon las etapas de extracción y purificación necesarias y se obtuvieron las curvas de equilibrio requeridas en los procesos de extracción y purificación para el dimensionamiento de los equipos. Las curvas de equilibrio se plantearon experimental y teóricamente mediante el simulador Aspen Plus bajo el modelo NRTL para los sistemas ternarios evaluados. La comparación y selección de equipos se realizó mediante una investigación teórica de conceptos que tienen validez para el proceso seleccionado. Este trabajo es una continuación de las investigaciones realizas en el departamento de Ingeniería Química de la UVG.

Se espera que el trabajo presentado tenga relevancia en la investigación de la recuperación del ácido láctico del caldo de fermentación y que este permita el escalamiento a planta piloto de la producción de PLA a partir de AL producido por vía biotecnológica a partir de melaza.

II. Justificación

Se tiene un interés creciente a nivel mundial en las investigaciones de las sustancias poliméricas, sobre todo a partir de fuentes naturales para la obtención de sustancias con actividad biológica cómo el AL. La producción de ácido láctico es una actividad industrial dinámica que se encuentra en crecimiento a escala mundial. Esto se debe al potencial de los biopolímeros y otros compuestos que pueden derivarse del mismo. Es por lo anterior que se tiene un especial interés en la producción y purificación de este.

La producción de ácido láctico puede realizarse mediante síntesis química o por fermentación, es este último método el más utilizada actualmente. Aunque el proceso de fermentación se ve favorecido debido a la factibilidad técnica y económica de producción de ácido láctico, sus aplicaciones a gran escala están limitadas por las impurezas en el caldo. Es por ello, que parte importante del proceso radica en las etapas de extracción y purificación del ácido láctico del caldo de fermentación, representando así el 50% de los costos totales del proceso (Udachan & Sahoo, 2014).

Actualmente, Guatemala se encuentra entre los líderes de producción y exportación de azúcar a nivel mundial, produciendo 2,909,881 toneladas métricas de azúcar en el año 2019 (Cengicaña, 2019). Es por ello, que la azúcar se ha convertido en uno de los principales productos agrícolas del país. Esto da importancia a la gran cantidad de residuos generados en su cultivo, cosecha y procesamiento.

En años recientes, numerosas investigaciones han inclinado sus esfuerzos en el aprovechamiento de desechos o residuos agrícolas, los cuales se pueden convertir en materia prima renovable con potencial para generar productos de valor agregado (Wasewar *et al.*, 2003). A raíz de lo anterior, diversos desechos agrícolas han sido investigados como sustrato o biomasa para fermentaciones, entre ellos, bagazo de caña, melaza y residuos de procesamiento de trigo, arroz y maíz.

En Guatemala, se generan residuos que pueden ser utilizados como fuente de carbono para la obtención de AL mediante fermentación microbiana tales como la melaza. Según el Ministerio de Agricultura y Ganadería (MAGA), la producción de azúcar de Guatemala para el año agrícola 2018/2019 fue de 65,955 toneladas métricas en un área de cosecha de 380,900 hectáreas. La cantidad melaza por hectárea de azúcar cosechada es de aproximadamente 16% de su producción, generando así 10, 553 toneladas anuales de melaza.

Según Grand View Research Inc, la demanda de ácido láctico ha crecido drásticamente en los últimos años debido a su potencial como bloque de construcción para la producción de materiales de PLA y su uso como materia prima para producir solventes verdes. Se espera que las demandas globales de ácido láctico y ácido poliláctico alcancen 1,960.1 y 1,205.3 kilo toneladas, respectivamente, para el año 2020.

Los métodos existentes de purificación, como la precipitación, no eliminan las impurezas principales, como el azúcar residual y los materiales nitrogenados; además, generan una gran cantidad de lodo de sulfato de calcio como desecho. La separación del AL de los caldos de fermentación mediante evaporación tiene una desventaja económica, ya que la vaporización del agua consume mucha energía. La destilación directa no es un proceso viable debido a que el AL es un compuesto no volátil. Uno de los métodos de recuperación utilizado actualmente es la extracción reactiva líquido-líquido, la cual presenta el inconveniente que el tipo de solvente extractante utilizado para este tipo de proceso tiene una alta toxicidad y provoca un alto impacto ambiental debido a la contaminación que este genera.

La creciente demanda de AL en la industria es una oportunidad para diseñar procesos productivos que sean factibles para la obtención de este. Debido a los inconvenientes que presentan otros métodos de recuperación de ácido láctico; tales como la precipitación o la extracción reactiva líquido-líquido, el estudio de la extracción líquido-líquido permite proponer solventes con propiedades deseables para su producción industrial.

III. Objetivos

3.1 General

Seleccionar los equipos para la extracción y purificación de ácido láctico en el Laboratorio de Operaciones Unitarias utilizando el hongo *Rhizopus oryzae*.

3.2 Específicos

- 1. Determinar la concentración de ácido láctico obtenido del proceso de fermentación, utilizando métodos analíticos, para plantear las etapas de purificación necesarias.
- Determinar las propiedades físicas del ácido láctico comercial proveniente del proceso de extracción utilizando métodos analíticos para la caracterización del mismo.
- 3. Realizar las curvas de equilibrio requeridas en los procesos de extracción y purificación de los equipos correspondientes.
- 4. Determinar las operaciones unitarias a utilizar para realizar la purificación del ácido láctico utilizando criterios de dimensionamiento de equipos.
- Comparar los equipos comercialmente disponibles con las dimensiones establecidas utilizando la escala del reactor de polimerización del laboratorio de operaciones unitarias para la selección de los equipos.

IV. Marco teórico

4.1 Ácido láctico

El ácido láctico (ácido 2-hidroxipropanoico) tiene un carbono asimétrico lo cual da lugar a actividad óptica dando lugar a dos isómeros ópticos, el D(-) láctico y L(+) láctico y una forma racémica constituida por fracciones equimolares de las formas L(+) y D(-). La configuración L(+) es la única metabolizada por el organismo humano. Todas las formas anteriormente mencionadas se encuentran en estado líquido, siendo incoloros y solubles en agua. Ambas formas isoméricas del ácido láctico pueden ser polimerizadas para producir polímeros con diferentes propiedades dependiendo de la composición. Las propiedades fisicoquímicos del ácido láctico se muestran en el Cuadro A (Serna-Cock & Rodríguez-de Stouvenel, 2005).

Fórmula	$C_3H_6O_3$
Peso molecular	90.08 g/mol
Índice de refracción	1.4414
Punto de fusión	16.8 a 33°C
Punto de ebullición	160-180°C
Viscosidad	40 mPa s
Densidad	1249 kg/m ³

Cuadro 1. Propiedades fisicoquímicas del ácido láctico

(Dean, 1987)

Figura 1. Estructura molecular del ácido láctico

(Dean, 1987)

PARAMETRO	GRADO FARMACEUTICO	GRADO FCC	GRADO ALIMENTICIO
Pureza (%)	88	95-105	80
Cloruros (%)	0,008	0,2	0,02
Sulfatos (%)	0,02	0,25	0,05
Arsénico (mg/kg)	4	3	0,2
Metales pesados (mg/kg)	33	10	10
Hierro (mg/kg)	10	10	10
Cenizas (%)	0,1	0,1	0,1

Cuadro 2. Especificaciones de calidad del ácido láctico.

(Serna-Cock & Rodríguez-de Stouvenel, 2005)

4.2 Producción de ácido láctico

4.2.1 Producción por vía sintética

La producción mediante la vía sintética se basa en la reacción de acetaldehído con ácido cianhídrico (HCN) para dar lactonitrilo, el cual posteriormente se hidrolizado para producir ácido láctico. También se puede producir mediante la reacción a alta presión de acetaldehído con monóxido de carbono y agua en presencia de ácido sulfúrico como catalizador. La síntesis química tiene como principal desventaja que el ácido láctico producido es una mezcla de D y L ácido láctico ópticamente inactivo (Chang *et al.*, 1999). Es por lo anterior que se prefiere la producción de ácido láctico por la vía biotecnológica.

4.2.2 Producción por vía biotecnológica

La producción biotecnológica está basada en la fermentación de sustratos ricos en carbohidratos por bacterias u hongos y tiene la ventaja de formar enantiómeros D(-) o L(+), ópticamente activos. La producción biotecnológica depende del tipo de microorganismo utilizado, la inmovilización o recirculación del microorganismo, el pH, la temperatura, la fuente de carbono, la fuente de nitrógeno, la presencia de oxígeno el modo de fermentación empleado y la formación de subproductos (Hofvendahl & Hagerdal, 2000).

$$n(C_{6}H_{12}O_{6}) \xrightarrow{\text{Biorreacción}} 2 n(CH_{3} - CH - C - OH)$$

Dextrosa o glucosa

Figura 2. Reacciones estequiométricas involucradas en la biorreacción de producción de L(+) ácido láctico

(Hofvendahl & Hagerdal, 2000)

a. Rhizopus oryzae

Rhizopus oryzae es un hongo que ha sido utilizado en la producción de ácido láctico, crece en forma de filamentos pluricelulares denominado hijas con un diámetro entre 6-8 mm. Este produce ácido láctico L (+) ópticamente puro y requiere una composición de medio mineral con algunos minerales inorgánicos y sal de amonio como única fuente de nitrógeno. *R. oryzae* produce principalmente ácido láctico a partir de glucosa con rendimientos del 60-80% y también etanol, dióxido de carbono y cantidades menores de ácido málico, ácido fumárico y ácido cítrico (Vodnar *et al.*, 2013). La formación del producto depende de las condiciones de la biorreacción. Se sugiere que la reacción sea aeróbica para favorecer la producción de ácido láctico.

4.3 Procesos de separación de ácido láctico

Existen procesos métodos que permiten extraer y purificar el ácido láctico producido de forma biotecnológica. A continuación, se presenta una descripción general de estos procesos, así como también las limitaciones y ventajas correspondientes.

Método	Descripción	Limitaciones	Ventajas
Precipitación	Se añade carbonato de calcio al	Agentes neutralizantes más específicos	Es una operación sencilla,
	caldo fermentado para	como el hidróxido de amonio e	factible técnica y
	neutralizar el ácido producido y	hidróxido de sodio son más costosos,	económicamente para la
	mantener un pH entre 5 y 6. Se	ya que se pueden neutralizar otro tipo	implementación en la
	obtiene de esta forma una sal de	de ácidos producto de la reacción	industria (Kwak et al.,
	calcio. Se añade ácido sulfúrico	fermentativa. También, el proceso de	2012).

Método	Descripción	Limitaciones	Ventajas
	para regenerar el ácido láctico y	adsorción suele retener tanto el ácido	
	el carbonato de calcio elimina	láctico como el color. Además, genera	
	mediante filtración. El ácido	gran cantidad de residuos sólidos como	
	láctico obtenido en solución	el carbonato de calcio y el producto	
	puede recuperarse mediante un	presenta un porcentaje de pureza bajo	
	proceso de adsorción posterior	(Kwak et al., 2012).	
	(Núñez et al., 2009).		
Destilación	La alimentación a destilación se		La presión de operación
	ingresa libre de biomasa. El	El escalamiento industrial de este es	(1000 Pa) es factible y la
	ácido láctico se separa del caldo	complejo y requiere condiciones de	destilación dada en una sola
	de fermentación por diferencia	alto vacío para disminuir las	etapa reducen los costos
	de puntos de ebullición, siendo	temperaturas de ebullición. Además, el	operativos del sistema.
	el agua el componente más	ácido láctico presente en los fondos	Además, se puede obtener
	volátil (Pundir et al., 2016).	puede contener impurezas de color y de	ácido láctico de pureza
		azúcares no consumidos durante la	mayor al 89%. También,
		fermentación (Núñez et al., 2009).	reduce los riesgos de
			descomposición térmica (Li
			<i>et al.</i> , 2016).
Destilación	La reacción química y la	Es un proceso completo. Es específico	En este método se tiene una
reactiva	separación por destilación son	para reacciones reversibles en fase	mejor conversión de
	realizadas simultáneamente en	líquida. Además, las aplicaciones son	reactivos, una reducción de
	un aparato de destilación	limitadas para sistemas en los cuales	costos energéticos y un
	fraccionada (Li et al., 2016).	las velocidades de reacción son	mejoramiento en la
		bastante altas y no hay desfase de	selectividad de los productos
		temperaturas favorables para la	de interés (Pundir et al.,
		reacción y separación. Por último,	2016).
		presenta problemas de separación	
		debido al uso de catalizadores	
		homogéneos (Sánchez et al., 2008).	
Procesos con	Este proceso se refiere a la	Las membranas son costosas, y la	Pose una alta selectividad y
membranas	transferencia de solutos a través	limpieza y mantenimiento de estas son	el producto presenta una
	de una barrera física permeable	aspectos complejos. La inversión inicial	pureza alta (González et al.,
	que separa dos fases,	es alta y esta depende en gran medida	2008).
	restringiendo el paso de	del tamaño de la producción (González	
	componentes de una fase a otra.	<i>et al.</i> , 2008).	
	Estas pueden ser homogéneas o		
Método	Descripción	Limitaciones	Ventajas
---------------	------------------------------------	---	--------------------------------
	heterogéneas, simétricas o		
	asimétricas, sólidos o líquidas,		
	con carga eléctrica o neutros		
	(Murillo, 2013).		
Cromatografía	Permite la separación de	Las muestras deben estar desalinizadas	Gran capacidad y alta
de	moléculas debido a propiedades	antes de utilizar este tipo de	resolución. Se pueden
intercambio	de carga eléctrica. Se tienen dos	cromatografía. La inversión inicial es	utilizar diferentes valores de
iónico	fases presentes: la estacionaria y	grande. Se requieren estudios	pH en una misma columna y
	la móvil. En esta se da una	experimentales para la determinación de	obtener diferentes perfiles de
	competencia entre moléculas que	la fase estacionaria adecuada para la	elución (Schneider et al.,
	difieren en su carga superficial	separación (Schneider et al., 1987).	1987).
	por grupos cargados		
	opuestamente, sobre una matriz o		
	un adsorbente de intercambio		
	iónico (fase estacionaria)		
	(Schneider et al., 1987).		
Extracción	El ácido láctico es removido de	El solvente debe seleccionarse bajo	El requerimiento energético
líquido-	una mezcla líquida. Esto debido a	criterios importantes para el sistema. Se	es menor. Los costos de
líquido	que esta mezcla presenta una	requiere plantear una unidad de	operación pueden reducirse
	diferencia en la solubilidad al	recuperación de disolvente (Li et al.,	con relación al disolvente
	adicionar un disolvente. El ácido	2016).	utilizado y a la recirculación
	láctico se transfiere a la fase		al proceso del mismo (Pundir
	añadida. (Li et al., 2016).		<i>et al.</i> , 2016).

4.4 Ácido poliláctico (PLA)

El PLA es un compuesto renovable, biocompatible y un polímero biodegradable que tiene buenas propiedades mecánicas y ópticas, y es uno de los bioplásticos más utilizados (Lemos Machado Abreu *et al.*, 2017). Este tiene se genera debido a la reacción de polimerización de ácido láctico.

Figura 3. Estructura molecular del ácido láctico

(Lemos Machado Abreu et al., 2017)

4.4.1 Reacción de polimerización

La polimerización es un tipo de reacción que se da mediante integración de grupos funcionales de moléculas. Las características que predominan en la mayoría de reacciones de polimerización son su reversibilidad y que estas no poseen una terminación (López & Martínez, 2015).

4.4.2 Policondensación indirecta

En esta reacción primero tiene lugar una condensación de ácido latico acuoso en donde se forma un oligómero o láctico, el cual luego es sometido a una reacción de condensación con un catalizador organometálico que da lugar a un polímero de mayor peso molecular. La reacción y sus condiciones se muestran a continuación (Avérous, 2008):

Figura 4. Síntesis de ácido poliláctico por policondensación indirecta (Avérous, 2008)

4.4.3 Policondensación directa

En esta reacción el ácido láctico es policondensado en polímeros con la adición de un solvente orgánico para favorecer el equilibrio de la reacción y así formar ácido poliláctico (Avérous, 2008).

4.5 Separación de biomasa

4.5.1 Centrifugación

La centrifugación es un proceso de sedimentación en donde el movimiento de las partículas se da debido al campo inercial de la aceleración centrífuga ($\omega^2 R$), en donde R es la distancia de la partícula desde el centro de rotación y ω es la velocidad angular (rad/s). La centrifugación posee como aplicaciones más comunes la clarificación de caldos y lisados, la recolección de células y cuerpos de inclusión, y la separación de fluidos que tienen diferentes densidades (Harrison *et al.*, 2003).

La velocidad en un campo centrífugo en estado estable de determina por:

$$v = \frac{2a^2(\rho - \rho_o)\omega^2 R}{9\mu} \tag{1}$$

Donde:

v = velocidad

a = tamaño de partícula $\rho =$ densidad del fluido

 μ = viscosidad del fluido

 ρ_o = densidad del sólido

Si la partícula se mueve hacia afuera desde el centro de rotación en una centrífuga, R no es constante y está relacionado con la velocidad por v = dR/d t, que da como resultado la siguiente ecuación como solución analítica (Harrison *et al.*, 2003):

$$\frac{R}{R_o} = \frac{2a^2(\rho - \rho_o)\omega^2 t}{9\mu}$$
(2)

Donde:

t = tiempo

 R_o = distancia de la partícula desde el eje de rotación en t=0

a. Análisis sigma

Es el análisis utilizado comúnmente en la industria para la dimensión de centrífugas. Este utiliza la constante de operación para caracterizar una centrífuga en la que la alimentación fluye a una tasa de flujo volumétrico Q. Una relación conveniente para estimar Q es el análisis sigma (Harrison *et al.*, 2003):

$$\boldsymbol{Q} = \left\{ \boldsymbol{v}_{\boldsymbol{g}} \right\} [\boldsymbol{\Sigma}] \tag{3}$$

Donde:

 $[\Sigma]$ = Geometría y velociada de la centrífuga

La velocidad de sedimentación de la partícula a 1 x g se describe:

$$v_g = \frac{2a^2(\rho - \rho_o)\omega^2 g}{9\mu} \tag{4}$$

Donde:

g = gravedad

La determinación de la velocidad de sedimentación en el laboratorio se puede determinar:

$$v_g = \frac{g \ln \frac{R}{R_o}}{\omega^2 t} \tag{5}$$

4.5.2 Centrífugas de producción comercialmente disponibles

Los tipos comunes de centrífugas utilizadas a diferentes escalas de producción se puede observar en la Figura 5. La comparación entre los diversos tipos de centrífugas se muestra en el Cuadro 4. Una descripción de estas se muestra a continuación:

- En la centrífuga tubular, los sólidos se depositan en la pared del recipiente y la alimentación continúa hasta que el recipiente está casi lleno, momento en el que se detiene la operación y se eliminan los sólidos. Este tipo de centrífuga funciona bien con partículas de coeficiente de sedimentación relativamente bajo que deben recuperarse, como los precipitados de proteínas (Harrison *et al.*, 2003).
- Las centrífugas de disco tienen un área de sedimentación relativamente alta para su volumen y permiten una descarga de sólidos continua o intermitente; se han utilizado con éxito para la centrifugación de células y lisados celulares, donde a menudo se debe contener todo el proceso para evitar el escape de aerosoles (Harrison *et al.*, 2003).
- Las centrífugas de espiral (o decantador) y de canasta se utilizan normalmente para partículas que sedimentan con relativa rapidez y pueden lavarse bien como sólidos empaquetados, como cristales de antibióticos (Harrison *et al.*, 2003).
- Las centrífugas de canasta se conocen también como centrífugas filtradoras. Estas se utilizar normalmente para partículas de gran tamaño que sedimentar con alta rapidez. La suspensión se introduce como alimentación en una cesta rotatoria que tiene una pared perforada recubierta con un medio filtrante. La presión que resulta de la acción centrífuga permite al líquido a pasar a través del medio filtrante dejando en la canasta una torta con los sólidos retenidos (Rousselet Robatel, 2019).

(Harrison et al., 2003)

Sistema	Ventajas	Desventajas
Tubular	(a) Alta fuerza centrífuga	(a) Capacidad limitada de sólidos
	(b) Buena deshidratación	(b) Espumante a menos que se realice
	(c) Fácil de limpiar o bomba centrípeta	una espumación especial
	utilizada	(c) Recuperación de sólidos difícil
	(d) Desmontaje simple del recipiente	
Cámara	(a) Se mantiene la eficiencia de clarificación	(a) Sin descarga de sólidos
	(b) Recipiente de gran capacidad para	(b) La limpieza es más difícil que en una
	contener sólidos	centrífuga tubular
	(c) Buena deshidratación	(c) Difícil recuperación de sólidos

Cuadro 3. Comparación de tipos de centrífugas

Sistema	Ventajas	Desventajas	
	(d) Posibilidad de enfriamiento del cuenco		
Discos	(a) Posibilidad de descarga de sólidos	(a) Deshidratación deficiente	
	(b) Descarga de líquido a presión	(b) Difícil de limpiar elimina la	
	(c) Posibilidad de enfriamiento del cuenco	formación de espuma	
Espiral	(a) Descarga continua de sólidos	(a) Baja fuerza centrífuga	
	(b) Alta concentración de sólidos de	(b) Turbulencia creada por el espiral	
	alimentación		
Canasta	(a) Los sólidos se pueden lavar bien	(a) Sin descarga de sólidos	
	(b) Buena deshidratación	(b) Recuperación de sólidos difícil	
	(c) Gran capacidad de retención de sólidos		

(Harrison et al., 2003)

Figura 6. Criterio de selección de centrífugas en función del tamaño de partícula y la velocidad de sedimentación

(López-Munguía, 2000)

4.5.3 Filtración centrífuga

La filtración centrífuga combina los principios de separación mecánica de la filtración y la centrifugación. Para determinar la ecuación del tiempo requerido de operación se considera el gasto volumétrico Q a través de la torta y su relación con la ecuación de D'arcy. Debido a que la torta no es plana, el área de filtrado varía con el radio (r) de tal forma que combinando los principios de filtración y centrifugación se puede obtener una ecuación para el gasto volumétrico de cualquier instante t y una ecuación para el tiempo de operación para lograr la separación deseada (Alvarado, 2012). El tamaño de partícula filtrada va desde 2-1000 μm . El rango de concentración de sólidos en la alimentación es del 4-30%.

Figura 7. Geometría cilíndrica centrífuga de canasta

(Alvarado, 2012)

El gasto volumétrico de la filtración centrífuga de determina:

$$Q = \frac{\pi \omega^2 \rho_L L}{\mu \alpha \rho_0} \left[\frac{R_o^2 - R_1^2}{\ln \frac{R_0}{R_t}} \right]$$
(6)

Donde:

 R_o = distancia radia del eje de giro a la superficie del líquido

 R_1 = distancia radia del eje de giro a la pared del tazón

- L = altura de la centrífuga
- ρ_L = densidad del líquido
- ρ_0 = densidad del sólido
- α = resistencia específica de la torta
- μ = viscosidad del líquido

El tiempo de filtración para la filtración centrífuga de determina:

$$t = \frac{\mu \alpha \pi \rho_T R_t^2}{2\rho_L \omega^2 (R_o^2 - R_1^2)} \left[\left(\frac{R_0}{R_t} \right)^2 - 1 - 2ln \left(\frac{R_0}{R_t} \right) \right]$$
(7)

Donde:

 ρ_T = densidad de la torta por unidad del medio filtrado

a. Potencia requerida

Cuando una partícula se mueve, el movimiento rotacional sobre un eje, su velocidad es tangencial al camino circular y su velocidad se expresa como:

$$\boldsymbol{v} = \boldsymbol{\omega} \boldsymbol{r} \tag{8}$$

Donde:

 ω = velocidad angular (s⁻¹)

r = radio del camino circular

La aceleración (a_r) consiste en dos componentes, un componente radial: a_r = $\omega^2 r$ y un componente tangencial $\alpha = \frac{dv}{dt} = \omega/t$. Cunado la velocidad angular es constante la aceleración es 0.

Considerando la rotación de un cilindro en el cual su eje central se encuentra sobre dos cojinetes. Si los cojinetes no ocasionan fricción constante, el cilindro solo necesita una potencia inicial para inicial la rotación para poder llegar a una velocidad angular especificada. Una vez se alcance esta velocidad, el cilindro no necesita más potencia para que la rotación tenga lugar (Young., 1989). La potencia se calcula mediante la relación de el torque (T) por la velocidad angular y el torque se calcula mediante la relación del momento de inercia de la rotación del cilindro con respecto al eje de rotación:

$$P = T * \boldsymbol{\omega} = I * \boldsymbol{\alpha} * \boldsymbol{\omega}$$
(9)

En la práctica, debido a la fricción realizada por los cojinetes y otros factores mecánicos, se requiere del 50 al 70% de la potencia de arranque para sostener la velocidad alcanzada.

Donde:

x = espesor

 $r_2 = radio interno$

 $r_1 = radio interfacial del líquido$

El momento de inercia de rotar el cuerpo del cilindro sobre un eje de rotación es la suma del momento de inercia de la rotación del cilindro (I_1) y el momento de inercia de la rotación del líquido (I_2) (Young., 1989).

$$I_1 = MR_2^2 = 2\pi\rho x r_2^3 b$$
 (10)

$$I_2 = \frac{M'}{2}(r_1^2 + r_2^2) = \frac{\pi \rho_f b (r_2^2 - r_1^2)}{2}(r_1^2 + r_2^2)$$
(11)

Donde:

 ρ = densidad del material

M' = masa del líquido

 ρ_f = densidad del fluido

La eficiencia de la potencia transmitida es generalmente alta (85 - 90%) debido a que el motor está conectado directamente a la canasta (Young., 1989).

La fuerza G se utiliza en equipos centrífugos para determinar la relación entre la fuerza centrífuga y la fuerza gravitacional. Para el sistema internacional esta se define como:

$$G = 0.001118 * R * N^2 \tag{12}$$

Donde:

R = radio externo de la centrífuga (m)

N = velocidad angular (rpm)

4.6 Filtración

La filtración es una operación que se utiliza para separar componentes particulados o solutos en una suspensión o solución fluida según su tamaño fluyendo bajo una presión diferencial a través de un medio poroso. La filtración se puede clasificar como filtración convencional o filtración de flujo cruzado con relación a dirección del flujo con respecto al medio filtrante. En ambas situaciones se forma una torta de sólidos formado por el soluto en cuestión. La aplicación principal de la filtración convencional en bioprocesos radica en remover las células de un caldo de fermentación cuando el producto ha sido secreto o las células han sido lisadas (Harrison *et al.*, 2003).

4.7 Extracción líquido-líquido

4.7.1 Principio

La extracción líquido-líquido es el proceso en el cual uno o más solutos de interés se transfieren de una mezcla líquida a una segunda fase líquida inmiscible formada por la presencia de un solvente. La separación se basa principalmente en la diferencia en la solubilidad de soluto en ambas fases líquidas. La solución de la cual se extraerá el componente de interés se le denomina alimentación, el solvente que lo extrae se le denomina disolvente y las fases líquidas que se forman posteriormente a la extracción se les denomina extracto (fase rica en el disolvente) y refinado (fase rica en el solvente de alimentación).

4.7.2 Solventes utilizados para la extracción de ácido láctico

a) Acetato de Etilo

Es un líquido incoloro, miscible con hidrocarburos, cetonas, alcoholes y ésteres y poco soluble en agua. Es un solvente con amplia aplicación en la industria. Su precio en presentación grado reactivo es de Q 431.20 por litro (Merck, 2020).

Cuadro 4. Propiedades fisicoquímicas del acetato de etilo

Fórmula	$C_4H_8O_2$
Peso molecular	88.11 g/mol
Punto de fusión	< -83.6 °C
Punto de ebullición	77.11 °C
Solubilidad en agua	87 g/L
Viscosidad	0.451 mPa s
Densidad	900.3 kg/m ³

(OMS, 2014)

Figura 8. Estructura molecular acetato de etilo

(OMS, 2014)

b) 1-Octanol

El 1-octanol es un líquido incoloro transparente con un olor aromático penetrante. Es insoluble en agua y flota en agua. Los vapores pueden irritar los ojos, la nariz y el sistema respiratorio. Su precio en presentación grado reactivo es de Q 512.00 por litro (Merck, 2020).

Fórmula	C ₈ H ₁₈ O
Peso molecular	130.2 g/mol
Punto de fusión	< -15.5 °C
Punto de ebullición	194-195 °C
Solubilidad en agua	30 g/L
Viscosidad	5.6 mPa s
Densidad	830 kg/m^3

Cuadro 5. Propiedades fisicoquímicas del 1-octanol

(Merck, 2020a)

Figura 9. Estructura molecular 1-octanol

(Merck, 2020a)

4.7.3 Equilibrio líquido-líquido

La extracción líquido-líquido se emplea en un sistema compuesto de tres o más componentes. Generalmente, las fases de solvente y disolvente son diferentes desde el punto de vista químico. Sin embargo, en la mayoría de los casos los tres componentes aparecen en cierto grado en ambas fases, lo cual sugiere un equilibrio termodinámico entre las composiciones de los tres componentes en ambas fases.

4.7.4 Diagrama ternario

Los diagramas ternarios sirven para la expresión del equilibrio líquido-líquido ternario. Estos generalmente se encuentran en coordenadas triangulares equiláteras. Debido a las propiedades geométricas del triángulo rectángulo, donde la suma de las distancias perpendiculares desde cualquier punto del triángulo rectángulo hasta cualquiera de los tres lados es igual a la altura del triángulo se puede denotar las composiciones de los componentes entre las distancias de los tres lados donde cada vértice del triángulo representa unos de los componentes puros (Treybal, 1980).

Figura 10. Coordenadas triangulares equiláteras

(Treybal, 1980)

Donde:

A = solvente B = disolvente C = soluto R = refinado E = extracto M = mezcla

4.7.5 Regla de mezclado

Es los diagramas triangulares se puede describir el punto de mezclado. Este corresponde a un punto localizado entre E y R que se generan al agregar R kg en el punto R a E kg en el punto E. La composición de la mezcla se representa en una línea recta en el punto M, de tal forma que (Treybal, 1980):

$$\frac{R}{E} = \frac{linea\ ME}{linea\ RM} = \frac{x_E - x_M}{x_M - x_R} \tag{13}$$

Figura 11. Regla de mezclado

(Treybal, 1980)

4.7.6 Solubilidad de los sistemas líquidos ternarios

La solubilidad entre los componentes del sistema ternario determina las relaciones de equilibrio de los componentes. Se pueden presentar los siguientes sistemas: tres líquidos con un par parcialmente soluble, con dos pares parcialmente solubles o de dos líquidos parcialmente solubles y un sólido. Sin embargo, el sistema que se encuentra comúnmente en la extracción líquido-líquido es el primer mencionado.

a) Sistema de tres líquidos: un par parcialmente soluble

Para la representación de estos sistemas las coordenadas triangulares se utilizan como isotermas. En estos sistemas C se disuelve completamente en A y B, pero A y B se disuelven entre sí hasta cierto grado para dar lugar a las soluciones líquidas saturadas en L (rica en A) y en K (rica en B). A mayor grado de insolubilidad entre A y B, menor será la distancia entre los vértices del triángulo y los puntos L y K. La curva formada por los puntos LRPEK se le denomina curva binodal de solubilidad e indica el cambio de la solubilidad de las fases ricas en A y B al agregar C. Cualquier mezcla situada fuera de esta curva será una solución homogénea de fase líquida y cualquier mezcla situada dentro de esta curva tenderá a la separación en dos fases líquidas insoluble saturadas de composiciones en equilibrio (R y E).

La línea RE que une estas composiciones en equilibrio se le denomina línea de unión que pasa a través del punto M que representa la mezcla como un todo. Existen un número infinito de líneas de unión en la región de dos fases. Las líneas de unión generalmente cambian lentamente en una dirección como se muestra en la figura y raramente cambian de dirección. El punto P se le denomina punto de pliegue y este representa la última de las líneas de unión (Treybal, 1980).

Figura 12. Sistema de tres líquidos, A y B parcialmente solubles (Treybal, 1980)

b) Efecto de la temperatura

En la Figura D se muestra una representación tridimensional en donde la temperatura se encuentra grafica verticalmente y los triángulos isotérmicos corresponden a secciones a través del prisma. Generalmente para sistemas de tres líquidos con un par parcialmente soluble. La solubilidad mutua de A y B aumentan al aumentar la temperatura hasta llegar a la temperatura crítica de la solución en donde A y B se vuelven completamente solubles entre sí. Este aumento de solubilidad debido a la temperatura modifica el equilibrio ternario, debido a que disminuye el área de la región de dos fases y la pendiente de las líneas de unión (Treybal, 1980).

Figura 13. Efecto de la temperatura en los equilibrios ternario para el sistema de tres líquidos, A y B parcialmente solubles

(Treybal, 1980)

c) Efecto de la presión

A excepción de que se tenga presiones muy elevadas, el efecto de la presión sobre el equilibrio líquido es despreciable. Si se aumenta la presión del sistema, se debe garantizar que esta se aumente lo suficientemente altas para mantener el sistema completamente condensada (por encima de la presión de vapor de los componentes). Sin embargo, si la presión se redujera lo suficiente tal que esta fuera menor que la presión de vapor de las soluciones se crea origina una fase vapor y el equilibrio líquido no tendría lugar (Treybal, 1980).

4.7.7 Propiedades del solvente

a) Selectividad

La efectividad del disolvente B para extraer C de la solución A se miden utilizando la relación entre C y A en la fase rica en B (E) con respecto a la relación entre C y A en la fase rica en A (R), en donde E y R están en equilibrio (R). La relación ambas relaciones se le denomina selectividad (B). La selectividad debe ser mayor a uno para que la operación de extracción líquido-líquido sean de utilidad (Treybal, 1980).

$$\beta = \frac{(fracción \, de \, peso \, de \, C \, en \, E)/(fracción \, de \, peso \, de \, A \, en \, E)}{(fracción \, de \, peso \, de \, C \, en \, R)/(fracción \, de \, peso \, de \, A \, en \, R)}$$
(14)

b) Coeficientes de distribución

Es la relación entre la concentración de C en la fase rica en disolvente en equilibrio $(y^*=[C]_o)$ y la concentración de la fase rica en solvente en equilibrio $(x=[C]_A)$. El coeficiente de distribución no necesariamente debe ser mayor a uno. Sin embargo, mientras más grande sea este resulta más adecuado ya que se requiere una menor cantidad de disolvente para la extracción (Treybal, 1980).

$$\mathbf{k} = \frac{[\mathbf{C}]_{\mathbf{o}}}{[\mathbf{C}]_{\mathbf{A}}} = \frac{\mathbf{y}^*}{\mathbf{x}}$$
(15)

4.7.8 Insolubilidad del disolvente

La insolubilidad del disolvente con el solvente debe ser lo más grande posible. Sin embargo, existirán ocasiones donde esto no es un factor tan crucial tales como en extracciones donde la concentración de la alimentación se realice a concentraciones bajas (Treybal, 1980).

a) Recuperabilidad

En todos los casos se requiere recuperar el disolvente para volverlo a utilizar. Esto se realiza mediante otras operaciones de trasferencia de masa donde la más factible resulta ser en muchos casos la destilación. Por razones económicas, el disolvente no debe formar un azeótropo con el soluto extraído y debe tener una alta volatilidad relativa (Treybal, 1980).

b) Densidad

Debe existir una diferencia de densidad entre las fases líquidas saturadas, mientras mayor sea esta diferencia se logrará una mejor separación de las fases. Al aumentar la

concentración de C se disminuye la diferencia de las densidades entre las fases líquidas saturadas hasta llegar al punto de pliegue P (Figura C) (Treybal, 1980).

c) Tensión interfacial

Mientras más grande sea la tensión interfacial, con mayor facilidad tendrá lugar la coalescencia de la emulsión, pero mayor será la dificultad de la dispersión de un líquido en otro. En la extracción líquido-líquido se busca fomentar la coalescencia de las emulsiones, por lo que se requiere una alta tensión interfacial debe ser alta. Esta se igual a 0 en el punto de pliegue P (Figura C) (Treybal, 1980).

d) Reactividad química

El disolvente debe ser estable e inerte químicamente frente a los demás componentes de sistema y frente a los materiales comunes de los equipos (Treybal, 1980).

e) Viscosidad, presión de vapor y punto de congelamiento

Estas tres propiedades deben tener valores bajos para facilitar el manejo y almacenamiento del disolvente.

f) Toxicidad, inflamabilidad y precio

El disolvente debe ser no tóxico, no inflamables y de bajo costo.

4.7.9 Configuraciones de operación

El equipo de para realizar la extracción líquido-líquido puede realizarse por etapas, cuya configuración puede arreglarse en cascadas multietapas o por contacto diferencial (Foust *et al.*, 2006).

4.7.9.1 Contacto por etapas

En estos equipos se considera que cada etapa del equipo alcanza una etapa teórica o ideal, por lo tanto, el efluente del extracto (E) y del refinado (R) están en equilibrio entre ellos. Cada etapa requiere de medios que induzcan el contacto entre los líquidos insolubles y para la separación de las corrientes producidas. La configuración de las etapas puede realizarse en una sola etapa, pero esta no se realiza a escala industrial debido a que requiere grandes cantidades de disolvente con relación a otras configuraciones multietapa para realizar la misma extracción. Las configuraciones más utilizadas son la extracción en multietapa a

corriente cruzada y a contracorriente. La configuración en multietapa a contracorriente es la más utilizada industrialmente, ya que esta utiliza la menor cantidad de disolvente con relación a las otras configuraciones para lograr el mismo grado de separación.

4.7.9.2 Extracción multietapa a contracorriente continua

En esta configuración las corrientes de E y R fluyen de etapa en etapa a contracorriente y proporciona dos productos finales, el refinado R_{Np} y el extracto E_1 .

Figura 14. Extracción a contracorriente en multietapa

(Treybal, 1980)

Donde:

F = corriente de alimentación

Rn = corriente del refinado

En = corriente del extracto

S = corriente de disolvente

x_F = composición másica de C en la alimentación

 x_n = composición másica de C e el refinado

 y_n = composición másica de C en el extracto

ys = composición másica de C en el disolvente

El balance de material global y de soluto del sistema de extracción a contracorriente en multietapa se define:

$$\mathbf{F} + \mathbf{S} = \mathbf{E}_1 + \mathbf{R}_{\mathbf{N}\mathbf{n}} = \mathbf{M} \tag{16}$$

$$x_F F + y_s S = y_1 E_1 + x_{Np} R_{Np} = M$$
(17)

$$x_M = \frac{x_F F + y_s S}{F + S} \tag{18}$$

El punto Δ_R , denominado punto de diferencia se describe como el flujo neto saliente en la última etapa N_p. Esta diferencia es constante en cualquier ubicación entre dos etapas adyacentes y permite obtener visualmente las líneas de operación, las cuales pueden utilizarse para conocer las composiciones del sistema y determinar el número de etapas requeridas para la extracción para una cantidad de solvente dada (Treybal, 1980).

$$\boldsymbol{F} - \boldsymbol{E}_1 = \boldsymbol{R}_{Np} - \boldsymbol{S} = \Delta_{\boldsymbol{R}} \tag{19}$$

Para la construcción de la gráfica cuando se conoce la cantidad de solvente a utilizar primero se deben de ubicar los puntos F, S, M, E₁, R_{Np} y Δ_R , los cuales son determinados mediante los balances de materia del sistema. Se debe traza una línea de unión desde E₁ que están en equilibrio con R₁. Una línea desde Δ_R que pasa a través de R₁ al extenderse proporciona E₂. Las líneas de unión corresponden al equilibrio y las líneas que surgen de Δ_R corresponden a la operación. El valor mínimo posible es x_{Np} y este al trazar una línea desde S que se intersecta con la línea E₁-F extendida al lado de diagrama permite conocer la ubicación del punto Δ_R . Por lo tanto, una línea desde Δ_R intersecta las dos ramas de la curva de solubilidad en los puntos que representan el extracto y el refinado de etapas adyacentes. Es cuando se llega visualmente al punto x_{Np} utilizando las líneas de operación y de unión que se determina la cantidad de etapas requeridas para lograr el grado de separación establecido (Treybal, 1980).

Figura 15. Extracción a contracorriente en varias etapas

(Treybal, 1980)

Para determinar la cantidad de solvente mínimo se debe determinar el punto $\Delta_{Rmín}$ el cual tiene lugar cuando una línea desde este punto coincide con la una línea de unión, por lo tanto, se requerirían un número infinito de etapas para efectuar la separación y el solvente requerido sería el mínimo posible. Cuanto mayor sea la cantidad de disolvente, menor será el número de etapas requerida. Es por lo anterior que se debe realizar una evaluación etapas – solvente que depende de un estudio económico para determinar la forma de operación. El punto $\Delta_{Rmín}$ se determinar trazando una línea de unión que pase por el punto de alimentación y que se intersecte con la línea $R_{Np} - S$, cuyas condiciones deben ser conocidas. Si existe una línea de unión por debajo de punto KF que se acerque más al diagrama ternario se considera este nuevo punto como el $\Delta_{Rmín}$ (Treybal, 1980).

Figura 16. Disolvente mínimo para la extracción a contracorriente (Treybal, 1980)

4.8 Equipo comercialmente disponible

El equipo de extracción por etapas que se utiliza es de dos tipos principalmente: cascadas de mezclado-sedimentación de una y de varias etapas y torres perforadas de varias etapas. También se suelen utilizar extractores diferenciales para operaciones de contacto continuo, de las cuales el extractor centrífugo es el más importantes (Foust *et al.*, 2006).

4.8.1 Mezclador sedimentador

Es un equipo que representa una etapa teórica. El mezclar pone en contacto íntimo las dos fases líquidas y da lugar a que ocurra la transferencia de masa. El sedimentar permite separar mecánicamente las fases formadas luego de alcanzar el equilibrio. La operación puede llevarse a cabo de forma continua o por lotes. Los equipos de este tipo más comunes son:

a) Mezcladores de tanque agitado

Los tanques agitados pueden operarse llenos y en este caso puede o no tener mamparas. Para la operación continua, los líquidos que se van a poner en contacto pueden entrar en el fondo y salir por la parte superior. Para la operación por lotes, el tanque de mezclado puede actuar como sedimentador después de que se detiene la agitación. Los impulsores son regularmente del tipo de turbina de hoja plana y están localizados en el centro del tanque o en la entrada inferior de los líquidos. La relación impulsora/diámetro se encuentra en el rango de 0.25 a 0.33. Los tiempos de retención cuando no hay reacciones químicas lentas en los equipos en operación continua son generalmente cortos (60 s) para alcanzar eficiencias grandes (Treybal, 1980).

b) Sedimentadores

Los sedimentadores se requieren cuando se está realizando una operación continua. La emulsión que sale de cualquier aparato de mezclado está formada por pequeñas gotas de un líquido disperso en el otro. La estabilidad o permanencia de dicha emulsión es de suma importancia, ya una emulsión inestable facilita la separación de las fases. El tamaño de la gota y la coalescencia de la fase dispersa influyen directamente en la separación y sedimentación de fases. A mayor tamaño de gota dispersa, mayor rapidez de sedimentación. A mayor tensión superficial y menor viscosidad, mayor coalescencia de las gotas sedimentadas. A la aparición de una fase bien definida se le denomina ruptura primaria, esta generalmente tiene lugar al detener la agitación. En ocasiones, la fase que se encuentra en mayor cantidad permanece nublada producto de la dispersión de otra fase y requiere de un mayor tiempo para su separación, a este fenómeno se le denomina ruptura secundaria (Treybal, 1980).

Los arreglos típicos de sedimentadores por gravedad se muestran en la figura 17. El más común es el arreglo (a), el cual cuenta con una mampara grande de entrapa de tipo "cera de estacas" que evita que se disturbe excesivamente la dispersión que entra al equipo y facilita la sedimentación de las gotas en el tanque. En ocasiones se requieren de auxiliares de sedimentación como los coalescedores, que tienen como objetivo aumentar el tamaño de las gotas para aumentar la rapidez de sedimentación (Treybal, 1980).

Figura 17. Sedimentadores por gravedad (a) sencillo, (b) y (c) con coalescedor (Treybal, 1980)

4.8.2 Extractores centrífugos

Los extractores centrífugos con extractores diferenciales a contracorriente cuya separación de las fases se basa en la diferencia en las densidades de los líquidos y en la fuerza centrífuga en donde el flujo a contracorriente es radial con respecto al eje de revolución. En estos equipos el tambor cilíndrico contiene un caparazón concéntrico, perforado; se gira rápidamente sobre un eje horizontal (extractor de Podbielniak) o vertical (extractor de Luwesta y de Rotabel) a una velocidad de 30 a 85 rps. Los líquidos entran a través del eje: los líquidos pesados se llevan al centro del tambor y los líquidos ligeros a la periferia. Los líquidos pesados fluyen radialmente hacia afuera y los livianos salen a través del eje. Estos

extractores son especialmente útiles para líquidos de diferencia de densidad muy pequeña y en donde se requieren tiempos de residencia cortos (Treybal, 1980).

Figura 18. Extractor centrífugo de Podbielniak

(Treybal, 1980)

Figura 19. Extractor centrífugo de Luwesta

(Todd & Davies, 1974)

Figura 20. Extractor centrífugo multietapa a contracorriente

(Rousselet Robatel, 2019a)

4.9 Destilación

Es una operación unitaria que tiene como finalidad separar los componentes de una mezcla líquida por evaporaciones y condensaciones sucesivas. La separación se basa en la diferencia de volatilidades absolutas de los componentes que permite la formación de un vapor de composición diferente a la del líquido del que procede, en donde ambas fases están en equilibrio (Marcilla Gomis *et al.*, 1998).

4.9.1 Destilación por lotes

4.9.1.1 Intermitente o diferencial

La mezcla para destilar se carga en el rehervidor y en este se suministra el calor necesario para llevarla a su temperatura de burbuja hasta que comience la ebullición que se mantiene mientras se va eliminando continuamente el vapor generado que se condensa en el exterior para producir el destilado. Matemáticamente la destilación por lotes queda definida por un sistema de ecuaciones diferenciales no lineales y una serie de ecuaciones algebraicas que no son fáciles de resolver de forma rápida (Bonsfills, 2001). La composición del líquido y del vapor cambian con el tiempo. Al ir agotando los componentes más volátiles, irá aumentando la temperatura de burbuja de la mezcla. El proceso continúa hasta alcanzar la

separación deseada. El destilado tendrá una composición promedio y esta composición no estará en equilibrio con el líquido que está hirviendo. Este puede obtenerse en diferentes recipientes en función de su composición (fraccionamiento de destilado) (Marcilla Gomis *et al.*, 1998).

La destilación simple abierta diferencial, tanto para mezclas binarias como para mezclas multicomponente, no puede seguir más que un camino en el espacio del equilibrio líquido vapor, el cual está dado por propio equilibrio. Se debe cumplir la ecuación de Rayleight para cada componente, además de los balances de materia. Al ser la composición del vapor una función única de la composición del líquido, una vez fijada la mezcla inicial su trayectoria estará marcada por las relaciones de equilibrio, no pudiendo modificarse más que la cantidad de destilado, a la que corresponderá una determinada composición. La destilación simple por lotes proporciona una placa teórica de separación y es utilizada cuando se tienen gran diferencia en la volatilidad entre los componentes (Marcilla Gomis *et al.*, 1998).

Figura 21. Destilación sencilla por lotes

(Treybal, 1980)

4.9.1.2 Con enriquecimiento de vapor

Es el método más eficaz desde el punto de vista termodinámico como cinético de llevar a cabo la separación de los componentes de una mezcla de compuesto volátiles. En una columna de rectificación convencional el vapor generado en una caldera hierve en la mezcla a separar y se ponen en contacto con un líquido de la misma composición y de diferente concentración a la del equilibrio. Se transfieren los más volátiles al vapor y los menos volátiles del vapor al líquido. El vapor y el líquido circulan en contracorriente a lo largo de la torre, y el resultado es que por la parte superior (o cabeza) de la misma se obtiene un destilado más rico en los componentes más volátiles y en la caldera se obtiene un residuo más rico en componentes menos volátiles de lo que se obtendría en una operación de destilación simple. La corriente líquida necesaria para llevar a cabo la rectificación se introduce por la cabeza de la columna y, generalmente, procede de la condensación de parte del vapor generado en la misma. Dicha corriente recibe el nombre de reflujo. Este tipo de destilación intermitente es de especial interés cuando la diferencia de volatilidad entre los componentes es pequeña o cuando se opera en rangos de composición estrechos. (Marcilla Gomis *et al.*, 1998).

Figura 22. Columna de destilación por lotes con enriquecimiento de vapor (Mujtaba, 2004)

a) Ventajas

- Es económica para pequeños volúmenes.
- Es flexible para adaptarse a los cambios en la formulación del producto y/o la tasa de producción.
- Permite una mejor integridad del producto, ya que cada lote de producto se puede identificar claramente en términos materia y las condiciones de procesamiento.

(Lombira-Echevarria & Otiniano, 1998)

b) Desventajas

- Se tiene un tiempo prolongado de exposición de la mezcla a altas temperaturas, lo cual puede aumentar el riesgo de degradación térmica o descomposición de las sustancias.
- El requerimiento de energía es generalmente mayor en la destilación discontinua que en la destilación continua.

(Lombira-Echevarria & Otiniano, 1998)

c) Operación y control

La carga calórica de la columna tiene lugar por el flujo de vapor que cede su energía en el rehervidor para la evaporación de la mezcla alimentada. Generalmente, si el medio de calentamiento es vapor se suele mantener constante la presión o el caudal de vapor para producir una carga de vapor constante y, por ende, una tasa de transferencia de calor constante (Lombira-Echevarria & Otiniano, 1998).

El control de reflujo tiene lugar cuando se opera a ebullición constante para manipular la calidad de producto. La relación de reflujo se puede operar:

• Relación de reflujo constante

El destilado se vuelve menos rico en el componente menos volátil a medida que avanza la destilación; y el residuo en el rehervidor también se agota progresivamente en este componente. Las limitaciones se basan en la pureza de las corrientes de salida al final de la operación (Lombira-Echevarria & Otiniano, 1998).

• Relación de reflujo variable

Se aumenta gradualmente la relación de reflujo para mantener constante una pureza de destilado dada. La destilación se detiene cuando la relación de reflujo excede un cierto límite predeterminado (Lombira-Echevarria & Otiniano, 1998).

En general, el requerimiento de energía es mayor con reflujo variable que con reflujo constante. La diferencia es especialmente alta para destilaciones de alta pureza. Entre estos 2 casos, existe un modo de funcionamiento óptimo que compensa el tiempo, la energía y la mano de obra adicionales necesarios. (Lombira-Echevarria & Otiniano, 1998).

4.9.2 Equipos comercialmente disponibles para operaciones de destilación por lotes

4.9.2.1 Columna

Se utilizan columnas en la destilación por lotes en sistemas en donde la volatilidad relativa entre los componentes que se separarán es muy cercana. Estas tienen como principal beneficio favorecer la separación de los componentes en un tiempo más corto en comparación con la destilación simple por lotes. Las columnas tienen en su interior distintas estructuras que cumplen la función de promover el contacto entre las fases y el desarrollo de la superficie interfacial donde se produce la transferencia de materia. Estos dispositivos pueden ser platos o rellenos, la elección depende de las características de la columna y de las propiedades de los compuestos a separar. Ente los principales criterios de elección entre ambos se encuentra: el precio, el diámetro de la columna, la velocidad del líquido, las propiedades del líquido, la retención del líquido especificada, entre otros (Mujtaba, 2004).

4.9.2.2 Condensador

El condensador es un intercambiador de calor que permite extraer el calor latente del vapor que sale por la cabeza de la columna para condensarlo y así producir un líquido de interés rico en el producto más volátil. Los tipos más comunes para el proceso de destilación son:

4.9.2.3 Tubo y coraza

Los intercambiadores de calor de tubo y coraza están compuestos por tubos cilíndricos, montados dentro de una coraza también cilíndrica, con el eje de los tubos paralelos al eje de la coraza. Un fluido circula por dentro de los tubos, y el otro por el exterior

de estos. Son el tipo de intercambiadores de calor más usado en la industria. Para el proceso de condensación, el vapor a calentar circula por el exterior de la coraza y fluido de enfriamiento circula por el interior de los tubos. Se utilizan para rectificación continua con altas cargas de calor removido y flujo de fluido de enfriamiento. Generalmente presentan una alta caída de presión. El más utilizado es condensador vertical en los tubos de flujo descendente (Towler & Sinnott, 2008).

Figura 23. Intercambiador de calor de tubo y coraza vertical

(Towler & Sinnott, 2008)

4.9.2.4 Serpentín

Entre los serpentines comercialmente disponibles se pueden encontrar los serpentines helicoidales y serpentines planos. Los serpentines helicoidales son los más utilizados para procesos de condensación. Generalmente se fabrican de diferentes materiales, sin embargo, se prefieren la utilización de metales debido a su alta conductividad térmica que favorece la transferencia de calor. El diseño generalmente consiste en el serpentín helicoidal ubicado en la porción anular conformada por dos cilindros concéntricos.

Figura 24. Intercambiador de calor de serpentín

(Pérez Sánchez et al., 2019)

Para los procesos de condensación el fluido de enfriamiento se encuentra en el interior del serpentín y el vapor en la parte anular. En este intercambiador de calor, la fuerza centrífuga que tiene lugar debido a la curvatura del tubo trae consigo el desarrollo de un flujo secundario. De esta manera, la curvatura del serpentín gobierna la fuerza centrífuga, mientras que el paso o ángulo de la hélice influye en la torsión a la que está sujeta el fluido. A causa de la curvatura, el fluido que circula por el interior del serpentín se mueve a una mayor velocidad en comparación con el fluido que fluye por fuera del serpentín. Esta diferencia de velocidad ocasiona la aparición de un flujo secundario el cual aumenta la tasa de transferencia de calor (Surendra Vishvakarma, 2016).

Figura 25. Vista de sección del corte horizontal de un intercambiador de calor de serpentín

⁽Pérez Sánchez et al., 2019)

Donde:

p = paso $D_h = diámetro promedio de la hélice$ $D_i = diámetro interior del cilindro exterior$ B = diámetro exterior del cilindro interior $d_i = diámetro interior del serpentín$ $d_e = diámetro exterior del serpentín$

El diseño del intercambiador de calor de serpentín depende de las propiedades del fluido a la temperatura media del intercambio de calor, de la geometría del sistema, del régimen de flujo de los fluidos y del balance de masa y energía del sistema. El diseño que se propone a continuación se determina mediante ecuación publicadas en (Patil *et al.*, 1982) (Perry *et al.*, 1997) (Kern, 2006).

La temperatura media $(\overline{T} \ y \ \overline{t})$ de las corrientes se determina:

$$\overline{T} = \frac{T_e + T_s}{2} \tag{20}$$

$$\bar{t} = \frac{t_e + t_s}{2} \tag{21}$$

Donde:

T = temperatura del fluido caliente

t = temperatura del fluido frío

e = entrada

$$s = salida$$

La cantidad de fluido de enfriamiento se determina mediante el balance de energía en el condensador:

$$m_{agua} = \frac{Q}{Cp_{agua} \left(t_s - t_e\right)} \tag{22}$$

Donde:

m = caudal másico

Q =calor intercambiado

Cp = calor específico

Las características geométricas del serpentín y de la coraza se determinan:

$$\boldsymbol{p} = \boldsymbol{1}.\boldsymbol{5}\,\boldsymbol{d}_{\boldsymbol{e}} \tag{23}$$

$$Di_h = B + d_e \tag{24}$$

$$\boldsymbol{D}\boldsymbol{e}_{\boldsymbol{h}} = \boldsymbol{B} + 2\boldsymbol{d}_{\boldsymbol{e}} + \boldsymbol{d}_{\boldsymbol{e}} \tag{25}$$

$$L_{serp} = N \cdot \sqrt{\left(2 \cdot \pi \cdot \frac{D_h}{2}\right) + p^2}$$
(26)

$$V_{serp} = \left(\frac{\pi}{4}\right) d_e^2 L_{serp} \tag{27}$$

$$V_a = \left(\frac{\pi}{4}\right) * \left(D_i^2 - B^2\right) * p \tag{28}$$

$$V_{flujo} = V_a - V_{serp} \tag{29}$$

$$D_{eq} = \frac{4 \, V_{flujo}}{\pi \, d_e \, L_{serp}} \tag{30}$$

Donde:

 Di_h = diámetro interior de la hélice

 De_h = diámetro exterior de la hélice

 $L_{serp} =$ longitud del serpentín

N = número de vueltas del serpentín

 V_{serp} = volumen ocupado por el serpentín

 V_a = volumen del ánulo

 D_{eq} = diámetro equivalente de la coraza

El coeficiente de convección de la transferencia de calor del fluido vapor se determina como se muestra a continuación. Este es válido para números de Reynolds (Re) entre 50 y 10000.

$$G_{vapor} = \frac{m_{vapor}}{\left[\left(\frac{\pi}{4}\right) \cdot \left(\left(D_i^2 - B^2\right) - \left(De_h^2 - Di_h^2\right)\right)\right]}$$
(31)

$$Re_{vapor} = \frac{D_{eq}G_{vapor}}{\mu_{vapor}}$$
(32)

$$Pr_{vapor} = \frac{Cp_{vapor} \,\mu_{vapor}}{k_{vapor}} \tag{33}$$

$$h_0 = 0.6 \frac{k_{vapor}}{D_{eq}} Re_{vapor}^{0.5} Pr_{vapor}^{0.31}$$
(34)

Donde:

G = velocidad másica

 μ = viscosidad dinámica

k = conductividad térmica

Pr = número de Prandtl

 h_0 = coeficiente de convección del fluido que circula por la coraza

El coeficiente de convección de la transferencia de calor del agua de enfriamiento basado en

el diámetro interior y exterior del serpentín se determina:

$$A_{serp} = \frac{\pi \, d_i^2}{4} \tag{35}$$

$$q_{agua} = \frac{m_{agua}}{\rho_{agua}} \tag{36}$$

$$\boldsymbol{v}_{agua} = \frac{\boldsymbol{q}_{agua}}{\boldsymbol{A}_{serp}} \tag{37}$$

$$Re_{agua} = \frac{d_i \ v_{agua} \rho_{agua}}{\mu_{agua}} \tag{38}$$

$$\mathbf{Pr}_{agua} = \frac{Cp_{agua}\,\mu_{agua}}{k_{agua}} \tag{39}$$

$$h_{i} = \frac{k_{agua}}{d_{i}} * 0.023 Re_{agua}^{0.8} * Pr_{agua}^{0.33} * \left(\frac{\mu_{agua}}{\mu_{P}}\right)^{0.14}$$
(40)

$$\boldsymbol{h}_{ic} = \boldsymbol{h}_i \left[\boldsymbol{1} + \boldsymbol{3}.\,\boldsymbol{5} \left(\frac{\boldsymbol{d}_i}{\boldsymbol{D}_h} \right) \right] \tag{41}$$
$$\boldsymbol{h}_{i0} = \boldsymbol{h}_{ic} (\frac{\boldsymbol{d}_i}{\boldsymbol{d}_e}) \tag{42}$$

Donde:

 A_{serp} = área de la sección transversal del serpentín

q = caudal volumétrico

 ρ = densidad

v = velocidad

 μ_P = viscosidad dinámica en la pared del intercambiador

 h_i = coeficiente de transferencia de calor del agua basado en el diámetro interior del serpentín para el tubo recto

 h_{ic} = coeficiente de transferencia de calor del agua basado en el diámetro interior del serpentín para el tubo enroscado

 h_{i0} = coeficiente de transferencia de calor del agua basado en el diámetro exterior del serpentín

El área de transferencia de calor y el número de vueltas requeridas del serpentín se determinan:

$$e_t = \frac{d_e - d_i}{2} \tag{43}$$

$$U = \frac{1}{\frac{1}{h_0} + \frac{1}{h_{i0}} + \frac{e_t}{k_t} + R_{agua} + R_{vapor}}$$
(44)

$$DMLT = \frac{(T_e - t_e) - (T_s - t_s)}{\ln \frac{(T_e - t_e)}{(T_s - t_s)}}$$
(45)

$$\Delta t = MLDT * F_t \tag{46}$$

$$\boldsymbol{A} = \frac{\boldsymbol{Q}}{\boldsymbol{U} * \Delta \boldsymbol{t}} \tag{47}$$

$$N = \frac{A}{\left[\pi d_e \left(\frac{L_{serp}}{N}\right)\right]} \tag{48}$$

$$\boldsymbol{H} = \boldsymbol{n} \ast \boldsymbol{p} + \boldsymbol{d}_{\boldsymbol{e}} \tag{49}$$

Donde:

 e_t = espesor del tubo del serpentín U = coeficiente global de transferencia de calor k_t = conductividad térmica del serpentín DMLT = diferencia media logarítmica de temperatura F_t = factor de corrección para la DMLT Δt = diferencia de temperatura corregida A = área de transferencia de calor n = número real de vuelta del serpentín

H = altura del intercambiador de calor

4.9.2.5 Rehervidor

El rehervidor es un intercambiador de calor que aporta la energía necesaria para separar los componentes de la mezcla de alimentación permitiendo la formación de una fase vapor a partir del líquido del fondo de la columna gracias al calor que cede un fluido caloportador. El vapor se considera como el principal fluido caloportador para el calentamiento debido a su fácil disponibilidad (Mujtaba, 2004).

a) Rehervidor Kettle

Este es un rehervidor sumergido que se aplican comúnmente cuando se requiere una gran superficie de intercambio de calor o alta calidad de vapor. Generalmente se ubican en el fondo o de forma lateral con respecto a la posición de la columna. Este tipo de rehervidor es generalmente más caro que otro tipo de rehervidores debido al tamaño de la carcasa y el tamaño del volumen de sobretensión. A menudo se utilizan como vaporizadores, ya que se no se requiere de un recipiente adicional para la separación líquido-vapor. Son adecuados para funcionamiento al vacío y para altas tasas de vaporización (Valiente, 2015).

Figura 26. Rehervidor Kettle

(Valiente, 2015)

b) Rehervidor de termosifón

Estos pueden ser de tipo horizontal o vertical. Los hervidores de termosifón horizontales son el tipo de hervidor preferido en aplicaciones de refinación y los hervidores de termosifón verticales predominan en la aplicación de la industria química. En el rehervidor de tipo horizontal, el lado del proceso se encuentra en el lado de la carcasa y el medio de calentamiento está en el lado del tubo, la ebullición se produce dentro de la carcasa y existe recirculación alrededor de la base de la columna. Una mezcla de vapor y líquido sale del hervidor y entra en la base de la columna donde se separa. En el rehervidor de tipo vertical la circulación del líquido se produce debido a la diferencia de densidad entre la mezcla de vapor-líquido (dos fases) en el rehervidor y el líquido dentro del tubo. Comparado con el hervidor de termosifón vertical, el hervidor de termosifón horizontal generalmente requiere menos espacio para la cabeza, pero tiene tuberías y espacio de parcela más complejos, lo que hace que sea más costoso de instalar y tiene una mayor tendencia al ensuciamiento. Sin embargo, debido a la configuración geométrica, el mantenimiento de los tubos del termosifón horizontal es más fácil que en los verticales debido a la facilidad de retirar los mimos. Por lo general, son más adecuados que los termosifones verticales para servicios con capacidades muy grandes (Valiente, 2015).

Figura 27. Rehervidor de termosifón vertical (a) y horizontal (b)

(Valiente, 2015)

c) Rehervidor de circulación forzada

Los hervidores de circulación forzada son similares a los hervidores de termosifón, excepto que la bomba se utiliza para la circulación del líquido y el líquido caliente fluye dentro de la columna. El uso principal de los hervidores de flujo forzado es en procesos con problemas severos de ensuciamiento y/o líquidos altamente viscosos (más de 25 cp) para los cuales los hervidores de tipo kettle y termosifón no son adecuados. Los costos de bombeo hacen que las unidades de flujo forzado no sean económicos en comparación con los otro equipos disponibles (Valiente, 2015).

Figura 28. Rehervidor de circulación forzada

(Valiente, 2015)

d) Rehervidor enchaquetado

El rehervidor enchaquetado se utiliza generalmente donde el proceso puede estar en el lado de la carcasa y el área del calderín puede acoplarse en la parte inferior de la columna. El lado del proceso está en el lado de la carcasa y el medio de calentamiento pasa por la chaqueta aislada. La ebullición se lleva a cabo en el interior del rehervidor. Dado que el líquido en ebullición forma espuma, que puede variar en densidad, controlar el nivel del fondo puede resultar difícil, especialmente en procesos contínuos con alimentación con tendencia a la espumación o sistemas de vacío. Su aplicación principal se basa en la destilación por lotes. El diseño de los rehervidores enchaquetados se determina como se muestra a continuación (Kern, 2006).

Figura 29. Rehervidor enchaquetado

(Kern, 2006)

El flujo de vapor de agua a utiliza se determina mediante el balance de energía en el rehervidor:

$$\boldsymbol{m}_{\boldsymbol{vap}_\boldsymbol{agua}} = \frac{\boldsymbol{Q}}{\boldsymbol{\lambda}_{\boldsymbol{vap}_\boldsymbol{agua}}} \tag{50}$$

Donde:

 λ = calor latente

El área de transferencia de calor requerida para el intercambio de calor deseado se define:

$$A = \frac{Q}{U * DMLT}$$
(51)

El área de la chaqueta en contacto con la alimentación rehervidor ($A_{chaqueta}$) se determina:

$$A_{chaqueta} = \pi Dh + \frac{\pi}{4}D^2 \tag{52}$$

Donde:

 $D_i = diámetro interno del rehervidor$

h = altura del rehervidor

El coeficiente global de transferencia de calor y los coeficientes específicos para el fluido interno y externo se determinan:

$$Pr = \frac{Cp * \mu}{k}$$
(53)

$$h_{icc} = \frac{jk}{D_{-}i} (Pr)^{\frac{1}{3}} * \left(\frac{\mu}{\mu_{\rm p}}\right)^{0.14}$$
(54)

$$\boldsymbol{h}_{ioc} = \boldsymbol{h}_{ic} * \frac{\boldsymbol{D}_{-}i}{\boldsymbol{D}_{-}e}$$
(55)

$$U = \frac{1}{\frac{1}{h_{icc}} + \frac{1}{h_{ioc}} + R_{extracto} + R_{steam}}$$
(56)

Donde:

 h_{icc} = coeficiente de convección de fluido interior de la chaqueta

 h_{ioc} = coeficiente de convección de fluido exterior de la chaqueta

 $D_e = diámetro exterior del rehervidor$

j = factor j (Kern, 2006).

4.9.3 Equilibrio multicomponente

4.9.3.1 Modelo no aleatorio de dos líquidos (NRTL)

El modelo NRTL en comparación de otros modelos termodinámicos de equilibrio de fases tiene la capacidad de describir los sistemas en los que la fase líquida está compuesta por dos líquidos inmiscibles. El modelo NRTL es una extensión del concepto de Wilson aplicable a sistemas multicomponentes del tipo vapor-líquido, líquido-líquido, y vapor-líquido-líquido. Al requerir solo constantes de pares binarios, se tiene una facilidad de modelamiento. Este modelo trata de expresar el hecho de que se basa en un parámetro αij que caracteriza la tendencia de las especies i y j a distribuirse de una manera no aleatoria (direcciones preferenciales). La diferencia básica entre el sustento de la ecuación de Wilson

y la NRTL reside en que la primera se basa en una fracción de volumen para expresar la concentración local mientras el modelo NRTL se basa en una fracción molar de la especie considerada (Smith *et al.*, 2005).

4.9.3.2 Curvas residuales

Permiten localizar las distintas regiones de destilación para obtener las regiones en donde se pueden encontrar los posibles productos que pueden obtenerse a partir de una mezcla determinada. El estudio de destilación para mezclas binarias es relativamente sencillo y es muy conocido. Para sistemas de mezclas ternarias y multicomponente es algo más complicado, ya que los métodos gráficos no son factibles debido a que el equilibrio no es evidente en los mismos. Por lo tanto, el método de solución de estos para mezclas multicomponentes se debe resolver mediante simulaciones en ordenadores (Universidad de Alicante, 2009).

La curva de residuo es el lugar geométrico de las composiciones del líquido remanente en el rehervidor en una destilación simple abierta diferencial; es decir, representa la evolución de las composiciones en el rehervidor. Las líneas de destilación son la representación gráfica sobre el diagrama ternario del perfil de composición de una columna de platos operando a reflujo total. La región de destilación es la región del diagrama ternario donde todas las curvas de residuo parten de mismo punto (componente puro o de un azeótropo de punto de ebullición mínimo) y terminar en el mismo punto (punto de ebullición máximo). Las fronteras de destilación son las líneas que separan las regiones de destilación del diagrama ternario (Universidad de Alicante, 2009).

En el diagrama triangular, todos los vértices (componentes puros) y puntos representativos de los azeótropos son puntos singulares o puntos fijos de las curvas de residuo. Se pueden presentar tres situaciones:

• **Caso 1:** el punto singular es un nodo estable. Se trata del componente puro o azeótropo de mayor punto de ebullición y es el punto donde terminan todas las curvas de residuo de una región.

- **Caso 2:** el punto singular es el punto de origen de todas las curvas de una región. Por tanto, es el punto de menor punto de ebullición local. En este caso se trata de un nodo inestable.
- Caso 3: el punto singular es tal que las curvas de residuo se acercan a estos puntos y luego se alejan, recibiendo la denominación de silla. Dentro de una región de destilación, son sillas los componentes puros o azeótropos con puntos de ebullición intermedios entre los de un nodo estable y uno inestable. (Universidad de Alicante, 2009)

Figura 30. Tipos de nodos en las curvas de residuo

(Universidad de Alicante, 2009)

La formulación del equilibrio líquido-vapor mediante líneas de destilación presenta muchas ventajas para el diseño y para la síntesis de procesos de destilación. En estos diagramas, la existencia de azeótropos se detecta con gran claridad; los orígenes y los extremos de las curvas de destilación representan las fracciones que se pueden obtener como productos de cabeza y de cola en columnas de destilación; los límites de destilación son barreras que, en la mayoría de los casos, no pueden cruzarse por destilación (Y. Morales *et al.*, 2015).

4.9.3.3 Mezclas azeotrópicas

Un azeótropo es una clase especial de mezcla líquida que hierve a una temperatura constante en una determinada composición. Se comporta como si fuera un componente con un punto de ebullición constante. Esta mezcla no se puede separar usando métodos de destilación convencionales. La destilación de una mezcla que presenta un comportamiento azeotrópico comienza de manera similar a la destilación convencional con la diferencia que a medida que el proceso continúa, se alcanza una temperatura en la que las composiciones de la fase vapor y la fase líquida se vuelven iguales. Cuando lo anterior sucede, el azeótropo se ha formado y los componentes individuales ya no pueden separarse mediante destilación convencional. Las composiciones del líquido y el vapor permanecen iguales hasta que finalmente se vaporiza todo el líquido (Marcilla Gomis *et al.*, 1998). En la destilación por lotes, se utiliza una sola columna para diferentes separaciones en diferentes períodos de tiempo. Así, una secuencia de columnas de un proceso continuo es reemplazada por una secuencia de ciclos de operación de una sola columna en un proceso por lotes (Bonsfills, 2001).

4.9.3.4 Modelos de predicción

Los métodos gráficos y de acceso directo son específicos para operaciones en estado estacionario. Si bien no se aplican directamente a la operación inestable de la destilación por lotes (excepto en el caso especial del reflujo total), pueden ser útiles para caracterizar inicialmente una columna. Para los cálculos de reflujo total, se puede utilizar la ecuación de Fenske (parte del método abreviado FUG) para determinar el número de placas necesarias para una separación determinada. Los rigurosos cálculos de placa a placa se pueden realizar fácilmente con los programas de simulación de diagramas de flujo de ingeniería asistidos por computadora disponibles o con programas de destilación de propósito especial (Romero & Otiniano, 2009).

4.9.3.5 Método corto

Los métodos reducidos o cortos son modelos matemáticos que predicen el comportamiento del proceso considerando la menor cantidad de ecuaciones, generalmente realizando un balance global de materia y los balances parciales en el fondo de la columna considerando un componente cualquiera "i". La utilización de estos métodos se justifica

sobre la utilización de los métodos rigurosos por la reducción en los tiempos de cómputo. Estos pueden proporcionar condiciones límites del proceso y son métodos que permiten obtener de forma rápida valores iniciales para los procesos de optimización matemática donde la complejidad de los métodos requiere datos muy cercanos a la solución. Los modelos cortos consideran constantes los siguientes parámetros: flujo molar constante a lo largo de la columna, volatilidad relativa, retención (hold-up) en los platos y en el condensador. No se ha encontrado ninguna literatura que contemple la presencia de azeótropos en su modelo (Romero & Otiniano, 2009).

4.9.3.6 Método riguroso

La modelización matemática de una columna de destilación por lotes implica el planteo de los balances de materia y energía en las distintas zonas de la columna, así como de las ecuaciones que rigen el equilibrio líquido-vapor. El conjunto de todas las ecuaciones constituye un modelo completo y riguroso. Estos modelos plantean un análisis detallado de las características de los balances de materia y energía asociadas a la dinámica de las columnas de destilación por lotes (Bonsfills, 2001).

Existen diversos factores que hacen que el sistema de ecuaciones para la destilación por lotes sea mucho más difícil de resolver que el obtenido para una destilación en continuo. Por ejemplo, en la destilación por lotes, la retención en los platos es generalmente mucho menor que la retención en el rehervidor, mientras que en la destilación continua la retención de los platos es comparable al del rehervidor. La complejidad de cálculo asociada con los métodos rigurosos hace difícil obtener propiedades globales, tales como regiones de trabajo posibles para cada mezcla, que son propiedades críticas para problemas de optimización, control y síntesis (Distefano, 1968).

4.9.3.7 Tratamiento estadístico

a) Raíz de la desviación cuadrática media (RMSD)

La RMSD permite comparar diferencias entre dos conjuntos de datos, donde ninguno de los cuales son aceptados como estándar. Es una seria de tipo homogénea y ambas series de datos deben de ser de igual tamaño.

$$RMSD = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \hat{x}_i)^2}{N}}$$
(57)

Donde:

 x_i = observaciones actuales de las series de tiempo

 \hat{x}_i = serie de tiempo estimada o pronosticada

N = número de puntos de datos

(Támara, 2018)

b) Desviación absoluta media (MAD)

La MAD de un conjunto de datos es la distancia media entre cada punto de datos y la media. Permite interpretar la variabilidad en un conjunto de datos.

$$MAD = \frac{\sum_{i=1}^{N} |\hat{x}_i - \overline{x}|}{N}$$
(58)

(Támara, 2018)

Donde:

 \bar{x} = observaciones actuales de las series de tiempo

c) Propagación de error

La propagación para la suma y resta se determina:

$$s_y = \sqrt{s_a^2 + s_b^2 + s_c^2}$$
(59)

La propagación de error multiplicación o división se define como:

$$\frac{s_y}{y} = \sqrt{\left(\frac{s_a}{a}\right)^2 + \left(\frac{s_b}{b}\right)^2 + \left(\frac{s_c}{c}\right)^2} \tag{60}$$

Donde:

a, b, c = variables experimentales

 $s_a, s_b, s_c =$ incertidumbres

 $s_y, \frac{s_y}{y} =$ propagaciones de error

(Wenzel, 2013)

d) Media aritmética

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{61}$$

Donde:

 \bar{x} = media aritmética

 $x_i = i$ -ésimo valor observado

n = tamaño de muestra

(Wenzel, 2013)

V. Antecedentes

En el Departamento de Ingeniería Química de la Universidad del Valle de Guatemala se han realizado estudios previos sobre la producción de ácido poliláctico (PLA). Entre ellos se pueden mencionar el estudio realizado en el 2015 titulado "*Estudio técnico de determinación de modelos cinéticos para el cálculo de las variables de diseño básicas de los reactores empleados para la polimerización de poliácido láctico (PLA) a partir de ácido láctico grado industrial*" (Morales *et al.*, 2015) y el estudio realizado en el 2019 titulado, *Diseño y comparación de métodos para obtención de ácido poliláctico a partir del ácido láctico grado reactivo y soluciones de melaza, escalamiento a nivel planta piloto y propuesta de modelo financiero para evaluar factibilidad del proyecto* (Martínez ., 2019). Los estudios anteriores se enfocaron en estudiar la cinética de la reacción de polimerización de ácido láctico y estandarizar el proceso productivo del mismo a escala laboratorio.

En el trabajo titulado, *Diseño de una planta para la producción de poliácido láctico por policondensación a partir de ácido láctico proveniente de la fermentación de melaza utilizando el hongo Rhizopus oryzae* (Balsells *et al.*, 2014) realizado en el 2014 se obtuvo el escalamiento industrial para la producción de 13,400 toneladas de PLA para una proyección de 5 años. Sin embargo, en este trabajo no se contemplan los procesos de extracción y purificación de ácido láctico presente en el caldo fermentado obtenido de los biorreactores.

En el trabajo titulado, *Análisis de mercado y de etapas en la producción a escala laboratorio de PLA, por fermentación de melaza*, (Nájera *et al.*, 2016) realizado en el 2016 se estudiaron las condiciones de reacción para la producción de PLA y de ácido láctico (AL). En el módulo del estudio denominado "*Evaluación del efecto de la trioctilamina en distintos solventes para la extracción líquido-líquido de ácido láctico en una solución acuosa*" se tuvo como principal objetivo evaluar la eficiencia de tres disolventes en presencia de trioctilamina (TOA) y sin presencia de TOA para la extracción líquido-líquido líquido-líquido del ácido láctico en solución acuosa. Este trabajo concluye que se obtiene la mayor concentración de ácido láctico en fase oleosa al utilizar el disolvente 1-octanol sin TOA.

Como estudios externos se pueden mencionar el trabajo de denominado, *Estudios sobre la recuperación y purificación de ácido láctico para la producción de plástico biodegradable*, (Núñez *et al.*, 2009). En este estudio se evalúa la extracción líquido-líquido

del ácido láctico con diferentes solventes; entre ellos, acetatos de etilo, alcohol isobutílico, alcohol isoamílico y éter dietílico Se concluye que el mejor solvente para la extracción es el acetato de etilo en condiciones ácidas. De la misma forma en el trabajo titulado, *Purificación de ácido láctico: estudio previo*, (Shamis, 1955). En este trabajo se presentan los coeficientes de distribución de algunos disolventes orgánicos y se concluye que el mejor de los disolventes para la extracción del grupo de alcoholes es el alcohol n-isobutílico y del grupo de acetatos, el acetato de etilo.

VI. Metodología

La parte experimental del presente trabajo se llevó a cabo en el Laboratorio de Operaciones Unitarias de la Universidad del Valle de Guatemala.

6.1 Caracterización

Los siguientes métodos de caracterización fueron aplicados al ácido láctico y al caldo fermentado. Las mediciones se realizaron en triplicado.

6.2 Determinación de la densidad

- Se taró una probeta de 25 ± 0.3 mL en una balanza analítica.
- Se midieron 15 ± 0.3 mL de muestra en la probeta.
- Se pesó la probeta nuevamente en la balanza analítica.
- Se realizó el procedimiento anterior en triplicado para cada sustancia.
- Se determinó la densidad del caldo fermentado y del ácido láctico como se muestra en el cálculo 2.

6.3 Determinación de la viscosidad

- Se utilizó un viscosímetro de Ubbelhode en un baño termo estático a 25°C.
- Se ingresó una muestra de 40 mL de muestra y con la ayuda de un bulbo de succión se llevó la muestra a la altura indicada en el instrumento.
- El instrumento se colocó en un soporte dentro de un baño térmico y se corroboró con un termómetro de bulbo que la temperatura se estabilizara a 25 °C.
- Se aseguró que el viscosímetro se encontrara en posición totalmente vertical y que este no estuviera sujeto a vibraciones.
- Se tomó con un cronómetro el tiempo que tomaba a la sustancia descender de la marca superior a la marca inferior del instrumento. como en la Figura 8 Es importante que el viscosímetro se mantenga en una posición totalmente vertical y sin movimiento.
- Se realizó el mismo procedimiento para el agua, el caldo fermentado y el ácido láctico. El agua se utilizó como referencia.
- Se determinó la viscosidad del caldo fermentado y del ácido láctico como se muestra en el cálculo 3.

6.4 Determinación de pH

- Se utilizó un pHímetro digital PCSTrestr 35.
- Se calibró el pHímetro con solución buffer (pH =6.86) y agua (pH = 7) permitiendo que en ambos casos se estabilizara el valor de lectura.
- Se colocó la muestra en beaker de 100 mL y se introdujo el instrumento en la muestra hasta que se estabilizara el valor de lectura.
- Se tomó el valor indicado por el instrumento para el pH y la temperatura de medición.
- Se realizó el mismo procedimiento para el caldo fermentado y el ácido láctico.

6.5 Determinación de la concentración de ácido láctico

La determinación de la concentración de ácido láctico en las muestras se realizó mediante cromatografía líquido de alta resolución (HPLC) en el laboratorio de análisis instrumental de la Universidad del Valle de Guatemala. La columna utilizada fue una columna Agilent C18 de 250 mm x 4.6 mm, 5 μ m, con una temperatura de 16 °C y un flujo de fase móvil de 0.4 mL/ min. La curva de calibración y el cromatograma de ejemplo se encuentran en la sección de información adiciona (ver figuras 69 y 70 en anexos).

El siguiente método se utilizó únicamente para el caldo fermentado.

6.6 Determinación de la humedad

- Se utilizó una balanza de humedad OHAUS MB 120.
- Se colocaron 5 ± 0.3 mL de muestra a la balanza.
- Se programó para una corrida de 75 minutos a 80 °C.
- Se tomó el valor que indicaba la balanza.

6.7 Determinación de las curvas de equilibrio

6.7.1 Equilibrio líquido-líquido experimental

La siguiente metodología se realizó utilizando acetato de etilo y 1-octanol como disolvente.

a) Región acuosa de la curva binodal de solubilidad

- Se prepararon soluciones de ácido láctico en caldo de fermentación en proporciones de 5, 10, 20 30, 40, 50, 60, 70 y 80 (v/v).
- Se analizó la concentración de ácido láctico real de las soluciones mediante HPLC.
- Se determinó la densidad de las soluciones.
- Se colocó en un soporte universal una bureta de 25 ± 0.05 mL y se llenó a su marca de aforo con disolvente.
- Se colocó una estufa con agitación al lado de la parte inferior del soporte universal.
- Se tomó una alícuota de 10 ± 0.1 mL de la solución y se colocó en una probeta de 25 ± 0.3 mL.
- La probeta se colocó en baño maría con agua a temperatura ambiente y se controló dicha temperatura con un termómetro de bulbo durante el experimento.
- Se ingresó un imán de agitación a la probeta y se programó la estufa a 150 rpm.
- La alícuota se tituló lentamente con disolvente hasta que hubiera un cambio visible de separación de las dos fases. Se anotó el volumen de titulación del disolvente.
- Se determinó la composición de los tres componentes del sistema en la fase acuosa y con ellos se construyó la región acuosa de la curva binodal de solubilidad. Consultar los cálculos 16 – 18.

b) Región oleosa de la curva binodal de solubilidad

- Se prepararon soluciones de ácido láctico en disolvente en proporciones de 5, 10, 20 30, 40, 50, 60, 70 y 80 (v/v).
- Se analizó la concentración de ácido láctico real de las soluciones mediante HPLC.
- Se determinó la densidad de las soluciones.
- Se colocó en un soporte universal una bureta de 25 ± 0.05 mL y se llenó a su marca de aforo con caldo fermentado.
- Se colocó una estufa con agitación al lado de la parte inferior del soporte universal.
- Se tomó una alícuota de 10 ± 0.1 mL de la solución y se colocó en una probeta de 25 ± 0.3 mL.
- La probeta se colocó en baño maría con agua a temperatura ambiente y se controló dicha temperatura con un termómetro de bulbo durante el experimento.

- Se ingresó un imán de agitación a la probeta y se programó la estufa a 150 rpm.
- La alícuota se tituló lentamente con caldo fermentado hasta que hubiera un cambio visible de separación de las dos fases. Se anotó el volumen de titulación del disolvente.
- Se determinó la composición de los tres componentes del sistema en la fase acuosa y con ellos se construyó la región acuosa de la curva binodal de solubilidad. Consultar los cálculos 19 21.

c) Líneas de unión

- Se escogieron 6 puntos al azar por debajo de la curva de solubilidad y se prepararon soluciones con las concentraciones respectivas para 50 mL de solución.
- Se agitaron las soluciones preparadas anteriormente por 5 minutos y luego se dejaron reposar por 15 minutos.
- Se separaron las dos fases formadas en el paso anterior mediante un embudo de decantación.
- Se determinó la concentración de ácido láctico en ambas fases mediante HPLC.
- Se determinó el coeficiente de distribución y la selectividad de las líneas de unión.

6.7.2 Equilibrio líquido-líquido en Aspen Plus

La siguiente metodología se realizó utilizando acetato de etilo y 1-octanol como disolvente.

- Se abrió una plantilla de Aspen Plus denominada "Chemicals with Metric Units".
- Se ingresaron las especificaciones de los componentes buscando en la base da datos de sistema. Los componentes correspondían a: agua-disolvente-ácido láctico.
- Se configuró el modelo del equilibrio como NRTL.
- Se utilizó la herramienta "Ternary Diagram".
- Se estableció que las fases líquidas válidas del sistema fueran líquido-líquido.
- Se introdujeron las condiciones de operación de presión y temperatura, siendo estas las mismas que las condiciones a las cuales se realizó la experimentación (ver figura 71 en anexos).

• Se corrió el análisis y se obtuvo el diagrama ternario y los datos del equilibrio líquidolíquido del sistema evaluado.

6.7.3 Regresión de datos experimentales para el equilibrio líquido-líquido en Aspen Plus

- La siguiente metodología se realizó utilizando acetato de etilo y 1-octanol como disolvente.
- Se ingresaron los datos experimentales al programa utilizando su herramienta "DATA".
- Se seleccionó que el tipo de datos correspondía a una mezcla en base de fracción másica, se seleccionaron los componentes correspondientes al equilibrio y se seleccionó el tipo de datos como "TPXX" en la pestaña "Setup".
- Se agregaron las composiciones en equilibrio determinadas experimentalmente en la pestaña "Data".
- Se ingresó a la herramienta "Regresión" el set de data ingreso con anterioridad y se establecen los criterios de prueba para la regresión.
- Se seleccionó la opción "run" y se obtienen los datos regresados de las composiciones en equilibrio (ver Figura 72 en anexos).

6.7.4 Equilibrio líquido-vapor en Aspen Plus

La siguiente metodología se aplica únicamente al sistema agua – acetato de etilo – ácido láctico.

a) Equilibrios binarios

- Se utilizó la herramienta "Binary" y se determina que el tipo de análisis es "Txy".
- Se seleccionó un par de los componentes en una base molar y como componente variable el más volátil.
- Se establecieron las condiciones de presión y se corre el análisis (ver Figura 73 en anexos).
- Se repitió el mismo procedimiento para los otros pares de lo componentes.

b) Curvas residuales

- Se utilizó la herramienta "Residual Curves" y se ingresan los componentes ternarios.
- Se ingresó la presión de operación y las fases válidas como líquido-líquido vapor
- Se corrió el análisis (ver Figura 74 en anexos).

6.7.5 Dimensionamiento de equipo

a) Separación líquido-sólido

- Se recopilaron las propiedades del medio filtrante y de la torta (Koza, 2012).
- Se determinaron los requisitos de operación según el sistema planteado.
- Se dimensiona el equipo mediante el análisis sigma y la ley de D'arcy.

b) Simulación extracción líquido-líquido en Aspen Plus

La siguiente metodología se realizó utilizando acetato de etilo y 1-octanol como disolvente.

- Se seleccionó el bloque "Extract" y se nombran las corrientes de entrada y salida de la operación.
- Se ingresó en la pestaña "Streams" la cantidad de alimentación (F) y disolvente deseado (S).
- Se ingresó en la pestaña "Blocks" el número de etapas deseadas.
- Se corrió el análisis (ver Figura 75 en anexos).
- Se recopilaron los datos de los perfiles de las corrientes.
- Se realizó el procedimiento anterior variable el número de etapas y la relación F/S. Primero se dejó constante el número de etapas y se varió la relación F/S en 5:1, 2:1, 1:1, 1:2, 1:4, 1:6 y 1:10 para 2, 3 y 4 etapas. Segundo se dejó consta la relación F/S para 1:4, 1:6 y 1:10 para 2, 3, 4, 6, 10, 15 y 20 etapas.
- Mediante un análisis de sensibilidad se compararon los dos disolventes y es escogió el mejor en función de sus propiedades fisicoquímicas y termodinámicas.

c) Simulación destilación en Aspen Batch Modeler

La siguiente metodología se aplica únicamente al sistema agua-acetato de etilo-ácido láctico.

- Se ingresaron las propiedades mediante Aspen Properties.
- Se estableció el número de etapas de la destilación y las fases válidas.
- Se estableció la geometría del rehervidor en "pot geometry".
- Se estableció el tipo y medio de calentamiento "heat transfer"
- Se estableció la presión y la retención en las etapas "pressure/holdups"
- Se estableció la condición inicial en la pestaña "main" de "initian conditions" como reflujo total y se ingresaron las condiciones de temperatura y presión de la alimentación.
- Se estableció la cantidad de carga inicial en "initial charge" de "initian conditions" y la composición de los componentes en dicha carga.
- Se definieron los pasos de operación, siendo el primero reflujo total para alcanzar el equilibrio en la primera hora y luego el segundo una operación de producción que tuvo lugar hasta alcanzar la máxima concentración de ácido láctico en el rehervidor sin reflujo.
- Se corre la simulación y se recopiló la información correspondiente a los perfiles de temperatura, retención, composición y calor en el rehervidor y en el condensados/destilado (ver Figura 76 en anexos).
- Se realizó el procedimiento anterior para una operación sin reflujo variando el número de etapas en 1, 2, 3, 8, 12, 20, 30 y 50 y para una operación de 2 etapas para una relación de reflujo de 0, 2, 4, 8 y 10.
- Mediante un análisis de sensibilidad se determinó la mejor forma de operación.

d) Intercambiadores del calor para el proceso de destilación

Los intercambiadores de calor se dimensionar considerando el balance de masa y energía de la simulación de Aspen Plus para un proceso de destilación simple del sistema agua-acetato de etilo-ácido láctico. Estos se dimensionar para la máxima carga calórica a añadir (rehervidor) o a remover (condensador) de la simulación. Los datos del agua de enfriamiento y del vapor de agua de calentamiento se obtuvieron de los equipos presentes en el Laboratorio de Operaciones Unitarias. El método de cálculo detallado para el condensador y el rehervidor se encuentra en la sección G.5.b). (2). y G.5.c). (4). Del marco teórico.

6.7.6 Selección de equipo

Para la selección de equipo se realizó una investigación teórica y la información más relevante se encuentra indiciada en el marco teórico de este trabajo. La selección de basa en las ventajas que posee el equipo elegido con respecto a otros equipos disponibles comercialmente que cumplen la misma función para la operación planteada.

6.7.7 Softwares utilizados

- Se utilizó Microsoft Excel y Microsoft Word V16.45 como herramienta de cálculo y redacción.
- Se utilizó Aspen Plus y Aspen Batch Modeler V10 como herramienta de simulación.
- Se utilizó PRO SIM para graficar los diagramas triangulares ternarios de los equilibrios líquido-líquido.

VII. Resultados

7.1 Caracterización del caldo fermentado y del ácido láctico

Propiedad	Valor
Densidad (g/mL)	1.062 ± 0.02124
Viscosidad (N*s/m ²)	0.0021 ± 0.0000032
pН	5.03 ± 0.01
Humedad (p/p)	97.92 ± 0.01 %
Ácido láctico (p/p)	$1.69 \pm 0.0732~\%$

Cuadro 6. Características fisicoquímicas del caldo fermentado libre de biomasa

* El caldo fermentado se obtuvo mediante la biorreacción del hongo *Rhizopus Oryzae* con los azúcares presentes en la melaza. La concentración inicial de azúcares fue de 90 g/L y la concentración inicial de biomasa fue de 0.144 g/L. El tiempo de fermentación fue de 4.1 días.

Propiedad	Valor
Densidad (g/mL)	1.148 ± 0.0230
Viscosidad (N*s/m ²)	0.0357 ± 0.000499
pН	3.9 ± 0.01
Pureza (g/g)	90.00%

* Se utilizó ácido láctico grado reactivo marca Merck®.

7.2 Proceso seleccionado

El proceso seleccionado para la extracción y purificación de ácido láctico es la extracción líquido-líquido con purificación por destilación. Esta selección se basó en la investigación teórica realizada y en continuidad a los antecedentes de investigación del proceso realizados con anterioridad en el Departamento de Ingeniería Química de la Universidad del Valle de Guatemala.

7.3 Curvas de equilibrio

Figura 31. Equilibrio ternario líquido-líquido experimental y teórico del sistema aguaacetato de etilo-ácido láctico

* Referirse a los cuadros 70, 71, 74, 75 y 89 de la sección anexos.

Figura 32. Equilibrio ternario líquido-líquido experimental y teórico del sistema agua-1-octanol-ácido láctico

* Referirse a los cuadros 82, 83, 86, 87 y 93 de anexos.

Cuadro 8. Desviaciones de las composiciones (p/p) en equilibrios experimentales con respecto al modelo NRTL para el sistema agua-acetato de etilo-ácido láctico

Componente	Fase	RMSD (%)	MAD (%)	
Agua		1.13390	0.77554	
Acetato de Etilo	Refinado	3.22743	2.23372	
Ácido Láctico		1.71926	1.32683	
Agua		4.25728	3.25597	
Acetato de Etilo	Extracto	2.92267	1.96379	
Ácido Láctico		0.49786	0.33164	

• Referirse a los cuadros 96-101 de anexos.

Cuadro 9. Desviaciones de las composiciones (p/p) en equilibrios experimentales con respecto al modelo NRTL para el sistema agua-1-octanol-ácido láctico

Componente	Fase	RMSD (%)	MAD (%)
Agua		4.83090	3.66588
1-Octanol	Refinado	8.41589	7.72115
Ácido Láctico		7.80291	6.55098
Agua		11.4886	10.1205
1-Octanol	Extracto	4.66148	4.39803
Ácido Láctico		3.93494	3.30406

• Referirse a los cuadros 102-107 de anexos.

Cuadro 10. Rangos de selectividad y coeficientes de distribución según el disolvente utilizado en la extracción líquido-líquido

Solvente	Selectividad (a)		Coeficientes de distribución (K)		
Solvente	Mínimo	Máximo Mínimo Má		Máximo	
Acetato de etilo	3.222 ± 0.4665	6.862 ± 1.979	0.2612 ± 0.002894	0.5506 ± 0.0008381	
1-octanol	2.291 ± 0.1372	5.244 ± 0.8752	0.4253 ± 0.006309	0.8178 ± 0.0008473	

* Referirse a los cuadros 73 y 86 de anexos.

Equilibrio líquido-vapor para el proceso de destilación

Figura 33. Equilibrio líquido vapor a presión constate para el sistema agua-ácido láctico

* Referirse al Cuadro 254 de anexos.

Figura 34. Equilibrio líquido-vapor a presión constante para el sistema agua-ácido acetato de etilo

* Referirse al Cuadro 255 de anexos.

Figura 35. Equilibrio líquido-vapor a presión constante para el sistema agua-acetato de etilo

* Referirse al Cuadro 256 de anexos.

Figura 36. Equilibrio líquido vapor a presión constante para el sistema agua-acetato de etilo

* Referirse al Cuadro 256 de anexos.

SELECCIÓN DE EQUIPO

Aspecto	Modo de operación	Operación / diseño	Corrientes	Capacidad	Mantenimiento	Costos de operación / inversión	
Equipo		Separación de biomasa					
Filtro por gravedad	Continuo	 (a) Requiere de tiempos largos para la separación. (b) Pueden requerir de equipos auxiliares de vacío para su funcionamiento. 	 (a) Permite reutilizar la biomasa separada. Sin embargo, esta puede se adsorbida por el medio filtrante. (b) No es recomendable para partículas semisólidas como los micelios. 	(a) Capacidad intermedia debido al crecimiento de la torta con el tiempo.	 (a) Difícil debido a que los sólidos deben retirarse al final de la operación. (b) Dependiendo de la naturaleza del sistema, el filtro posee cierto grado de saturación al final del ciclo. 	(a) Depende de la generación de vacío.(b) Costo de inversión bajo.	
Centrífuga de espiral	Continuo o por lotes	 (a) Tiempos de operación intermedios para lograr el grado de separación. 	(a) No se pueden reutilizar los microorganismos separados.	(a) Capacidad alta.	 (a) Fácil mantenimiento debido a la descarga continua de sólidos. 	(a) Depende de la electricidad del motor.	
Centrífuga de canasta	Continuo o por lotes	 (a) Tiempos de operación cortos para lograr el grado de separación. 	 (a) Permite reutilizar la biomasa separada. (b) Alto grado de deshidratación y recuperación del líquido. (c) Recuperación de sólidos difícil. 	(a) Capacidad intermedia debido al crecimiento de la torta con el tiempo.	(a) Difícil debido a que los sólidos deben retirarse al final de la operación.	(a) Depende de la electricidad del motor. (b) Costo de inversión intermedio.	
Equipo	Extracción del ácido láctico					•	
Mezclador - sedimentador	Por lotes	(a) Buen contacto entre fases.(b) Alta eficiencia de etapas.(c) Tiempo de operación largo.	 (a) Pérdidas de producto por retención. (b) Se requieren mayores cantidades de disolvente. 	(a) Capacidad limitada.	(a) Fácil debido a su geometría.	 (a) Alto costo de energía. (b) Alto costo de inversión inicial y en espacio. 	
Extractor centrífugo	Continuo	 (a) Volumen de operación bajo para el mismo grado de extracción. (b) Corto tiempo de retención. (c) Cada extractor centrífugo alcanza una etapa teórica del equilibrio. 	 (a) Pueden tener pequeñas diferencias de densidades. (b) Utiliza la menor cantidad de disolvente para una separación determinada. 	(a) Capacidad alta.	(b) Difícil debido a las características centrífugas del equipo.	 (a) Alto costo de inversión. (b) Bajo costo en espacio. 	

Cuadro 11. Comparación de equipo disponible comercialmente para los procesos de separación sólido-líquido, líquido-líquido

Aspecto	Modo de	Operación / diseño	Corrientes	Capacidad	Mantenimiento	Costos de operación /		
Fauipo	operación	Pu	rificación del ácido láctico por d	lostiloción - roho	Inversion			
Intercambiador		(a) Alta área de transferencia de calor.	(a) Aprovechamiento de la corriente del fluido	(a) Capacidad		(a) Costo de inversión		
de calor tipo Kettle	Continuo	(b) Util para trabajar con vacío. (c) Útil para altas tasas de vaporización.	caloportador. (b) No es útil para fluidos viscosos.	alta.	(b) Difícil debido a su geometría.	alto.		
Intercambiador de calor de termosifón	Continuo	 (a) Bajo tiempo de residencia en el lado del proceso. (b) Buen control de la temperatura. (c) En ocasiones puede no representar un plato teórico. 	(a) Alta temperatura de corriente de salida.(b) No es útil para fluidos viscosos.	(a) Capacidad intermedia.	 (a) Fácil mantenimiento para el lado de proceso si es de tipo vertical. (b) Difícil mantenimiento para el lado del fluido caloportador si es de tipo horizontal. 	 (a) Costo de inversión intermedio. (b) Bajo costo en espacio. 		
Chaqueta de calentamiento	Por lotes	 (a) Área de transferencia de calor intermedia. (b) Útil para cargas pequeñas de alimentación. (c) No requiere de equipos adicionales. (d) Difícil control de la temperatura. 	(a) Útil para fluidos viscosos.(b) Composición variable en el tiempo.	(a) Capacidad intermedia.	(a) Fácil debido a su geometría.	 (a) Costo de inversión intermedio. (b) Bajo costo de espacio. 		
Equipo		Pur	ificación del ácido láctico por de	estilación - cond	ensador			
Intercambiador de calor de coraza y tubos	Continuo	 (a) Alta área de transferencia de calor. (b) Útil para altas tasas de condensación. (c) Alta caída de presión. 	(a) Composición constante en el tiempo.	(a) Capacidad alta.	(a) Difícil debido a su geometría.(b) Requiere de amplio espacio para realizar el mantenimiento.	 (a) Costo de inversión alto. (b) Alto costo de espacio. 		
Intercambiador de calor de tipo serpentín	Continuo	(a) Alta área de transferencia de calor.(b) Útil para bajas tasas de condensación.	(a) Composición variable en el tiempo.	(a) Capacidad baja.	(a) Difícil del lado del serpentín.	 (a) Costo de inversión bajo. (b) Bajo costo de espacio. 		

Cuadro 12. Comparación de equipo disponible comercialmente para los procesos de separación líquido-vapor

Los equipos seleccionados según los criterios evaluados fueron: la centrífuga de canasta para la separación de biomasa, el extractor centrífugo para la extracción del ácido láctico y el rehervidor enchaquetado y el condensador de serpentín para el proceso de destilación simple por lotes para la purificación del ácido láctico. Se seleccionaron 2 bombas peristálticas para el flujo de la alimentación y el solvente en el proceso de extracción. El agua de enfriamiento y el vapor saturado requeridos para la torre de destilación se obtienen de la caldera marca Cleaver Brooks® y de la torre de enfriamiento Baltimore® del Laboratorio de Operaciones Unitarias de la Universidad del Valle de Guatemala

7.4 Dimensionamiento de equipo

Dimensionamiento del proceso de separación de biomasa

Geometría ²			
Largo (m)	0.4		
Radio pared interior (m)	0.21		
Radio anillo líquido (m)	0.1		
Espesor (m)	0.004		
Capacidad			
Capacidad nominal (L)	55		
Caudal mínimo (L/h) ³	0.462		
Caudal máximo (L/h) ²	2.308		
Radio interior a la torta $(m)^4$	0.1819		
Condiciones de operación			
Tiempo mínimo de operación (h)	0.988		
Velocidad angular (rad/s)	209.440		
Fuerza G (g)	939.12		
Potencia requerida			
Potencia real (HP)	2.89		
Potencia nomial (HP) ⁵	3.40		

Cuauto 15, Curactoristicas y annensiones ac la contrinuçãa de canasta

¹ Para mayor información del balance de masa y materiales consultar la ficha técnica (Figura 66 de anexos).

² Para mayor información de la geometría del sistema consultar la Figura 7 del marco teórico.

³ El caudal varía en función del aumento del espesor de la torta con el tiempo.

⁴ Es el radio que la torta debe tener al final de la operación para la separación total la biomasa.

⁵ La potencia nominal se establece para el motor considerando una eficiencia del 85%.

Dimensionamiento del proceso de extracción líquido-líquido

Figura 37. Fracción de recuperación de ácido láctico en función de la relación alimentación/disolvente (F/S) considerando 2, 3 y 4 etapas para el sistema aguaacetato de etilo-ácido láctico

* Referirse a los cuadros 179, 184 y 189 de anexos.

Figura 38. Fracción de recuperación de ácido láctico en función del número de etapas considerado relaciones F/S de 1:4, 1:6 y 1:10 para el sistema agua-acetato de etiloácido láctico

* Referirse a los cuadros 194, 199 y 204 de anexos.

Figura 39. Rendimiento de la extracción líquido-líquido en función de la relación F/S para 3 etapas en el sistema agua-acetato de etilo-ácido láctico

* Referirse al Cuadro 184 de anexos.

Figura 40. Fracción de recuperación de ácido láctico en función de la relación alimentación/disolvente (F/S) considerando 2, 3 y 4 etapas para el sistema agua-1octanol-ácido láctico

* Referirse a los cuadros 209, 214 y 219 de anexos.

Figura 41. Fracción de recuperación de ácido láctico en función del número de etapas considerado relaciones F/S de 1:4, 1:6 y 1:10 para el sistema agua-1-octanol-ácido láctico

* Referirse a los cuadros 224, 229 y 234 de anexos.

Figura 42. Rendimiento de la extracción líquido-líquido en función de la relación F/S para 3 etapas en el sistema agua-1-octanol-ácido láctico

* Referirse al Cuadro 214 de anexos.

* Referirse a los cuadros 184 y 220 de anexos.

Selección: se seleccionó una operación de extracción líquido-líquido de 3 etapas a contracorriente con una relación F/S de 1:6.

Geometría				
Largo (m)	0.18			
Ancho (m)	0.12			
Alto (m)	0.24			
Radio interno (m)	0.06			
Radio película líquida (m) ¹	0.03			
Espesor (m)	0.001			
Capacidad				
Flujo total (L/h) ²	10			
Cámara de mezclado (mL) ³	22			
Cámara de separación (mL) ³	32			

Cuadro 14.	Características y	dimensiones	de los extractores	centrífugos
	•			0

¹ Radio del líquido en la centrífuga cuando se encuentra en funcionamiento.

² El flujo total considera el flujo de alimentación y el flujo de disolvente.

³ Ver ficha técnica para mayor detalle de las cámaras del equipo, materiales y balance de materia (Figura 67 en anexos).

Condiciones de operación	
Número de etapas teóricas	3
Relación alimentación-disolvente	1:6
Velocidad angular (rad/s)	282.743
Fuerza G (g)	489.0132
Potencia requerida	
Potencia (W)	32.92
Potencia nominal (W) ¹	39.00

Dimensionamiento del proceso de destilación

Figura 44. Curvas residuales para el sistema ternario agua- acetato de etilo- ácido láctico

¹ La potencia nominal se establece para el motor considerando una eficiencia del 85%.
* Referirse a los cuadros 258-262 de anexos.

Figura 45. Perfil de temperatura y calor añadido en el rehervidor para un sistema de destilación simple abierta

* Referirse a los cuadros 264 y 266 de anexos.

Figura 46. Perfil de retención de líquido en el rehervidor y en el destilado para un sistema de destilación simple abierta

* Referirse a los cuadros 265 y 267 de anexos.

Figura 47. Perfil de composición en el rehervidor para un sistema de destilación simple abierta

- 1 0.9 Fracción molar (kmol/kmol) 90 (kmol/kmol) 70 (kmol/kmol) 70 (kmol/kmol) 0.1 0 2.00 0.00 0.50 1.00 1.50 2.50 3.00 3.50 4.00 Tiempo (h) ------ Ácido láctico Acetato de etilo -Agua
- * Referirse a los cuadros 265 y 267 de anexos.

Figura 48. Perfil de composición en el destilado para un sistema de destilación simple abierta

* Referirse a los cuadros 265 y 267 de anexos.

Figura 49. Análisis de sensibilidad de la variación de número de etapas en función del tiempo sin reflujo y de la variación de la relación de reflujo en función del tiempo para 2 etapas para obtener una concentración en el rehervidor de ácido láctico de 0.89 (kmol/kmol)

*

Referirse los cuadros 268 y 269 de anexos. *

Figura 51. Análisis de sensibilidad de la retención en el destilado en función del número de etapas sin reflujo y de la relación de reflujo para 2 etapas para obtener una concentración en el rehervidor de ácido láctico de 0.898 (kmol/kmol)

* Referirse los cuadros 268 y 269 de anexos.

Selección: se seleccionó una operación de destilación simple en una etapa sin reflujo.

Cuadro 15. Características y dimensiones del condensador para la recuperación de disolvente¹

Balance de energía del sistema			
Temperatura media del vapor destilado (°C) ²	71.54		
Temperatura media del agua de enfriamiento $(^{\circ}C)^2$	41.50		
Flujo de agua de enfriamiento (kg/s)	0.03589		
Flujo de vapor destilado (kg/s)	0.00881		
Transferencia de calor por el exterior d	lel serpentín ²		
Paso $(m)^3$	0.054		
Diámetro interior hélice (m) ³	0.356		
Diámetro exterior hélice (m) ³	0.428		
Longitud serpentín (m)	15.0932		
Volumen del serpentín (m ³)	0.0154		
Volumen del ánulo (m ³)	0.0346		
Velocidad másica fluido (kg/m ² s)	9.73191		
Coeficiente de convección (W/m ² °C)	119.5419		
Transferencia de calor por el interior del serpentín ⁴			
Área sección transveral serpentín (m ²)	0.0006158		
Caudal volumétrico (m ³ /s)	0.0000361		
Velocidad (m/s)	0.05862		
Coeficiente de convección (W/m ² °C)	412.2694		
Transferencia de calor global			
Espesor del tubo serpentín (m)	0.004		
Coeficiente global (W/m ² °C)	85.9043		
Área de transferencia de calor (m^2)	1.7070		
Número teórico de vueltas del serpentín	14.1741		
Número de vueltas real del serpentín	14		
Altura del intercambiador de calor requerida (m)	0.7920		

¹ Ver ficha técnica para mayor detalle de los materiales y del balance de materia (Figura 68 en anexos).
² El fluido que fluye por el exterior de serpentín es el vapor destilado.
³ Ver Figura 25 del marco teórico para mayor detalle de la geometría del sistema.
⁴ El fluido que fluye por el interior del serpentín es el agua de enfriamiento.

Cuadro 16. Características y dimensiones del rehervidor para la purificación de ácido láctico¹

Balance de energía del sistema			
Temperatura media del vapor de agua (°C) ²	166.28		
Temperatura media del extracto (°C) 2	50.4103		
Flujo de agua de vapor de agua (kg/h)	7		
Geometría de la chaqueta			
Área de la chaqueta $(m^2)^3$	0.98175		
Transferencia de calor en la chaqueta			
Coeficiente de convección interno (W/m ² °C)	90.3583		
Coeficiente de convección externo (W/m ² °C)	82.1439		
Coeficiente global de transferencia de calor (W/m ² °C)	40.5831		
Área de transferencia de calor $(m^2)^3$	0.8752		

 ¹ Ver ficha técnica para mayor detalle de los materiales y del balance de materia (figura 68 en anexos).
 ² Se utilizaron para determinar las propiedades de las corrientes.
 ³ La chaqueta es adecuada para el calentamiento debido que tiene una mayor área que el área de transferencia de calor requerida para el sistema.

Figura 52. Esquema de flujo del proceso de extracción y purificación de ácido láctico considerando un flujo total de 10 L/h en

el proceso de extracción líquido-líquido (AE)

*La base de cálculo del dimensionamiento del proceso se basa en la producción de 1 reactor de PLA con volumen efectivo de 2.5 L con una pureza del 90.06 % (p/p) **Se consideró una base de cálculo de 10 horas de operación. *** La simbología de los equipos se encuentra en la figura 61 de anexos. **** El balance de masa por lotes se utilizó para determinar las capacidades de los equipos (ver Figura 62 de anexos). **** El destilado se recircula al proceso de extracción líquido-líquido.

Cuadro 17. Concentraciones iniciales y finales de ácido láctico y rendimientos según la etapa del proceso

Etono del mesoco	Concentración	D	
Etapa del proceso	Inicio	Final	Kendimiento %
Centrifugación	1.571	1.686	90.00
Extracción líquido-líquido	1.686	0.251	91.45
Destilación	0.251	90.06	97.55
Proceso global	1.571^2	90.06 ³	80.30

¹ Los rendimientos obtenidos están sujetos a los equilibrios termodiámicos líquido-vapor y líquido-líquido vapor teóricos. Los rendimientos reales serán menores a los presentados según las especificaciones del equipo seleccionado.

² El proceso propuesto comienza con el caldo fermentado con ácido láctico en baja concentración proveniente de un biofermentador de 15 L de volumen efectivo.

³ El proceso propuesto termina con los fondos obtenidos del proceso de destilación con ácido láctico en alta concentración para su posterior polimerización en un reactor de 2.5 L de volumen efectivo para la producción de ácido poliláctico.

VIII. Análisis de resultados

Las etapas de purificación y extracción se realizan a partir de un caldo de fermentación producto de la biorreacción de *Rhizopus Oryzae* con melaza en un biorreactor con volumen efectivo de 15 L. El caldo de fermentación obtenido presentó un pH de 5.03, la concentración de ácido láctico en el caldo libre de biomasa fue de 1.69 % (p/p) y el porcentaje de humedad de 97.92% (ver Cuadro 6). El pH se categoriza como ácido y es un indicador de la presencia de ácido orgánicos. Los análisis de composición demuestran que el caldo fermentado tiene cierto grado de impurezas. Durante la etapa de biorreacción se tuvo como principal desventaja la presencia de productos no deseados como azúcares y ácidos orgánicos secundarios. Las condiciones de la biorreacción como la temperatura, pH, tiempo de reacción y concentración de sustrato y microorganismo iniciales deben mejorarse para aumentar el rendimiento del producto de interés. Sin embargo, para el propósito de este trabajo no se internalizará en la etapa de biorreacción debido a que se encuentra fuera de los alcances de este.

En la etapa de biotransformación se obtienen aproximadamente 0.252 kg de ácido láctico, de los cuales se recuperan 0.176 kg al final de proceso, teniendo así un rendimiento global de la operación de 80.30%. La separación de biomasa tiene un rendimiento del 90%, la extracción líquido-líquido del 91.45% y la destilación del 97.55%. Las principales pérdidas en el proceso de separación de biomasa se dan debido a la retención del líquido en la torta al final de la operación, en el proceso de extracción líquido-líquido se da debido a la pérdida en la corriente de refinado y en la destilación debido que el equilibrio del sistema ocasiona que una pequeña cantidad de ácido láctico resulte en el destilado. Se requieren 1.494 kg de ácido láctico para cumplir con la concentración mínima inicial de ácido láctico para que tenga lugar la reacción de polimerización de PLA utilizando como referencia el reactor de polimerización del Laboratorio de Operaciones Unitarias de la Universidad del Valle de Guatemala. Considerando lo anterior se requieren entre 9-10 lotes de caldo fermentado para satisfacer los requerimientos mínimos de dicho reactor y considerando que los tiempos de reacción son largos (4.1 días) se requiere de 39 días para obtener la cantidad de ácido láctico especificada. Razón por la cual es imprescindible mejorar el rendimiento de la biorreacción y/o aumentar el número de birreactores disponibles para ello. Los equipos de extracción y purificación

propuestos tienen una capacidad de trabajo basada en un lote de producción proveniente del biorreactor (15 L de caldo fermentado).

Se seleccionó cómo método de recuperación de ácido láctico la extracción líquidolíquido y cómo método de purificación la destilación. Esto debido a las ventajas que este proceso posee con respecto a métodos alternativo cómo la precipitación de sales, separación con membranas, destilación de medio acuoso, entre otros. Entre las ventajas más importantes se pueden mencionar la obtención de un soluto de alta pureza, la disminución en inversión de equipo y en los costos energéticos de la operación.

Se plantea el dimensionamiento para un proceso intermitente a escala planta piloto. El proceso comienza con la separación sólido líquido de la biomasa dando lugar a un caldo fermentado libre de sólidos, posteriormente se procede a la extracción líquido-líquido de ácido láctico con disolvente y, por último, se realiza una purificación de ácido láctico recuperando el solvente mediante destilación. Se puede observar el esquema de flujo del sistema en la figura 52.

Se determinó que el mejor método de separación sólido líquido para la recuperación de la fase líquida del producto de la biorreacción es la filtración centrífuga. Se seleccionó una centrífuga de canasta de 0.42 m de diámetro interior y 0.4 m de longitud (ver Cuadro 13) con un motor de 3.40 HP. Se prefiere esta con relación a otros métodos de extracción debido a las características físicas del *Rhizopus Oryzae*. La principal de ellas se refiere al diámetro de los filamentos pluricelulares no uniforme debido su naturaleza de crecimiento en forma de micelio, siendo este diámetro (6-8 mm) mayor que el diámetro de partícula de otros microorganismos comunes (proteínas, levaduras, entre otros). La centrífuga de canasta realiza una buena separación para partículas de tamaño grande a velocidades angulares bajas. En este caso, se determinar de forma experimental que una velocidad de 2000 rpm favorece la recuperación de células reciclables de biomasa.

La filtración centrífuga combina los principios de la filtración y de la centrifugación permitiendo obtener una torta de *Rhizopus Oryzae* mediante la fuerza de la acción centrífuga, que en este caso es de 939 g (ver Cuadro 13). Esta operación permite una buena separación para partículas que sedimentan con gran rapidez, reteniendo la mayor cantidad de sólidos y permitiendo un proceso de deshidratación de la torta eficiente. A diferencia de la filtración y

la centrifugación convencional, la deshidratación de la torta evita procesos posteriores de secado térmico que pueden causar una desintegración térmica del hongo, requieren mayor tiempo de operación y consumo energético. La centrífuga de canasta requiere esterilizar el equipo al finalizar cada ciclo para evitar la contaminación entre microorganismos (ver Cuadro 11).

Durante la entrada del caudal de alimentación de la centrífuga se tiene un poro de medio filtrante saturado o en equilibrio y es en este estado en el que se posee una mayor permeabilidad. Posteriormente a la saturación, se requiere realizar la deshidratación de la torta mediante la acción centrífuga y se comienza la desaturación, la cual reduce la porosidad debido a la compresión y el reordenamiento de los sólidos. Para poder conocer el tiempo de deshidratación del *Rhizopus Oryzae*, se recomienda realizar un estudio de tiempos de separación. Esto mediante la medición del inicio de la desaturación con un Stroboscopio que permita observar el momento en el que cambia el brillo de la superficie de la torta. La permeabilidad de la torta puede controlar la velocidad de deshidratación. Por lo tanto, se recomienda incluir en el modelo del tiempo de deshidratación la permeabilidad relativa, la cual es función de la saturación.

La condición de velocidad de centrifugación establecida experimentalmente (2000 rpm) permitió recuperar la biomasa para el reciclaje de esta en posteriores procesos de biorreacción y se obtuvo un caldo filtrado libre de sólidos. Se escoge un medio filtrante de material Nylon y de diámetro de poro de 3 mm (ver Figura 66) considerando las características de hongo utilizado para garantizar una buena separación de la biomasa. Se obtuvo que el rango de flujo de la operación de filtración es de 0.462- 2.308 L/h y que el tiempo requerido para obtener el espesor de biomasa deseado de 28 mm es de 1 hora. Sin embargo, considerando la ecuación del tiempo de filtrado (ver ecuación 7) no depende del caudal; si no que únicamente de la concentración en la biomasa y del área de separación, se considera este el tiempo mínimo para garantizar la separación de sólidos deseados. El rango de caudales se debe principalmente a que debido a la configuración geométrica del sistema y a la acción centrífuga generada por el motor, el espesor de la torta de biomasa aumenta en función del tiempo dando lugar a que el paso del flujo sea menor. Se determina a su vez, que los factores más importantes de los que depende la velocidad de filtración son la fuerza centrífuga, área de la superficie cilíndrica filtrante, la viscosidad del caldo de fermentación

filtrado y la resistencia de la torta filtrante. La velocidad de operación es la variable más sensible del sistema, ya que determina la fuerza centrífuga aplicada sobre la suspensión y, en consecuencia, la variación del flujo de filtrado por la compresibilidad de la torta de filtración. Por lo tanto, se recomienda realizar un estudio experimental de la filtración centrífuga del caldo de fermentación obtenido para evaluar velocidad adecuada para la separación, diámetro del poro del medio filtrante, tiempo de operación y la resistencia específica de la torta y del medio bajo la acción de un campo centrífugo.

El caldo fermentado libre de biomasa con un contenido de 1.69 % (p/p) de ácido láctico se extrajo del caldo de fermentación mediante un disolvente. Esta operación da como resultado un extracto que debe separarse para su recuperación y para la purificación de ácido láctico. Los disolventes evaluados en las referencias bibliográficas consultadas para la extracción líquido-líquido fueron el acetato de etilo y el 1-octanol. Ambos solventes son químicamente inertes con los componentes del sistema a las condiciones de operación. Los equilibrios ternarios del sistema agua-disolvente y ácido láctico se realizaron experimentalmente y se muestran en las figuras 31 y 32.

Los datos obtenidos experimentalmente se regresaron utilizando el simulador Aspen Plus para comparar los mismos con respecto al modelo NRLT (modelo no aleatorio de dos líquidos) y se compararon ambas series de datos mediante el RMSD y el MAD (ver Cuadro 8 y 9) teniendo como principal resultado que los datos experimentales se acoplan al modelo NRLT. Para el sistema agua- acetato de etilo -ácido láctico se puede observar que se tiene una variabilidad menor al 5% por ambos métodos estadísticos. Para el sistema agua-1octanol- ácido láctico se tiene una mayor variación siendo la composición del agua en la fase del extracto la que posee una mayor variabilidad con respecto a la serie de datos correspondientes al modelo NRLT (11.49 % de RMSD y 10.12 % MAD). Esto se debe principalmente al método realizado para la determinación del equilibrio ternario, ya que este depende de detección visual para establecer los criterios de separación de fases. Además, en las regiones donde el solvente y el disolvente tienen un alto grado de inmiscibilidad la sensibilidad de la titulación turbidímétrica es más representativa, ya que se requiere un menor volumen del líquido titulante para la separación de las fases líquidas. Se recomienda utilizar un turbidímetro como instrumento que indique un cambio significativo en la medición representativo de la separación en equilibrio.

En la Figura 31, se puede observar el equilibrio ternario agua- acetato de etilo -ácido y en la Figura 32 el equilibrio ternario agua- 1-octanol -ácido láctico en coordenadas triangulares. Ambas representaciones gráficas permiten conocer algunas características del sistema. En ambos casos se puede observar el área bajo la curva binodal es bastante amplia, por lo que esto indica que tiene el equilibrio de dos fases líquida existe en cualquier punto equivalente a las concentraciones de los tres componentes. Además, de esta se puede conocer que el grado de inmiscibilidad entre disolvente y el solvente (agua) mediante la distancia desde la curva binodal de solubilidad con respecto a los vértices inferiores del triángulo, siendo el 1-octanol el disolvente que es más inmiscible con el agua cuando el componente predominante es agua y el acetato de etilo cuando el componente predominante es el disolvente. La solubilidad entre solventes disminuye con la temperatura, por lo tanto, se recomienda evaluar los equilibrios ternarios propuestos a temperaturas menores (5-15 °C) que la experimentación (25 °C) y realizar un análisis de costo beneficio con respecto a disminución en inversión inicial o en costos de solvente con respecto a los requerimientos energéticos para la disminución de la temperatura.

Con respecto a la selectividad del solvente para extraer el ácido láctico de la alimentación se puede considerar que ambos solventes son selectivos para extraer el ácido láctico sobre el agua, debido a que esta es mayor a 1. Es el acetato de etilo quien es más selectivo hacia el ácido láctico de los dos disolventes evaluados (2.29 - 5.24), esto se debe a que tiene un mayor grado de inmiscibilidad en la fase oleosa (disolvente) que el 1-octanol (ver Cuadro 10). Se puede observar que ambos disolventes tienen un coeficiente de distribución menor a 1, lo que indica que el ácido láctico tiene una mayor composición en la fase acuosa cuando se separa en las dos fases líquidas en equilibrio. Es el 1-octanol el que tiene un mayor coeficiente de distribución de los dos solventes evaluados. En las figuras 31 y 32 se observa que las líneas de unión tienen una menor pendiente en sistema que utiliza 1octanol como disolvente, debido a que la distribución del ácido láctico favorece la fase acuosa en ambos casos una menor pendiente en las líneas de unión favorece el coeficiente de distribución. Se recomienda realizar simulaciones en Aspen Plus para evaluar la selectividad y la distribución del ácido láctico en los equilibrios considerando los azúcares no consumidos y ácidos secundario para determinar su efecto en la extracción líquido-líquido y en la pureza del ácido láctico.

La alimentación tiene una mayor diferencia de densidades con el 1-octanol (0.230 g/mL) en comparación con el acetato de etilo (0.160 g/mL). Por lo tanto, utilizar 1-octanol como disolvente permitirá una mejor separación de las fases. El acetato tiene un menor punto de ebullición (77.11 °C) que el 1-octanol (195 °C), por lo que la recuperación del acetato de etilo es factible energéticamente mediante destilación. Las viscosidades del acetato de etilo (0.451 mPa s) es menor que la viscosidad del 1-octanol (mPa s), por lo que los requerimientos mecánicos para el movimiento del acetato de etilo serán menores que para el 1-octanol. El precio del acetato de etilo es un 15.78 % menor que el precio del 1-octanol.

El modo de operación para los equipos de la extracción líquida-líquida fue en multietapas con flujo a contracorriente, esto debido a que esta configuración requiere la menor cantidad de disolvente para realizar el mismo grado de extracción en comparación a las operaciones multietapa con flujo cruzado y monoetapa. La determinación de la relación de alimentación/disolvente (F/S) y el número de etapas requeridas comúnmente se realiza mediante el método gráfico. Sin embargo, para el sistema planteado se tiene una concentración de ácido láctico en la alimentación muy baja, lo cual imposibilita la determinación de la cantidad de disolvente y número de etapas para la operación (ver figuras 53 y 54). Es por lo anterior que se realizó un análisis de sensibilidad utilizando el simulador Aspen Plus para determinar las condiciones del solvente y etapas del proceso.

El análisis de sensibilidad de la recuperación de ácido láctico en función de la relación F/S para el sistema agua -acetato de etilo-ácido láctico se muestra en la Figura 37. El criterio de selección de la operación del sistema se basa en la condición que permita recuperar el 90% del ácido láctico obtenido en el caldo fermentado (ver Figura 55). En este sistema se puede observar que la mejor solución del sistema es una relación F/S de 1:6 para 3 etapas, ya que para realizar una recuperación del 90% con 2 etapas aumentaría la relación F/S a 1:10 y para 4 etapas se necesitaría una relación F/S de 1:5, lo cual no justifica la inversión inicial de la etapa extra con respecto al escenario seleccionado.

El análisis de sensibilidad de la recuperación de ácido láctico en función de la relación F/S para el sistema agua-1-octanol-ácido láctico se muestra en la Figura 40. El criterio de selección de la operación del sistema se basa en la condición que permita recuperar el 90% del ácido láctico obtenido en el caldo fermentado (ver Figura 56). En este sistema se puede observar que la mejor solución del sistema es una relación F/S de 1:5 para 3 etapas, ya que para realizar una recuperación del 90% con 2 etapas aumentaría la relación F/S a 1:7 y para 4 etapas no se tiene una disminución significativa de la cantidad de disolvente que justifique la inversión inicial.

Al analizar la sensibilidad de la recuperación de ácido láctico en función del número de etapas para tres diferentes relaciones de F/S (ver figura 38) se puede observar que se tiene un límite en el cual el aumento de número de etapas no es significativo en la recuperación de soluto. Para una relación F/S de 1:6, el número se requiere un máximo de 10 etapas para la mayor recuperación de soluto posible. De la misma forma, para una relación F/S de 1:5, el número se requiere un máximo de 7 etapas para la mayor recuperación de soluto posible en el sistema agua – 1-octanol – ácido láctico (ver Figura 41). Para ambos sistemas evaluados se analizó la eliminación de agua y las pérdidas de disolvente en el refinado (figuras 39 y 42) en función de la relación F/S para 3 etapas. Se puede observar que las pérdidas de disolvente en el refinado disminuyen en relación con la relación F/S, esto se debe a que se al aumentar la relación F/S disminuye la solubilidad entre los solventes. Para las relaciones de F/S seleccionadas para cada solvente (1:6 para el acetato de etilo y 1:5 para el 1-octanol) se puede observar que las pérdidas del disolvente en el refinado son mínimas. Sin embargo, es importante considerar esta pérdida, ya que se debe realizar un aporte del disolvente perdido para realizar posteriormente un nuevo ciclo de extracción. También, se puede observar que la eliminación del agua del soluto de interés disminuye al aumentar la relación F/S. Se tiene una eliminación del agua presente en la alimentación del 80% al utilizar acetato de etilo como disolvente y una eliminación del 75% al utilizar 1-octanol como disolvente.

En la Figura 43, se puede observar que la diferencia para la elección del disolvente es mínima, en esta se muestra que el 1-octanol tiene una relación F/S menor que el acetato de etilo para el mismo grado de separación. Sin embargo, esta disminución en disolvente al utilizar 1-octanol se puede contrarrestar con la diferencia de precio con respecto al acetato de etilo (-15.78%). Se recomienda realizar un análisis económico donde se evalúen las alternativas bajo las variables de inversión en equipo y costos de disolvente. Se selecciona el acetato de etilo como disolvente para la extracción de ácido láctico del caldo de fermentación. Esto debido a que este es un componente volátil con un punto de ebullición bajo (77.11°C) que puede recuperarse por destilación. La separación de los componentes volátiles por

destilación requiere una menor carga energética debido a que el calor de vaporización del acetato de etilo es menor con respecto al agua presente en el caldo de fermentación.

El equipo seleccionado para el proceso de extracción líquido-líquido (ver Cuadro 14) centrífugos configuración son 3 extractores en contracorriente de PTFE (politetrafluoroetileno) con un diámetro interno de 0.12 m y una altura de 0.24 m. Este contará con 2 bombas peristálticas que proporcionen de un caudal de 10 L/h. Los extractores centrífugos tendrán una velocidad de giro de 2700 rpm y un motor de 0.40 W. Cada uno de los extractores centrífugos proporciona representa una etapa teórica. Se escoge este equipo sobre otros equipos multietapa como los mezcladores-sedimentadores debido a que la inversión en equipo es menor, no requiere de equipos posteriores de separación de fases, los requerimientos de disolvente para el grado de extracción son menores, los tiempos de obtención de la extracción son pequeños, tiene una excelente separación de fases en equilibrio aún cuando el diferencial de densidades entra ambas corrientes (0.106 g/mL) es pequeño y ocupa poco espacio (ver cuadro 11).

El proceso de destilación se realiza por lotes y la alimentación es el extracto obtenido mediante la extracción líquido-líquido, el cual tiene una composición (p/p) de 0.0025 de ácido láctico, 0.0310 (p/p) de agua y 0.9666 (p/p) de acetato de etilo. Los equilibrios termodinámicos del sistema se modelaron mediante Aspen Plus utilizando el modelo NLRT. Los equilibrios binarios obtenidos se encuentran en las figuras 33-36. Para el caso de los equilibrios binarios agua-ácido láctico y agua-acetato de etilo se puede observar que los sistemas no presentan azeótropos y que la volatilidad relativa del agua y del acetato de etilo con respecto al ácido láctico es grande. Lo anterior favorece la separación del ácido láctico de los solventes. Para el caso del equilibrio binario acetato de etilo-agua (ver figura 35 y 36) se puede observar que el sistema presenta un azeótropo heterogéneo de punto de ebullición mínimo en 70 °C con una composición de 0.67 (kmol/kmol) de acetato de etilo y 0.33 (kmol/kmol) de agua. La región a la izquierda del azeótropo indica que existe un equilibrio líquido-líquido vapor para el sistema en donde tienen lugar las tres fases antes mencionadas. La región a la derecha de azeótropo demuestra un equilibrio líquido-vapor del sistema en donde el equilibrio se desplaza para la concentración componente menos volátil, que en este caso es el agua. Esta es la región en la cual tendrá lugar la destilación del sistema propuesto debido a la composición de la alimentación.

Debido a la dificultad de representar los equilibrios multicomponente en plano bidimensional para la determinación de los parámetros de operación se plantea para el sistema agua-acetato de etilo las curvas residuales del sistema (ver Figura 44). Esta permite conocer las posibles regiones de destilación considerando las condiciones del sistema. En esta se puede un nodo inestable en donde se encuentra el azeótropo binario de punto de ebullición mínimo para el agua-acetato de etilo (70.25 °C). Se observa que las curvas se dirigen desde este punto hasta el componente de mayor temperatura de ebullición (215.81 °C), el cual corresponde en este caso al ácido láctico. El balance de materia se ve graficado en la figura 44 (línea amarilla) y este delimita las posibles composiciones que se pueden tener en el fondo (W) y en el destilado (D) al final de la operación considerando la curva residual de equilibrio correspondiente al balance de materia. En este caso se puede observar de forma visual que la composición de ácido láctico en los fondos que se espera es de 0.89 kmol/kmol y la composición de acetato de etilo que se espera en el destilado es de 0.86 kmol/kmol. Lo anterior permite determinar que la recuperación de acetato de etilo y la purificación de disolvente son factibles mediante destilación.

La determinación de la operación de destilación se realizó utilizando el software Aspen Batch Modeler debido a que no se han desarrollado métodos de cálculo cortos que permitan dimensionar el sistema. Esto debido a que es un sistema no estacionario, multicomponente con un azeótropo binario heterogéneo de punto de ebullición mínimo donde la volatilidad relativa no se puede considerar como constante. La operación seleccionada es por lotes, la cual se justifica considerando que la alimentación en la torre no es lo suficientemente grande para su operación en continuo. Debido a la alta diferencia entre las volatilidades de los componentes del sistema ternario, se puede cumplir con el objetivo de la separación en un proceso de destilación simple abierta de una etapa en un tiempo de operación adecuado.

En la Figura 47 se muestra que la máxima concentración de ácido láctico en el rehervidor posible de obtener se alcanza a las 3.42 horas. En la Figura 45, se observa el cambio de la temperatura en el rehervidor en función del tiempo. En la primera hora de operación tiene lugar reflujo total para alcanzar el equilibrio del rehervidor. Posteriormente, la temperatura va aumento conforme se agota el rehervidor en agua y acetato de etilo hasta llegar a un punto crítico posterior a las 3 horas, en este la temperatura del rehervidor sube

debido a el agotamiento total del agua que da lugar a un equilibrio binario acetato de etiloácido láctico que permite una mayor separación del acetato de etilo y concentra los fondos en ácido láctico (166.27 °C). Con respecto a la carga calórica, esta es constante hasta que tiene lugar el agotamiento del agua y tiene lugar el equilibrio binario que se da a altas temperaturas (figura 34). La simulación se detiene en este tiempo debido a que el proceso de iteración del simulador se detiene cuando el sistema no puede mantener en un instante la temperatura del equilibrio. En este caso, las líneas de unión del equilibrio líquido vapor que favorecen una mayor separación de acetato de etilo en el calderín requieren de una mayor tasa del calentamiento instantánea para su simulación (mayor a una temperatura de 166 °C correspondiente al vapor saturado @ 90 psig).

En las figuras 47 y 48 se observa el perfil de composición de los tres componentes en el rehervidor y en el destilado respectivamente. En el rehervidor se puede observar que el componente que se agota con el tiempo es el agua, lo cual se rige con lo establecido por el equilibrio agua-acetato de etilo. Una vez se agota el agua, la operación se rige por el equilibrio acetato de etilo-ácido láctico que aumenta la concentración de ácido láctico en el rehervidor hasta un 0.89 kmol/kmol. La concentración no se puede aumentar considerablemente en un tiempo de operación prudente debido a que la retención en el rehervidor es muy pequeña, que cualquier evaporación del acetato de etilo será irrelevante. En el condensador se puede observar que la volatilidad del ácido láctico es muy baja, por lo que la presencia de este en el destilado aumenta significativamente cuando toma lugar el equilibrio acetato de etilo-ácido láctico anteriormente mencionado.

Se realizó un análisis de sensibilidad en la figura 49 para analizar el efecto del número de etapas y la relación de reflujo en el tiempo de operación para llegar a una concentración final de ácido láctico en el rehervidor de 0.901 kg/kg. En esta figura se puede observar que el tiempo de operación disminuye con el aumento del número de etapas. Esto disminuye la carga calórica del rehervidor y del condensador, sin embargo, esta disminución no es significativa para justificar el aumento en la inversión inicial en equipo. Por otro lado, el tiempo de operación aumenta con el aumento de la relación de reflujo y en la figura 50 se puede observar que no hay un aumento significativo en la composición del acetato de etilo en el destilado. Esto se debe a en este caso al estar operando con una alimentación que se

encuentra desplazada del azeótropo, la distribución del equilibrio líquido vapor favorece la concentración del acetato de etilo. En la Figura 50 se puede observar que la composición del acetato de etilo en el destilado disminuye al aumentar el número de etapas y permanece constante al aumentar la relación de reflujo. De la misma forma, en la Figura 51 se observa que la retención de líquido en el destilado disminuye al aumentar el número de etapas y que esta permanece constante al aumentar la relación de reflujo. Lo anterior se debe a que al aumentar el número de etapas aumenta la cantidad de líquido rico en componentes volátiles retenido en la columna, evitando que este llegue condensarse para formar parte del destilado.

El medio calefactor en el rehervidor es vapor saturado y el flujo de este es de 7 kg/h. El intercambio de calor en el rehervidor se dará mediante una chaqueta debido a que las características finales del ácido láctico (cuadro 7) indican que es un líquido altamente viscoso que puede adherirse a las superficies. El intercambio de calor en el condensador tendrá lugar en un serpentín con agua de enfriamiento como fluido removedor de calor debido a que este tiene un bajo costo de inversión y puede proveer una alta tasa de transferencia de calor (ver Cuadro 12). Se dimensionó intercambiador de tipo serpentín y se determinó que para las características geométricas y condiciones energéticas indicadas en el Cuadro 15, este posee un área de transferencia de calor de 1.7070 m², un coeficiente de transferencia de calor global de 85.9043 W/m² °C y se requiere de una longitud de 15.09 m de serpentín con 14 vueltas para llevar a cabo la remoción de calor deseada. Para el rehervidor se concluye que el área de transferencia de calor de la chaqueta (0.9818 m²) es suficiente para realizar la transferencia de calor a la alimentación (0.8752 m^2) . El coeficiente global de transferencia de calor de la chaqueta es de 40.5831 W/m² °C. Para ambos intercambiadores se recomienda determinar las resistencias de ensuciamiento y la retención de líquido experimentalmente para el sistema propuesto (agua -acetato de etilo - ácido láctico).

Se utilizarán los servicios auxiliares del Laboratorio de Operaciones Unitarias de la Universidad del Valle de Guatemala. Se recomienda realizar pruebas experimentales para establecer equilibrios binarios y curvas residuales la carga calórica del rehervidor, la retención de líquido de los platos y el tiempo de estabilización inicial del equilibrio para hacer que la simulación se aproxime en la medida de lo posible a la realidad.

IX. Conclusiones

- Se determinó que el caldo de fermentación libre de biomasa tiene densidad de 1.06 g/mL, viscosidad de 0.0021 N·s/m², pH de 5.03, 97.92 % (p/p) de humedad y 1.69 % (p/p) de ácido láctico.
- Se determinó que el láctico comercial tiene densidad de 1.15 g/mL, viscosidad de 0.0357 N·s/m², pH de 3.9 y pureza del 90.00%.
- 3. Se desarrollaron experimentalmente los equilibrios líquido-líquido para el sistema agua-acetato de etilo- ácido láctico y agua- 1 octanol-ácido láctico y se demostró mediante los tratamientos estadísticos RMSD y MAD que para ambos casos estos equilibrios se acoplan al modelo NRTL.
- 4. El modelado de los equilibrios líquido-vapor binarios de los tres componentes del sistema agua- acetato de etilo ácido láctico y la elaboración de las curvas residuales del equilibrio ternario permitió conocer los sistemas y las posibles operaciones de este. También, permitió conocer que la principal limitación termodinámica del sistema es la presencial de un azeótropo binario heterogéneo de punto de ebullición mínimo entre el agua y el acetato de etilo.
- 5. El equipo seleccionado para la separación de biomasa basado en las características del hongo *Rhyzopus Oryzae* es una centrífuga de canasta. Esta opera con un caudal de filtración de 0.59 3.54 L/h y tiene un tiempo mínimo se separación de 1.30 horas.
- 6. El equipo seleccionado para la extracción del 90% de ácido láctico presente en el caldo de fermentación son 3 extractores centrífugos a contracorriente con velocidad de giro de 2700 rpm y caudal global de 10 L/h. La relación alimentación/disolvente de 1:6 al utilizar acetato de etilo como disolvente extractante. Se obtiene una corriente de extracto con concentraciones másicas de 0.25% de ácido láctico, 3.09% de agua y 96.67% de acetato de etilo.
- 7. Se seleccionó que el modo de operación para la concentración de ácido láctico y recuperación de disolvente corresponde a una destilación simple abierta por lotes con un rehervidor y un condensador. El tiempo de operación es de 3.42 horas y permite obtener una concentración másica al final de la operación de ácido láctico de 90.00% en el rehervidor y de 96.87% de acetato de etilo en el destilado al final de la operación.

- 8. Se determinó que se requiere de un intercambiador de calor de tipo serpentín con una longitud de 14.09 m y 14 vueltas para condensar el destilado con un área de transferencia de calor 1.7070 m² y un coeficiente global de transferencia de calor de 85.9043 W/m² °C. Además, se determinó que el área de transferencia de calor de la chaqueta es adecuada para la transferencia de calor del sistema. Siendo el área requerida de (0.8752 m²) y el coeficiente global de transferencia de calor de 40.5831 W/m² °C.
- 9. Se determinó mediante un análisis de sensibilidad del sistema que el aumento de número de etapas disminuye el tiempo de operación y la carga calórica de los intercambiadores de calor y que el aumento de la relación de reflujo aumenta el tiempo de operación y la carga de los intercambiadores sin tener un cambio significativo en la concentración de acetato de etilo en el destilado.
- 10. Los procesos de extracción y purificación de ácido láctico permiten obtener un producto con una pureza del 90%. El rendimiento global de la operación del 80.30%, las mayores pérdidas se presentan en las etapas de separación de biomasa y extracción con disolvente.

X. Recomendaciones

- 1. Realizar estudios que permitan mejorar las condiciones de biorreacción que aumente el consumo del sustrato y el rendimiento de la reacción con respecto al ácido láctico.
- 2. Medir el inicio de la desaturación con un Stroboscopio que permita observar el momento en el que cambia el brillo de la superficie de la torta para poder conocer el tiempo de deshidratación del *Rhizpus Oryzae* e incluir en el modelo del tiempo de deshidratación la permeabilidad relativa en función de la saturación.
- 3. Realizar un estudio experimental de la filtración centrífuga del caldo de fermentación para evaluar velocidad adecuada para la separación, diámetro del poro de medio filtrante, tiempo de operación y la resistencia específica de la torta y del medio bajo la acción de un campo centrífugo.
- Utilizar un turbidímetro como instrumento que indique un cambio significativo en la medición representativo de la separación en equilibrio líquido-líquido de los sistemas ternarios.
- 5. Evaluar los equilibrios ternarios propuestos a temperaturas menores y realizar un análisis de costo beneficio con respecto a disminución en inversión inicial o en costos de solvente con respecto a los requerimientos energéticos para la disminución de la temperatura.
- 6. Evaluar otros disolventes con coeficientes de distribución altos cuya región de dos fases sea amplia en el diagrama ternario para garantizar la inmiscibilidad entre el solvente y el disolvente y se disminuya a su vez la cantidad de agua presente en la fase extractante y la cantidad de disolvente requerido para la extracción; lo cual da lugar a una disminución de costos operativos y de inversión inicial.
- Realizar un análisis económico para respaldar la decisión del número de etapas y de la relación de alimentación/disolvente para la extracción líquido-líquido.
- Analizar los procesos de adsorción con carbón activado y/o zeolitas catiónicas para la remoción de impurezas.
- 9. Analizar la extracción líquido-líquido con la concentración de disolvente obtenida en la recuperación de disolvente para evaluar los aportes de disolvente requeridos para lograr el grado de extracción deseado y los ciclos de utilización de disolvente. Así

como también evaluar económicamente la inversión en tamices moleculares para eliminar el agua presente en la corriente extractante.

- Realizar la simulación de destilación Batch en otros programas como ChemCad y SuperProDesigner que utilizan diferentes métodos rigurosos para su cálculo para dar validez a los resultados obtenidos.
- 11. Realizar pruebas experimentales para establecer equilibrios binarios y curvas residuales la carga calórica del rehervidor, la retención de líquido de los platos y el tiempo de estabilización inicial del equilibrio para hacer que la simulación se aproxime en la medida de lo posible a la realidad.
- 12. Realizar simulaciones en Aspen Plus para evaluar la selectividad y la distribución del ácido láctico en los equilibrios líquido-líquido y líquido-vapor considerando los azúcares no consumidos y ácidos secundario para determinar su efecto en la extracción líquido-líquido y en la pureza del ácido láctico.
- 13. Determinar las resistencias de ensucimianeto y la retención de líquido experimentalmente para el sistema de destilación propuesto considerando las propiedades y composiciones de la alimentación al proceso.

XI. Bibliografía

 Alvarado, R. (2012). Estudio de la filtración centrífuga de una suspensión agua-talco [IPN Oaxaca].

http://literatura.ciidiroaxaca.ipn.mx/jspui/bitstream/LITER_CIIDIROAX/274/1/Alv arado%20Velasco%2C%20R..pdf

- Arias, L. C., & Tamayo, M. A. (2017). Desarrollo de una propuesta de recuperación de residuos de solventes en la empresa Golden Flex, S. A. Fundación Universidad de las Américas.
- Avérous, L. (2008). Polylactic Acid: Synthesis, Properties and Applications. En Monomers, Polymers and Composites from Renewable Resources (pp. 433-450). Elsevier. https://doi.org/10.1016/B978-0-08-045316-3.00021-1
- Balsells, L. A., Cifuentes, P. A., García, S. F., Sagastume, J. F., & Sandoval, P. M. (2014). Diseño de una planta para la producción de poliácido láctico por policondensación a partir de ácido láctico proveniente de la fermentación de melaza utilizando el hongo Rhizopus oryzae. [Universidad del Valle de Guatemala]. 79202.
- 5. Bonsfills, A. (2001). *Contribución al estudio de la operación de destilación discontinua mediante simulación*. Universidad Politécnica de Cataluña.
- 6. Cengicaña. (2019). Producción de azúcar en Guatemala. https://cengicana.org
- Chang, D., Jung, H., Rhee, J., & Pan, J. (1999). Homofermentative Production of Dor L-Lactate in Metabolically Engineered Escherichia coli RR1. *pplied and Environmental Microbiology*, 65(4).
- 8. Dean, J. (1987). Langes's handbook of chemistry. McGraw-Hill Book.
- Distefano, G. P. (1968). Mathematical modeling and numerical integration of multicomponent batch distillation equations. *AIChE Journal*, 14(1), 190-199. https://doi.org/10.1002/aic.690140132
- Foust, A. S., Wenzel, L. A., Maus, L., & Andersen, L. B. (2006). Principios de Operaciones Unitarias (2da ed.). CESCA.
- González, M. I., Álvarez, M., & Álvarez, S. (2008). Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. *Desalination*, 228(1-3), 84-96.

- Grand View Research. (2019). Polylactic Acid Market Size, Share & Trends Analysis Report By End-use (Packaging, Agriculture, Automotive & Transport, Electronics, Textile), By Region, And Segment Forecasts, 2020–2027. https://www.grandviewresearch.com/industry-analysis/polylactic-acid-pla-market
- Harrison, R. G., Todd, P., Rugde, S. R., & Petrides, D. P. (2003). *Bioseparations Science and Engineering* (1ra ed.). Oxford University Press.
- Hofvendahl, K., & Hagerdal, H. (2000). Factors affecting the fermentative lactic acid production from renewable resources. *Enzyme and Microbial Technology*, 26, 87-107.
- 15. Kern, D. Q. (2006). *Procesos de transferencia de calor*. Compañía Editorial Continental.
- 16. Koza, C. R. (2012). Development of solid-liquid separation technologies in bioprocessing. Iowa State University.
- Kwak, H., Hwang, D. W., & Chang, J. (2012). Recovery of alkyl lactate from ammonium lactate by an advanced precipitation process. *Sep Purif Technol*, 93, 25-32.
- Lemos Machado Abreu, A. S., de Moura, I. G., de Sá, A. V., & Alves Machado, A. V. (2017). Biodegradable polymer nanocomposites for packaging applications. En *Food Packaging* (pp. 329-363). Elsevier. https://doi.org/10.1016/B978-0-12-804302-8.00010-8
- Li, Q., Jian, X., & Feng, D. (2016). Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry. *J Microbiol Biotechnol*, 26(1), 1-8.
- 20. Lombira-Echevarria, J., & Otiniano, C. (1998). Antecedentes y perspectivas de la operación de destilación discontinua. *Rev. Per. Ing. Quím.*, *1*(1), 53-65.
- López, F., & Martínez, M. (2015). Introducción a la Ciencia de los Polímeros. Universidad de Guadalajara.
- 22. López-Munguía, C. (2000). Producción de enzimas microbianas. Biotecnología Alimentaria. Limusa.
- 23. MAGA. (2017). Comportamiento de los principales productos agroindustriales. https://precios.maga.gob.gt/archivos/semanales/2017/Guatemala%20informe%20se

manal%20de%20precios%20del%2020%20al%2026%20de%20enero%20de%2020 17.pdf

- 24. Marcilla Gomis, A., Gómez Siurana, A., García Cortés, A. N., & Cayuela Martínez,
 P. (1998). *Introducción a las operaciones de separación: Cálculo por etapas de equilibrio*. Universidad de Alicante.
- 25. Martínez, E. A. L., Valey, L. M., Corona, K., & Ortíz, L. O. (2019). Propuesta y comparación de métodos para obtención de ácido poliláctico a partir del ácido láctico grado reactivo y soluciones de melaza, escalamiento a nivel planta piloto y desarrollo de modelo financiero para evaluar la factibilidad del proyecto. [Universidad del Valle de Guatemala]. 90237.
- 26. Merck.(2020a).Fichatécnica1-octanol.https://www.merckmillipore.com/es/product/1-Octanol,MDA_CHEM-820931
- 27. Merck. (2020b). *Ficha técnica acetato de etilo*. https://www.merckmillipore.com/es/search/acetato%20de%20etilo?search=&Tracki ngSearchType=SB+-

+ Search+Box & SearchContextPageletUUID = & SearchTerm = acetato+de+etilo

- 28. Morales, E. A., Soto, M. P., López, M. I., & Castillo, J. G. (2015). Estudio técnico de determinación de modelos cinéticos para el cálculo de las variables de diseño básicas de los reactores empleados para la polimerización de poli (ácido láctico), a partir de ácido láctico grado industrial. [Universidad del Valle de Guatemala]. 79049.
- 29. Morales, Y., Arturo, J., Cobos, L., & Martínez, D. (2015). Herramientas numéricas para la determinación de cruvas de residuo y líneas de univolatilidad. *Fundación Universidad de Amétia*, 132-145.
- Mujtaba, I. M. (2004). *Batch distillation: Design and operation*. Imperial College Press ; Distributed by World Scientific.
- 31. Murillo, L. (2013). Recuperación y purificación de L(+)ácido láctico aplicando tecnologías de membrana a un caldo de piña (Ananas comosus) fermentado.
- Nájera, D. R., Marroquín, D. A., Galindo, J. A., Sandoval, K. A., & Meda, H. N. C. (2016). *Análisis de mercado y de etapas en la producción a escala laboratorio de PLA, por fermentación de melaza*. [Universidad del Valle de Guatemala]. 795454.

- 33. Núñez, A., Michelena, G., Carrera, E., & Álvarez, X. (2009). Estudios sobre la recuperación y purificación de ácido láctico para la producción de plásticos biodegradables.
- 34. OMS. (2014). Ficha técnica acetato de etilo. http://www.ilo.org/dyn/icsc/showcard.display?p_version=2&p_card_id=0367&p_la ng=es
- 35. Patil, R. K., Shende, B. W., & Ghosh, P. K. (1982). Designing a helical-coil heat exchanger. *Chemical Engineer*.
- 36. Pérez Sánchez, A., Pérez Sánchez, E. J., Heredia Sánchez, A., & Pazos Amayuela, L. (2019). Diseño de un intercambiador de calor de serpentín para el enfriamiento de acetona. Nexo Revista Científica, 32(01), 61-74. https://doi.org/10.5377/nexo.v32i01.7988
- 37. Perry, R. H., Green, D. W., & Maloney, J. O. (Eds.). (1997). *Perry's chemical engineers' handbook* (7th ed). McGraw-Hill.
- 38. Pundir, C. S., Narwal, V., & Batra, B. (2016). Determination of lactic acid with special emphasis on biosensing methods: A review. *Biosens Bioelectron*, 86.
- Romero, P., & Otiniano, C. (2009). Simulación de comportamiento de una columna de destilación discontinua para mezclas multicomponentes utilizando métodos cortos. *Rev. Per. Ing. Quím.*, 12(1), 52-59.
- 40. Rousselet Robatel. (2019a). Ficha técnica extractor centrífugo mono-etapa.
- 41. Rousselet Robatel. (2019b). *Principios de funcionamiento de filtración centrífuga*. http://www.rousselet-robatel.com/espanol/products/op-principles-vertical-sls.php
- 42. Sánchez, N. R., Ramírez, L., & Zapata, Z. (2008). Evaluación de un sistema de fermentación extractiva para la producción de ácido láctico utilizando suero de leche como sustrato. *Vitae*, 14(2), 27-34.
- 43. Schneider, A., Gerbi, V., & Reglodia, M. (1987). A Rapid HPLC Method for Separation and Determination of Major Organic Acids in Grape Musts and Wines. *Am J Enol Vitic*, 38(2).
- 44. Serna-Cock, L., & Rodríguez-de Stouvenel, A. (2005). Producción Biotecnológica del Ácido Láctico. *Journal of Food*, 5(1), 54-65. https://doi.org/10.1080/11358120509487672

- 45. Shamis, E. L. (1955). *Purificación de ácido láctico: Estudio previo*. Universidad de Buenos Aires.
- 46. Smith, J. M., Van Ness, H. C., & Abbott, M. M. (2005). *Introduction to chemical engineering thermodynamics* (7th ed). McGraw-Hill.
- Surendra Vishvakarma, S. K. (2016). A Review On Heat Transfer Through Helical Coil Heat Exchangers. https://doi.org/10.5281/ZENODO.60105
- 48. Támara, L. G. (2018). Análisis exploratoria de datos: Una introducción a la estadística descriptiva y probabilidad (1.ª ed.). Universidad Jorge Tadeo Lozano. https://doi.org/10.2307/j.ctvc5pc9g
- 49. Todd, D. B., & Davies, G. R. (1974). *Performance of centrifugal extractors*. https://www.lcec.com/objects/catalog/product/extras/92112_6.pdf
- 50. Towler, G. P., & Sinnott, R. K. (2008). *Chemical engineering design: Principles, practice and economics of plant and process design.* Elsevier/Butterworth-Heinemann.
- Treybal, Robert. E. (1980). Operaciones de Transferencia de Masa (3ra ed.). McGraw-Hill.
- 52. Udachan, I. S., & Sahoo, A. K. (2014). A study of parameters affecting the solvent extraction of lactic acid from fermentation broth. *Brazilian Journal of Chemical Engineering*, 31(3), 821-827. https://doi.org/10.1590/0104-6632.20140313s00002495
- 53. Universidad de Alicante. (2009). *Operaciones de destilación asistida*. https://rua.ua.es/dspace/bitstream/10045/1916/1/AOSTEMA3.pdf
- 54. Valiente, A. (2015). *Ingeniería del calor*. https://librosdrvaliente.files.wordpress.com/2015/09/capc3adtulo-7-rehervidores.pdf
- 55. Vodnar, D. C., Dulf, F. V., Pop, O. L., & Socaciu, C. (2013). L (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. *Microb Cell Fact*, 12, 92. https://doi.org/10.1186/1475-2859-12-92
- 56. Wasewar, K. L., Pangarkar, V. G., Heesink, A. B. M., & Versteeg, G. F. (2003). Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction. *Chemical Engineering Science*, 58(15), 3385-3393. https://doi.org/10.1016/S0009-2509(03)00221-5

- Wenzel, T. J. (2013). Douglas A. Skoog, Donald M. West, F. James Holler, and Stanley R. Crouch: Fundamentals of analytical chemistry, 9th ed., international ed. *Analytical and Bioanalytical Chemistry*, 405(25), 7903-7904. https://doi.org/10.1007/s00216-013-7242-1
- 58. Young., W. C. (1989). Roark's Formulas for Stress and Stain. (6ta ed.). (Li et al., 2016).
- 59. Zhukov, V. G., & Chesnokov, V. M. (2018). Analysis of the Centrifugal Filtration Process in a Rotor with a Conic Filter Surface. *Theoretical Foundations of Chemical Engineering*, 52(1), 112-121. https://doi.org/10.1134/S0040579518010207

XII. Anexos

A. DATOS ORIGINALES

Cuadro 18. Condiciones ambientales

Condición	Valor
Temperatura (± 0.05 °C)	25.5
Presión (± 0.0005 atm)	0.987

Cuadro 19. Densidad de los disolventes

Disolvente	Densidad (g/mL)
Acetato de etilo	0.898
1-octanol	0.828

Cuadro 20. Concentración de ácido láctico y de biomasa en 15 L de caldo fermentado

producidos en el biorreactor

Componente	Concentración (p/p)	Concentración (v/v)
Ácido láctico	0.0157 ± 0.0001	
Ácido láctico libre de biomasa	0.0168 ± 0.00732	0.0182 ± 0.00871
Rhizopus Oryzae	0.0683	

Cuadro 21. Peso de la masa del caldo fermentado y de ácido láctico en un volumen de

$15 \pm 0.3 \text{ mL}$

Caldo fermentado		Ácido láctico
Corrida	Peso (± 0.000141421 g)	
1	16.0412	17.2199
2	16.0429	17.2197
3	16.0431	17.2213

Cuadro	22.	Prop	iedades	del	agua	a	25°C

Propiedad	Valor
Densidad (kg/m ³)	997
Viscosidad (N*s/m ²)	0.00089

Corrido	Tiempo (± 0.01 s)			
Corriua	Agua	Caldo fermentado	Ácido láctico	
1	12.41	27.11	421.2	
2	12.40	27.48	421.8	
3	12.44	27.21	456.0	

Cuadro 23. Tiempos de desplazamiento de fluidos en un viscosímetro Ubbelhode

Cuadro 24. pH y humedad relativa del caldo fermentado

Parámetro	Valor
pH (+/- 0.01)	4.53
Humedad (+/- 0.01% p/p)	98.31%

Parámetro	Valor
pH (+/- 0.01)	0
Pureza (% p/p)	90.00%

Cuadro 26. Características de la centrífuga de canasta

Característica	Valor
Velocidad (rpm)	2000
Velocidad (rad/s)	209.43
Altura (m)	0.40
Radio interior (m)	0.21
Radio interior al líquido (m)	0.10
Espesor (m)	0.004
Volumen nominal (L)	55
Densidad AISI (kg/m ³)	7800

Cuadro 27. Características del caldo fermentado con biomasa en la centrífuga de

canasta

Característica	Valor
Densidad Rhizopus Oryzae (kg/m ³)	1100
Densidad de la torta (kg/m^3)	73
Resistencia específica de la torta (m/kg)	6.73E+13
Volumen de caldo fermentado a separar (L)	15
Concentración inicial <i>Rhizopus Oryzae</i> (kg/L)	0.073

Cuadro 28. Volumen real de ácido láctico al 90% agregados para la preparación soluciones de caldo fermentado - ácido láctico en un balón de aforo de 25 ± 0.040 mL previo a su titulación turbidimétrica con acetato de etilo

Concentración	Volumen real
nominal (v/v)	(± 0.01 mL)
0.05	0.90
0.10	2.00
0.20	5.00
0.30	8.00
0.40	10.80
0.50	13.70
0.60	16.50
0.70	20.00
0.80	22.00

Cuadro 29. Volumen real de ácido láctico al 90% y agregado para la preparación soluciones de acetato de etilo - ácido láctico en un balón de aforo de 25 ± 0.040 mL previo a su titulación turbidimétrica con caldo fermentado

Concentración	Volumen real
nominal (v/v)	(± 0.01 mL)
0.05	1.39
0.10	2.80
0.20	5.50
0.30	8.33
0.40	11.10
0.45	12.50
0.70	13.90

Concentración nominal (v/v)	Concentración real (v/v)	Concentración real (p/v)
0.05	0.0507 ± 0.000218	0.0583 ± 0.000250
0.10	0.0882 ± 0.000218	0.1013 ± 0.0002500
0.20	0.1720 ± 0.0004355	0.1975 ± 0.0005009
0.30	0.3110 ± 0.0004355	0.3570 ± 0.0005000
0.40	0.4307 ± 0.0004355	0.4945 ± 0.0005000
0.50	0.4865 ± 0.0004355	0.5585 ± 0.0005000
0.60	0.6002 ± 0.0008711	0.6890 ± 0.001000
0.70	0.7047 ± 0.0008711	0.8090 ± 0.001000

Cuadro 30. Concentración nominal y real de las soluciones de ácido láctico en caldo fermentado previo a la titulación turbidimétrica con acetato de etilo

* Las concentraciones reales se determinaron mediante HPLC (cromatografía líquida de alta resolución).

Cuadro 31. Concentración nominal y real de las soluciones de ácido láctico en acetato de etilo previo a la titulación turbidimétrica con caldo fermentado

Concentración nominal (v/v)	Concentración real (v/v)	Concentración real (p/v)
0.05	0.0590 ± 0.000109	0.0678 ± 0.000125
0.10	0.1010 ± 0.0001089	0.1160 ± 0.0001250
0.20	0.2469 ± 0.0002178	0.2835 ± 0.0002500
0.30	0.3447 ± 0.0002178	0.3958 ± 0.0002500
0.40	0.4231 ± 0.0002178	0.4858 ± 0.0002500
0.45	0.4519 ± 0.0002178	0.5188 ± 0.0002500
0.70	0.7012 ± 0.0002178	0.8050 ± 0.0002500

* Las concentraciones reales se determinaron mediante HPLC.

Cuadro 32. Peso de la masa de las soluciones de ácido láctico en caldo fermentado previo a la titulación turbidimétrica con acetato de etilo a en un volumen de 25 ± 0.040

Concentración nominal (v/v)	Peso (± 0.000141421 g)
0.05	25.3055
0.10	27.5203
0.20	27.7317
0.30	27.9791
0.40	28.3534
0.50	28.3906
0.60	28.6443
0.70	29.2728

mL

Cuadro 33. Peso de la masa soluciones de ácido láctico en acetato de etilo previo a la titulación turbidimétrica con caldo fermentado en un volumen de 25 ± 0.040 mL

Concentración nominal (v/v)	Peso (± 0.000141421 g)
0.05	22.4130
0.10	22.4838
0.20	24.0191
0.30	25.2525
0.40	28.3315
0.45	30.7080
0.70	34.4705

Concentración	Volumen
nominal (v/v)	(± 0.05 mL)
0.05	0.9
0.10	1.1
0.20	1.2
0.30	1.5
0.40	1.9
0.50	2.3
0.60	3.1
0.70	Indefinido

Cuadro 34. Volumen de acetato de etilo para titular turbidimétricamente una alícuota de 10 ± 0.1 mL de solución acuosa de caldo fermentado – ácido láctico

Cuadro 35. Volumen de caldo fermentado para titular turbidimétricamente una	l
alícuota de 10 ± 0.1 mL de solución oleosa de acetato de etilo – ácido láctico	

Concentración nominal (v/v)	Volumen (± 0.05 mL)
0.05	0.4
0.10	0.5
0.20	0.7
0.30	1.1
0.40	1.4
0.45	1.5
0.70	2.8

Cuadro 36. Concentraciones nominales de punto de mezcla para la determinación de las líneas de unión del equilibrio líquido-líquido agua- acetato de etilo - ácido láctico

Línea de unión	Ácido Láctico (v/v)	Acetato de etilo (v/v)	Caldo de fermentado (v/v)
1	0.10	0.30	0.60
2	0.10	0.50	0.40
3	0.20	0.50	0.30
4	0.30	0.40	0.30
5	0.40	0.30	0.30
6	0.60	0.20	0.20

Línea de unión	Ácido Láctico (± 0.1 mL)	Acetato de etilo (± 0.1 mL)	Caldo fermentado (± 0.1 mL)
1	5.0	15.0	30.0
2	5.0	25.0	20.0
3	15.0	37.5	22.5
4	15.0	20.0	15.0
5	20.0	15.0	15.0
6	15.0	5.0	5.0

Cuadro 37. Volumen de sustancia agregados para la determinación de las líneas de unión del equilibrio líquido-líquido agua- acetato de etilo - ácido láctico

Cuadro 38. Concentraciones reales de equilibrio en fase acuosa	de las líneas de unión
del equilibrio líquido-líquido agua- acetato de etilo - á	icido láctico

Línea de unión	Concentración (p/v)	Concentración (p/p)
1	0.137 ± 0.00100	0.127 ± 0.000926
2	0.182 ± 0.00100	0.168 ± 0.000923
3	0.519 ± 0.000500	0.467 ± 0.000450
4	0.477 ± 0.000500	0.431 ± 0.000452
5	0.326 ± 0.000500	0.298 ± 0.000457
6	0.346 ± 0.000500	0.316 ± 0.000456

* Las concentraciones reales se determinaron mediante HPLC.

Cuadro 39. Concentraciones reales de equilibrio en fase oleosa de las líneas de unión del equilibrio líquido-líquido agua- acetato de etilo - ácido láctico

Línea de unión	Concentración (± 0.000250 p/v)	Concentración (p/p)
1	0.0300	0.0331 ± 0.000276
2	0.0495	0.0544 ± 0.000275
3	0.2465	0.2569 ± 0.0002605
4	0.2265	0.2373 ± 0.0002619
5	0.1538	0.1642 ± 0.0002670
6	0.1640	0.1747 ± 0.0002662

* Las concentraciones reales se determinaron mediante HPLC.
Cuadro 40. Volumen real de ácido láctico al 90% agregados para la preparación soluciones de caldo fermentado - ácido láctico en un balón de aforo de 10 ± 0.020 mL

Concentración	Volumen real
nominal (v/v)	(± 0.01 mL)
0.05	0.40
0.10	0.95
0.20	2.00
0.30	3.20
0.40	4.40
0.50	5.50
0.60	6.50
0.70	7.70

previo a su titulación turbidimétrica con 1-octanol

Cuadro 41. Volumen real de ácido láctico al 90% y agregado para la preparación soluciones de 1-octanol - ácido láctico en un balón de aforo de 25 ± 0.040 mL. previo a su titulación turbidimétrica con caldo fermentado

Concentración	Volumen real
nominal (v/v)	(± 0.01 mL)
0.05	0.50
0.10	1.10
0.20	5.50
0.30	8.30
0.40	11.10
0.50	14.00
0.60	16.70
0.70	19.00

Concentración nominal (v/v)	Concentración real (v/v)	Concentración real (p/v)
0.05	0.0618 ± 0.000436	0.071 ± 0.00050
0.10	0.0967 ± 0.000871	0.111 ± 0.00100
0.20	0.2091 ± 0.0008711	0.240 ± 0.00100
0.30	0.3049 ± 0.0008711	0.350 ± 0.00100
0.40	0.3998 ± 0.0008711	0.459 ± 0.00100
0.50	0.5070 ± 0.0008711	0.582 ± 0.00100
0.60	0.6080 ± 0.0008711	0.698 ± 0.00100
0.70	0.7029 ± 0.0008711	0.807 ±0.00100

Cuadro 42. Concentración nominal y real de las soluciones de ácido láctico en caldo fermentado previo a la titulación turbidimétrica con 1-octanol

* Las concentraciones reales se determinaron mediante HPLC.

Cuadro 43. Concentración nominal y real de las soluciones de ácido láctico en 1	1-
octanol previo a la titulación turbidimétrica con caldo fermentado	

Concentración nominal (v/v)	Concentración real (v/v)	Concentración real (p/v)
0.05	0.0518 ± 0.000436	0.0595 ± 0.000500
0.10	0.1011 ± 0.00008711	0.1161 ± 0.0001000
0.20	0.2062 ± 0.0001452	0.2367 ± 0.0001667
0.30	0.3063 ± 0.0001452	0.3517 ± 0.0001667
0.40	0.4100 ± 0.0001452	0.4707 ± 0.0001667
0.50	0.5009 ± 0.0001452	0.5750 ± 0.0001667
0.60	0.6077 ± 0.0001452	0.6977 ± 0.0001667
0.70	0.6922 ± 0.0001452	0.7947 ± 0.0001667

* Las concentraciones reales se determinaron mediante HPLC.

Concentración nominal (v/v)	Peso (± 0.000141421 g)
0.05	10.5038
0.10	10.6676
0.20	10.8089
0.30	10.9887
0.40	11.2391
0.50	11.4566
0.60	11.5119
0.70	11.5574

Cuadro 44. Peso de la masa de las soluciones de ácido láctico en caldo fermentado previo a la titulación turbidimétrica con 1-octanol a en un volumen de 10 ± 0.020 mL

Cuadro 45. Peso de la masa soluciones de ácido láctico en 1-octanol previo a la
titulación turbidimétrica con caldo fermentado en un volumen de 25 \pm 0.040 ml

Concentración nominal (v/v)	Peso (± 0.000141421 g)
0.05	20.764
0.10	21.3185
0.20	22.353
0.30	25.1253
0.40	24.2247
0.50	25.3292
0.60	26.2724

Cuadro 46. Volumen de 1-octanol para titular turbidimétricamente una alícuota de 6

 $\pm\,0.1~mL$ de solución acuosa de caldo fermentado – ácido láctico

Concentración nominal (v/v)	Volumen (± 0.005 mL)
0.05	0.02
0.11	0.02
0.24	0.04
0.35	0.10
0.46	0.20
0.58	0.60
0.70	Indefinido

Concentración nominal (v/v)	Volumen (± 0.05 mL)
0.05	1.0
0.12	1.0
0.24	1.7
0.35	2.2
0.47	2.8
0.58	3.8
0.70	4.7
0.79	2.9

Cuadro 47. Volumen de caldo fermentado para titular turbidimétricamente una alícuota de 10 ± 0.1 mL de solución oleosa de 1-octanol – ácido láctico

Cuadro 48. Concentraciones nominales de punto de mezcla para la determinación de las líneas de unión del equilibrio líquido-líquido agua- 1-octanol - ácido láctico.

Línea de unión	Ácido Láctico (v/v)	1-octanol (v/v)	Caldo fermentado (v/v)
1	0.10	0.30	0.60
2	0.10	0.50	0.40
3	0.20	0.50	0.30
4	0.30	0.40	0.30
5	0.40	0.30	0.30
6	0.50	0.30	0.20

Cuadro 49. Volumen de sustancia agregados para la determinación de las líneas de unión del equilibrio líquido-líquido agua- 1-octanol - ácido láctico

Línea de unión	Ácido Láctico (± 0.1 mL)	1-octanol (± 0.1mL)	Caldo fermentado (± 0.1mL)
1	2.0	6.0	12.0
2	2.0	10.0	8.0
3	4.0	10.0	6.0
4	6.0	8.0	6.0
5	8.0	6.0	6.0
6	10.0	6.0	4.0

Línea de unión	Concentración (± 0.0002500 v/v)	Concentración (p/p)
1	0.05380	0.0575 ± 0.000267
2	0.06650	0.0710 ± 0.000267
3	0.1333	0.1416 ± 0.0002658
4	0.3390	0.3551 ± 0.0002618
5	0.3835	0.4004 ± 0.0002610
6	0.4278	0.4452 ± 0.0002602

Cuadro 50. Concentraciones reales de equilibrio en fase acuosa de las líneas de unión del equilibrio líquido-líquido agua- 1-octanol - ácido láctico

* Las concentraciones reales se determinaron mediante HPLC.

Cuadro 51. Concentraciones reales de equilibrio en fase oleosa de las líneas de unión del equilibrio líquido-líquido agua- 1-octanol - ácido láctico

Línea de unión	Concentración (± 0.0002500 v/v)	Concentración (p/p)
1	0.01780	0.0244 ± 0.0003443
2	0.02330	0.0319 ± 0.0003445
3	0.0563	0.0763 ± 0.0003392
4	0.1863	0.2409 ± 0.0003233
5	0.2365	0.3004 ± 0.0003176
6	0.2923	0.3641 ±0.0003114

* Las concentraciones reales se determinaron mediante HPLC.

Cuadro 52. Características del extractor centrífugo

Característica	Valor
Velocidad (rpm)	2700
Velocidad (rad/s)	282.74
Altura (m)	0.18
Radio interior (m)	0.06
Radio interior al líquido (m)	0.03
Espesor (m)	0.001
Densidad PTFE (kg/m ³)	2200

Característica	Valor
Temperatura (°C)	166.283
Presión (atm)	7.2185
Calor latente (kJ/kg)	2082.30
Flujo de vapor (kg/h)	7

Cuadro 53. Características del vapor saturado.

Cuadro 54. Características del condensador en la destilación

Característica	Valor	
Тіро	Serpentín	
Conductividad térmica del material (W/m ² °C)	16	
Diámetro interior del serpentín (m)	0.028	
Diámetro exterior del serpentín (m)	0.036	
Diámetro exterior del cilindro interior (m)	0.32	
Diámtro interior del cilidro exterior (m)	0.40	
Diámetro de la hélice (m)	0.36	
Agua de enfriamiento		
Temperatura de entrada (°C)	28	
Temperatura de salida (°C)	55	
Resistencias de ensuciamiento		
Agua (m ² °C/W)	0.0002	
Acetato de etilo (m ² °C/W)	0.0004	

Cuadro 55. Características del rehervidor para la destilación.

Característica	Valor
Tipo	Chaqueta vertical
Diámetro interno (m)	0.5
Diámetro externo (m)	0.55
Altura (m)	0.5

B. CÁLCULOS DE MUESTRA

Cálculo 1. Determinación del peso promedio del caldo fermentado en un volumen de $15\pm0.3~mL$

$$\bar{x} = \frac{16.0412 \text{ g} + 16.0429 \text{ g} + 16.0431 \text{ g}}{3} = 16.0424 \text{ g}$$

- * Referirse a la ecuación 61 del marco teórico.
- Se realizó el mismo cálculo para la determinación del peso promedio del ácido láctico y para la determinación de los tiempos promedio de desplazamiento de agua, caldo de fermentado y ácido láctico en un viscosímetro Ubbelhode.
- Referirse al Cuadro 21 de datos originales y al Cuadro 56 de datos calculados para la determinación de los pesos promedio.
- Referirse al Cuadro 23 de datos originales para la determinación de los tiempos de desplazamiento y al Cuadro 58 para la determinación de los tiempos promedio de desplazamiento.

Cálculo 2. Determinación de la densidad promedio del caldo fermentado

$$\rho = \frac{M_{av}}{V}$$

Donde:

 ρ = densidad del fluido

 M_{av} = peso promedio

V = volumen

$$\rho = \frac{16.0424 \ g}{15 \ mL} = 1.0695 \ \frac{g}{mL}$$

- * Se realizó el mismo cálculo para la determinación de la densidad promedio del ácido láctico.
- * Referirse al Cuadro 21 de datos originales y al Cuadro 56 de datos calculados.

Cálculo 3. Determinación de la viscosidad promedio del caldo fermentado utilizado un viscosímetro Ubbelhode

$$\mu = \frac{\mu_{agua} * \rho * t}{\rho_{agua} * t_{agua}}$$

Donde:

 $\mu = viscosidad$

t = tiempo promedio de desplazamiento en viscosímetro Ubbelhode

$$\mu = \frac{0.00089 \frac{N * s}{m^2} * 997 \frac{kg}{m^3} * s}{1069.5 \frac{kg}{m^3} * s}$$

- * Se realizó el mismo cálculo para la determinación de la viscosidad promedio del ácido láctico.
- * Referirse al Cuadro 23 de datos originales, y a los cuadros 58 y 59 de datos calculados.

Cálculo 4. Determinación de la fuerza G de la centrífuga de canasta

$$G = 0.001118 * 0.21 m * \left(2000 \frac{1}{s}\right)^2 = 939.12$$

- * Referirse a la ecuación 12 del marco teórico.
- * Referirse al Cuadro 26 de datos originales, y al Cuadro 60 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la fuerza G de los extractores centrífugos líquido-líquido. Referirse al Cuadro 52 de datos originales y al cuadro 241 de datos calculados.

Cálculo 5. Determinación del volumen de la torta de *Rhizopus Oryzae* en la centrífuga de canasta

$$V_T = \frac{[X]_o * V_o}{\rho_{RO}}$$

Donde:

 V_T = volumen de la torta

 $[X]_o$ = composición de biomasa en un lote de caldo fermentado producido en el biorreactor

 V_o = volumen de un lote de caldo fermentado producido en el biorreactor

 ρ_{RO} = densidad del *Rhizopus Oryzae*

$$V_T = \frac{0.073 \ \frac{kg}{L} * 15 \ L}{1100 \ \frac{kg}{m^3}} = 0.995 \ L$$

* Referirse al Cuadro 27 de datos originales y al Cuadro 60 de datos calculados.

Cálculo 6. Determinación de radio interior a la torta de Rhizopus Oryzae en la centrífuga de canasta

$$V_T = \pi \left(R_o - R_T \right) * L$$

Donde:

 R_o = radio interior de la centrífua de canasta

 R_T = radio interior a la torta

L =longitud de la canasta

$$0.000995455 = \pi (0.21 m - R_T) * 0.4 m$$
$$R_T = 0.1819 m$$

* Referirse al Cuadro 26 de datos originales y al Cuadro 60 de datos calculados.

Cálculo 7. Determinación del espesor de la torta de *Rhizopus Oryzae* en la centrífuga de canasta

$$E_T = R_o - R_T$$

Donde:

 E_T = espesor de la torta

$$E_T = 0.21 \ m - 0.1819 \ m = 0.028 \ m$$

* Referirse al Cuadro 26 de datos originales y al Cuadro 60 de datos calculados.

Cálculo 8. Determinación del caudal máximo de la centrífuga de canasta

$$Q = \frac{\pi \left(209.43 \frac{rad}{s}\right)^2 \left(1069.49 \frac{kg}{m^3}\right) (0.4 m)}{\left(0.0021 \frac{N*s}{m^2}\right) \left(6.7 \times 10^{13} \frac{m}{kg}\right) \left(1100 \frac{kg}{m^3}\right)} \left[\frac{(0.21 m)^2 - (0.10 m)^2}{\ln \frac{0.21 m}{0.2058 m}}\right]$$
$$Q = 0.0000006411 \frac{m^3}{s} = 2.30903 \frac{L}{h}$$

- * Referirse a la ecuación 6 del marco teórico.
- * Se realizó el mismo cálculo para los perfiles de caudal en función del radio interior a la torta.
- * Referirse al cuadro 26 de datos originales y a los cuadros 60, 61 y 62 de datos calculados.

Cálculo 9. Determinación del tiempo mínimo de operación de la centrífuga de canasta

$$t = \frac{\left(0.0021 \frac{N*s}{m^2}\right) \left(6.7 \times 10^{13} \frac{m}{kg}\right) \pi \left(73 \frac{kg}{m^3}\right) (0.2058 m)^2}{2 \left(1069.49 \frac{kg}{m^3}\right) \left(209.43 \frac{rad}{s}\right)^2 - \left((0.21 m)^2 - (0.10 m)^2\right)} \left[\left(\frac{0.21 m}{0.1819 m}\right)^2 - 1 - 2ln \left(\frac{0.21 m}{0.1819 m}\right)\right]$$

$$t = 3555.3 s = 0.99 h$$

- * Referirse a la ecuación 7 del marco teórico.
- * Se realizó el mismo cálculo para los perfiles de tiempo en función del radio interior a la torta.
- * Referirse al Cuadro 26 de datos originales y a los cuadros 60, 61 y 62 de datos calculados.

Cálculo 10. Determinación del momento de inercia de la rotación de la centrífuga de canasta

$$I_1 = 2\pi \left(7800 \frac{kg}{m^3}\right) (0.0004 \ m) \ (0.21 \ m)^3 (0.4 \ m) = 0.7262 \ kg \ * \ m^2$$

- * Referirse a la ecuación 10 del marco teórico.
- * Se realizó el mismo cálculo para la determinación del momento de inercia de la rotación de la centrífuga de los extractores centrífugos líquido-líquido.
- Referirse al Cuadro 26 de datos originales y al Cuadro 63 de datos calculados para la determinación del momento de inercia de la centrífuga de canasta.
- Referirse al Cuadro 52 de datos originales y al Cuadro 241 de datos calculados para la determinación del momento de inercia de los extractores centrífugos líquidolíquido.

Cálculo 11. Determinación del momento de inercia de la rotación del líquido

$$I_2 = \frac{\pi \left(1069.49 \frac{kg}{m^3}\right) (0.4 m) \left((0.21 m)^2 - (0.10 m)^2\right)}{2} \left((0.21 m)^2 + (0.10 m)^2\right) = 1.2397 kg * m^2$$

* Referirse a la ecuación 11 del marco teórico.

- * Se realizó el mismo cálculo para la determinación del momento de inercia de la rotación de la centrífuga de los extractores centrífugos líquido-líquido.
- Referirse al Cuadro 26 de datos originales y al Cuadro 63 de datos calculados para la determinación del momento de inercia de la centrífuga de canasta.
- Referirse al Cuadro 52 de datos originales y al Cuadro 241 de datos calculados para la determinación del momento de inercia de los extractores centrífugos líquidolíquido.

Cálculo 12. Determinación de la potencia de la centrífuga de canasta

$$P = (0.7262 + .2397) kg * m^2 * \frac{209.43\frac{rad}{s}}{40 s} * 209.43\frac{rad}{s} = 2156 W$$

- * Se considera que el tiempo para alcanzar la velocidad angular son 40 s.
- * Referirse a la ecuación 9 del marco teórico.
- * Se realizó el mismo cálculo para la determinación de la potencia de los extractores centrífugos líquido-líquido.
- Referirse al Cuadro 26 de datos originales y al Cuadro 63 de datos calculados para la determinación de la potencia para la centrífuga de canasta.
- Referirse al Cuadro 52 de datos originales y al Cuadro 241 de datos calculados para la determinación de la potencia para los extractores centrífugos líquido-líquido.

Cálculo 13. Determinación de la potencia de la centrífuga de canasta

$$P_{nom} = \frac{P}{\eta} = \frac{2156 W}{0.85} = 2536.71 W$$

Donde:

 P_{nom} = potencia nomial

 $\eta =$ eficiencia

- * Se realizó el mismo cálculo para la determinación de la potencia nominal de los extractores centrífugos líquido-líquido.
- Referirse al Cuadro 26 de datos originales y al Cuadro 63 de datos calculados para la determinación de la potencia nominal de la centrífuga de canasta.

 Referirse al Cuadro 52 de datos originales y al Cuadro 241 de datos calculados para la determinación de la potencia nominal de los extractores centrífugos líquid- líquido.

Cálculo 14. Determinación del volumen nominal de ácido láctico al 90% a agregar para la preparación de la solución de caldo fermentado – ácido láctico con una concentración nominal de 5% (v/v) de ácido láctico en un balón de aforo de 25 ± 0.040

mL previas a la titulación turbidimétrica con acetato de etilo

$$V_{c_{nom}} = \frac{[C]_{nom} * V - [C]_F * V}{P_c - [C]_F}$$

 $V_{c_{nom}}$ = volumen nominal de ácido láctico al 90% a agregar

 $[C]_{nom}$ = concentración de ácido láctico nominal

V = volumen de la solución

 $[C]_F$ = concentración de ácido láctico del caldo fermentado sin biomasa

 P_c = pureza del ácido láctico a agregar

$$V_{c_{nom}} = \frac{0.05 \, \left(\frac{mL}{mL}\right) * 25 \, mL - 0.0182 \, \left(\frac{mL}{mL}\right) * 25 \, mL}{0.90 - 0.0182 \, \left(\frac{mL}{mL}\right)} = 0.9014 \, mL$$

- * Se realizó el mismo cálculo para el resto de las soluciones acuosas y oleosas para la determinación del volumen nominal de las soluciones oleosas para el sistema agua-acetato de etilo ácido láctico. Referirse a los cuadros 20 y 25 de datos originales y a los cuadros 64 y 65 de datos calculados.
- * Se realizó el mismo cálculo para la determinación del volumen nominal de las soluciones acuosas y oleosas del sistema agua 1-octanol ácido láctico. Referirse a los cuadros 20 y 25 de datos originales y cuadro 76 y 77 de datos calculados.

Cálculo 15. Determinación de la densidad de la solución de caldo fermentado - ácido láctico con concentración nominal de ácido láctico de 5% (v/v) previa a la titulación turbidimétrica con acetato de etilo

$$\rho_{sol} = \frac{25.3055 \text{ g}}{25 \text{ mL}} = 1.0122 \frac{g}{mL}$$

Donde:

 ρ_{sol} = densidad de la solución

 M_{sol} = masa de la solución

 V_{sol} = volumen de la solución

- * Se realizó el mismo cálculo para el resto de las soluciones acuosas y oleosas para la determinación de la densidad de las soluciones oleosas para el sistema agua- acetato de etilo ácido láctico. Referirse a los cuadros 32 y 33 de datos originales y a los cuadros 66 y 67 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la densidad de las soluciones acuosas y oleosas del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros cuadro 44 y 45 de datos originales y los cuadros 78 y 79 de datos calculados.

Cálculo 16. Determinación de la masa total de la solución de caldo fermentado - ácido láctico con una concentración nominal de 5% (v/v) titulada (alícuota de 10 ± 0.1 mL) con acetato de etilo

$$M_{tot} = V_{ali} * \rho_{sol} + V_{til} * \rho_{dis}$$

Donde:

 $M_{tot} =$ masa total

 V_{ali} = volumen alícuota

 V_{til} = volumen de titulante requerido

 ρ_{sol} = densidad de la solución

 ρ_{dis} = densidad del disolvente

$$M_{tot} = 10 \ mL * \ 1.0122 \ \frac{g}{mL} + 0.9 \ mL * 0.898 \ \frac{g}{mL} = 10.9304 \ g$$

- * Se realizó el mismo cálculo para el resto de las soluciones acuosas y para la determinación de la masa total de las soluciones oleosas para el sistema agua- acetato de etilo ácido láctico. Referirse a los cuadros 19, 34 y 35 de datos originales y a los cuadros 68 y 69 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la masa total de las soluciones acuosas y oleosas del sistema agua 1-octanol ácido láctico. Referirse a los cuadros 19, 46 y 47 de datos originales y los cuadros 80 y 81 de datos calculados.

Cálculo 17. Determinación de la concentración de ácido láctico en equilibrio líquidolíquido para la sección acuosa de la curva binodal de solubilidad del sistema agua – acetato de etilo – ácido láctico partiendo de una solución con concentración nominal

de ácido láctico de 5% (v/v)

$$[C]_A = \frac{[C]_{sol} * V_{ali}}{M_{tot}}$$

Donde:

[C]_A = concentración de ácido láctico en fase acuosa
 [C]_{sol} = concentración real de la solución
 62

$$[C]_A = \frac{0.0583 \left(\frac{g}{mL}\right) * 10 \, mL}{10.9304 \, g} = 0.05329 \left(\frac{g}{g}\right)$$

- * Se realizó el mismo cálculo para el resto de las soluciones acuosas para el sistema agua- acetato de etilo – ácido láctico. Referirse al Cuadro 30 de datos originales y a los cuadros 68 y 70 de datos calculados.
- Se realizó el mismo cálculo para la determinación de la concentración de ácido láctico en equilibrio de las soluciones acuosas del sistema agua – 1-octanol – ácido láctico. Referirse al Cuadro 42 de datos originales y a los cuadros 80 y 82 de datos calculados.

Cálculo 18. Determinación de la concentración de acetato de etilo en equilibrio líquido-líquido para la sección acuosa de la curva binodal de solubilidad del sistema agua – acetato de etilo – ácido láctico partiendo de una solución con concentración nominal de ácido láctico de 5% (v/v)

$$[B]_A = \frac{\rho_{dis} * V_{til}}{M_{tot}}$$

Donde:

 $[B]_A$ = concentración de disolvente en fase acuosa

$$[B]_A = \frac{0.898 \ \frac{g}{mL} * 0.9 \ mL}{10.9304 \ g} = 0.0739 \ \left(\frac{g}{g}\right)$$

- * Se realizó el mismo cálculo para el resto de las soluciones acuosas para el sistema agua- acetato de etilo – ácido láctico. Referirse a los cuadros 19 y 34 de datos originales y a los cuadros 68 y 70 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la concentración de disolvente en equilibrio de las soluciones acuosas del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 19 y 46 de datos originales y a los cuadros 80 y 82 de datos calculados.

Cálculo 19. Determinación de la concentración de agua en equilibrio líquido-líquido para la sección acuosa de la curva binodal de solubilidad del sistema agua – acetato de etilo – ácido láctico partiendo de una solución con concentración nominal de ácido

$$[A]_A = 1 - [C]_A - [B]_A$$

Donde:

 $[A]_A$ = concentración de agua en fase acuosa

$$[A]_A = 1 - 0.05329 \,\left(\frac{g}{g}\right) - 0.0739 \,\left(\frac{g}{g}\right) = 0.8728 \,\left(\frac{g}{g}\right)$$

- * Se realizó el mismo cálculo para el resto de las soluciones acuosas para el sistema agua- acetato de etilo – ácido láctico. Referirse al Cuadro 70 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la concentración de agua en equilibrio de las soluciones acuosas del sistema agua – 1-octanol – ácido láctico. Referirse al Cuadro 82 de datos calculados.

Cálculo 20. Determinación de la concentración de ácido láctico en equilibrio líquidolíquido para la sección oleosa de la curva binodal de solubilidad del sistema agua – acetato de etilo – ácido láctico partiendo de una solución con concentración nominal

de ácido láctico de 5% (v/v)

$$[C]_o = \frac{[C]_{sol} * V_{ali}}{M_{tot}}$$

Donde:

 $[C]_o$ = concentración de ácido láctico en fase oleosa

$$[C]_o = \frac{0.0583 \left(\frac{g}{mL}\right) * 10 \, mL}{9.3930 \, g} = 0.0721 \left(\frac{g}{g}\right)$$

- * Se realizó el mismo cálculo para el resto de las soluciones oleosas para el sistema agua- acetato de etilo – ácido láctico. Referirse al Cuadro 31 de datos originales y a los cuadros 69 y 71 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la concentración de ácido láctico en equilibrio de las soluciones oleosas del sistema agua – 1-octanol – ácido láctico. Referirse al Cuadro 43 de datos originales y a los cuadros 81 y 83 de datos calculados.

Cálculo 21. Determinación de la concentración de agua en equilibrio líquido-líquido para la sección oleosa de la curva binodal de solubilidad del sistema agua – acetato de etilo – ácido láctico partiendo de una solución con concentración nominal de ácido

láctico de 5% (v/v)

$$[A]_o = \frac{V_{tit} * \rho_{solv}}{M_{tot}}$$

 ρ_{solv} = densidad del solvente

Donde:

 $[A]_o$ = concentración de agua en fase oleosa

$$[A]_o = \frac{0.4 * 0.898 \frac{g}{mL}}{9.3930 g} = 0.0382 \left(\frac{g}{g}\right)$$

- * Se realizó el mismo cálculo para el resto de las soluciones oleosas para el sistema agua- acetato de etilo – ácido láctico. Referirse a los cuadros 19 y 35 de datos originales y a los cuadros 69 y 71 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la concentración de disolvente en equilibrio de las soluciones oleosas del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 19 y 47 de datos originales y a los cuadros 81 y 83 de datos calculados.

Cálculo 22. Determinación de la concentración de agua en equilibrio líquido-líquido para la sección oleosa de la curva binodal de solubilidad del sistema agua – acetato de etilo – ácido láctico partiendo de una solución con concentración nominal de ácido

láctico de 5% (v/v)

$$[B]_o = 1 - [C]_o - [A]_o$$

Donde:

 $[B]_o$ = concentración de disolvente en fase oleosa

$$[B]_o = 1 - 0.0721 \left(\frac{g}{g}\right) - 0.0382 \left(\frac{g}{g}\right) = 0.8896 \left(\frac{g}{g}\right)$$

- * Se realizó el mismo cálculo para el resto de las soluciones oleosas para el sistema agua- acetato de etilo – ácido láctico. Referirse al Cuadro 71 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la concentración de agua en equilibrio de las soluciones oleosas del sistema agua – 1-octanol – ácido láctico. Referirse al Cuadro 83 de datos calculados.

Cálculo 23. Determinación de la densidad de la fase acuosa en equilibrio correspondiente a la línea de unión 1 del sistema agua – acetato de etilo – ácido láctico

$$\rho_{A} = [C]_{A} * \rho_{Al} + (1 - [C]_{A}) * \rho_{solv}$$

Donde:

 ρ_A = densidad de la fase acuosa

 ρ_{AL} = densidad del ácido láctico

$$\rho_A = 0.137 \left(\frac{g}{mL}\right) * 1.148 \frac{g}{mL} * + \left(1 - 0.137 \left(\frac{g}{mL}\right)\right) * 1.069 \frac{g}{mL} = 1.0803 \frac{g}{mL}$$

- * Se realizó el mismo cálculo para el resto de las soluciones acuosas para el sistema agua- acetato de etilo – ácido láctico. Referirse a los cuadros 57, 70 y 72 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la densidad de la fase acuosa en equilibrio del sistema agua 1-octanol ácido láctico. Referirse a los cuadros 57, 82 y 84 de datos calculados.

Cálculo 24. Determinación de la densidad de la fase oleosa en equilibrio correspondiente a la línea de unión 1 del sistema agua – acetato de etilo – ácido láctico

$$\rho_o = [C]_o * \rho_{Al} + (1 - [C]_o) * \rho_{dis}$$

Donde:

 ρ_B = densidad de la fase oleosa

$$\rho_o = 0.0300 \left(\frac{g}{mL}\right) * 1.148 \frac{g}{mL} + \left(1 - 0.0300 \left(\frac{g}{mL}\right)\right) * 0.898 \frac{g}{mL} = 0.9055 \frac{g}{mL}$$

- * Se realizó el mismo cálculo para el resto de las soluciones oleosas para el sistema agua- acetato de etilo – ácido láctico. Referirse al Cuadro 19 de datos originales y a los cuadros 71 y 72 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de la densidad de la fase en oleosa en equilibrio del sistema agua – 1-octanol – ácido láctico. Referirse al Cuadro 19 de datos originales y a los cuadros 57, 83 y 84 de datos calculados.

Cálculo 25. Conversión de la concentración de ácido láctico en fase acuosa en (p/v) a (p/p) en equilibrio correspondiente a la línea de unión 1 del sistema agua – acetato de

etilo – ácido láctico

$$[C]_A\left(\frac{p}{p}\right) = \frac{[C]_A\left(\frac{p}{v}\right)}{\rho_A}$$

Donde:

 $\rho_A = Densidades de las fases acuosa en eq. p/línea de unión 1.$

(a)

$$[C]_{A}\left(\frac{p}{p}\right) = \frac{0.137 \left(\frac{g}{mL}\right)}{1.0803 \frac{g}{mL}} = 0.1268 \left(\frac{g}{g}\right)$$

- * Se realizóel mismo cálculo para el resto de las soluciones acuosas y oleosas para el sistema agua- acetato de etilo ácido láctico. Referirse a los cuadros 30, 31, 38 y 39 de datos originales y a los cuadros 64, 65, 70, 72 y 73 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de las composiciones másicas de la fase acuosa y oleosa en equilibrio del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 42, 43, 50 y 51 de datos originales y a los cuadros 76, 77, 82, 83 y 84 de datos calculados.

Cálculo 26. Determinación de las composiciones en equilibrio en fase acuosa y oleosa para el sistema agua- acetato de etilo - ácido láctico

La determinación de las composiciones en equilibrio se determinó utilizando la función "PRONÓSTICO" de Excel para las composiciones de agua y de disolvente (valores "y") con respecto a su valor de la composición de ácido láctico (valores "x") en las composiciones de la curva binodal en fase acuosa y en fase oleosa según corresponda. Referirse a los cuadros 70, 71, 74 y 75 de datos calculados para el sistema agua-acetato de etilo – ácido láctico y a cuadros 74, 75, 82 y 83 de datos calculados para el sistema agua-1-octanol – ácido láctico.

Cálculo 27. Determinación de la selectividad a para la línea de unión 1 del sistema agua – acetato de etilo – ácido láctico

$$\beta = \frac{\frac{0.0331\left(\frac{g}{g}\right)}{0.0313\left(\frac{g}{g}\right)}}{\frac{0.1268\left(\frac{g}{g}\right)}{0.7875\left(\frac{g}{g}\right)}} = 6.58$$

- * Referirse a la ecuación 14 del marco teórico.
- * Se realizó el mismo cálculo para el resto de las líneas de unión del sistema aguaacetato de etilo – ácido láctico. Referirse a los cuadros 38 y 39 de datos originales y al Cuadro 73 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de las selectividades del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 41 y 51 de datos originales y al Cuadro 85 de datos calculados.

Cálculo 28. Determinación del coeficiente de distribución a para la línea de unión 1 del sistema agua – acetato de etilo – ácido láctico

$$k = \frac{0.0331 \left(\frac{g}{g}\right)}{0.1268 \left(\frac{g}{g}\right)} = 0.2612$$

* Referirse a la ecuación 15 del marco teórico.

- * Se realizó el mismo cálculo para el resto de las líneas de unión del sistema aguaacetato de etilo – ácido láctico. Referirse a los cuadros 38 y 39 de datos originales y al Cuadro 73 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de los coeficientes de distribución del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 41 y 51 de datos originales y al Cuadro 85 de datos calculados.

Cálculo 29. Recuperación de ácido láctico mediante la extracción líquido- líquido con acetato de etilo para el sistema agua – acetato de etilo – ácido láctico para una relación (F/S) de 1:6 para 3 etapas

$$\eta_{Rec} = \frac{E * [C]_E}{F * [C]_F}$$

Donde:

 η_{Rec} = recuperación de ácido láctico

E = extracto

F = alimentación

 $[C]_E$ = concentración de ácido láctico en el extracto

 $[C]_F$ = concentración de ácido láctico en la alimentación

$$\eta_{Rec} = \frac{82.5573 \, kg * 0.002512 \, \left(\frac{g}{g}\right)}{13.4527 \, kg * 0.01686 \, \left(\frac{g}{g}\right)} * 100 = 91.41 \,\%$$

- * Se realizó el mismo cálculo para el resto variaciones de la relación F/S y número de etapas para la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico. Referirse a los cuadros 179, 184, 189, 194, 199 y 204 de datos calculados.
- * Se realizó el mismo cálculo para la determinación del rendimiento de extracción de ácido láctico en función la relación F/S y número de etapas para la extracción líquidolíquido del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 214, 219, 224, 229, 234 y 239 de datos calculados.

Cálculo 30. Pérdidas de disolvente en el refinado mediante la extracción líquidolíquido con acetato de etilo para el sistema agua – acetato de etilo – ácido láctico para una relación (F/S) de 1:6 para 3 etapas

$$\eta_{dis} = \frac{R * [B]_R}{S * [B]_S}$$

Donde:

 η_{dis} = pérdidas de disolvente en el refinado

R = refinado

S = disolvente

 $[B]_R$ = concentración de disolvente en el refinado

 $[B]_S$ = concentración de disolvente inicial

$$\eta_{dis} = \frac{11.6114 \ kg * 0.07866 \ \left(\frac{g}{g}\right)}{80.7160 \ kg * 1.0000 \ \left(\frac{g}{g}\right)} = 1.13 \ \%$$

- * Se realizó el mismo cálculo para el resto variaciones de la relación F/S y número de etapas para la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico. Referirse a los cuadros 179, 184, 189, 194, 199 y 204 de datos calculados.
- * Se realizó el mismo cálculo para la determinación de pérdida de disolvente en el refinado en función la relación F/S y número de etapas para la extracción líquidolíquido del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 214, 219, 224, 229, 234 y 239 de datos calculados.

Cálculo 31. Solvente eliminado mediante la extracción líquido-líquido con acetato de etilo para el sistema agua – acetato de etilo – ácido láctico para una relación (F/S) de

1:6 para 3 etapas

$$\eta_{sol} = \frac{R * [A]_R}{F * [A]_F}$$

Donde:

 $\eta_{sol} =$ pérdidas de solvente

 $[A]_R$ = concentración de agua refinado

 $[A]_F$ = concetración de agua en alimentación

$$\eta_{sol} = \frac{11.6114 \ kg * 0.9197 \ \left(\frac{g}{g}\right)}{13.4527 \ kg * 0.9831 \ \left(\frac{g}{g}\right)} = 80.74 \ \%$$

- * Se realizó el mismo cálculo para el resto variaciones de la relación F/S y número de etapas para la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico. Referirse a los cuadros 179, 184, 189, 194, 199 y 204 de datos calculados.
- * Se realizó el mismo cálculo para la determinación del solvente eliminado en función la relación F/S y número de etapas para la extracción líquido-líquido del sistema agua
 – 1-octanol – ácido láctico. Referirse a los cuadros 214, 219, 224, 229, 234 y 239 de datos calculados.

Cálculo 32. Aporte de solvente al final de un ciclo para la extracción líquido-líquido con acetato de etilo para el sistema agua – acetato de etilo – ácido láctico para una relación (F/S) de 1:6 para 3 etapas

Aporte =
$$S * \eta_{dis}$$

Aporte = 80.7160 kg * 1.13 % = 0.9134 kg

- * Se realizó el mismo cálculo para el resto variaciones de la relación F/S y número de etapas para la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico. Referirse a los cuadros 179, 184, 189, 194, 199 y 204 de datos calculados.
- * Se realizó el mismo cálculo para la determinación del aporte de disolvente al final de un ciclo de extracción en función la relación F/S y número de etapas para la extracción líquido-líquido del sistema agua – 1-octanol – ácido láctico. Referirse a los cuadros 214, 219, 224, 229, 234 y 239 de datos calculados.

Cálculo 33. Conversión de fracción másica a fracción molar para la composición de ácido láctico en el extracto para la extracción líquido-líquido del sistema agua-acetato de etilo – ácido láctico con una F/S de 1:6 en 3 etapas

$$[C]\left(\frac{m}{m}\right) = \frac{\frac{[C]\left(\frac{p}{p}\right)}{PM_{C}}}{\frac{[A]\left(\frac{p}{p}\right)}{PM_{A}} + \frac{[B]\left(\frac{p}{p}\right)}{PM_{B}} + \frac{[C]\left(\frac{p}{p}\right)}{PM_{C}}}$$

Donde:

 $[C]\left(\frac{m}{m}\right) = \text{composición de ácido láctico en base molar}$ $[A]\left(\frac{p}{p}\right) = \text{composición de agua en base másica}$ $[B]\left(\frac{p}{p}\right) = \text{composición de disolvente en base másica}$ $[C]\left(\frac{p}{p}\right) = \text{composición de ácido láctico en base másica}$ $PM_A = \text{peso molecular del agua}$ $PM_B = \text{peso molecular del disolvente}$ $PM_C = \text{peso molecular de ácido láctico}$

$$[C]\left(\frac{m}{m}\right) = \frac{\frac{0.02512\left(\frac{g}{g}\right)}{90.08 \frac{g}{mol}}}{\frac{0.0309\left(\frac{g}{g}\right)}{18.02 \frac{g}{mol}} + \frac{0.9666\left(\frac{p}{p}\right)}{88.11 \frac{g}{mol}} + \frac{0.02512\left(\frac{g}{g}\right)}{90.08 \frac{g}{mol}} = 0.002194\left(\frac{mol}{mol}\right)$$

* Referirse a los cuadros 121 y 265 de datos calculados.

* Se realizó el mismo cálculo para las concentraciones molares requeridas.

Cálculo 34. Conversión de fracción molar a másica para la composición de ácido láctico en el calderín al final de la operación para una etapa sin reflujo

$$[C]\left(\frac{p}{p}\right) = \frac{[C]\left(\frac{m}{m}\right) * PM_{C}}{[A]\left(\frac{m}{m}\right) * PM_{A} + [B]\left(\frac{m}{m}\right) * PM_{B} + [C]\left(\frac{m}{m}\right) * PM_{C}}$$

Donde:

 $[A]\left(\frac{m}{m}\right) =$ composición de agua en base molar

 $[B]\left(\frac{m}{m}\right) =$ composición de disolvente en base molar

 $[C]\left(\frac{m}{m}\right) =$ composición de ácido láctico en base molar

$$[C]\left(\frac{p}{p}\right) = \frac{0.8985\left(\frac{mol}{mol}\right) * 90.08 \ \frac{g}{mol}}{0.00014\left(\frac{m}{m}\right) * 18.02 \ \frac{g}{mol} + 0.1014\left(\frac{m}{m}\right) * 88.11 \ \frac{g}{mol} + 0.8985\left(\frac{mol}{mol}\right) * 90.08 \ \frac{g}{mol}} = 0.9006 \ \left(\frac{g}{g}\right)$$

- * Referirse al cuadro 268 y 272 de datos calculados.
- * Se realizó el mismo cálculo para las concentraciones másicas requeridas.

Cálculo 35. Determinación del calor acumulado en el calderín para un tiempo de 0.3 horas para una etapa sin reflujo

$$\sum_{i=1}^{n} Q_i = \dot{Q}_i (t_i - t_{i-1})$$

Donde:

 Q_i = calor acumulado en el instante i

 \dot{Q}_{i} = flujo de calor en el instante i

 t_i = tiempo en el instante i

 t_{i-1} = tiempo en el instante anterior i

$$Q_{i} = \left(4.048 \frac{kJ}{s} * (3.23 h - 0 h) + 74.46 \frac{kJ}{s} * (3.38 h - 3.23 h) + 0.00654 \frac{kJ}{s} * (3.69 h - 3.38 h)\right) * \frac{3600 s}{1 h} = 47133.43 kJ$$

- Referirse al cuadro 264 de datos calculados para calor acumulado añadido en el calderín.
- * Se realizó el mismo cálculo para el calor acumulado removido en el condensador. Referirse al cuadro 266 de datos calculados.

Cálculo 36. Determinación de la cantidad de biomasa en un lote de caldo fermentado producido en el biorreactor

$$X = [X]_o * V_o$$

Donde:

X = biomasa

$$X = 0.073 \ \frac{kg}{L} * 15 \ L = 1.095 \ kg$$

* Referirse al cuadro 27 de datos originales y al cuadro 270 de datos calculados.

Cálculo 37. Determinación del caldo fermentado libre de biomasa en un lote de caldo fermentado producido en el biorreactor

$$V_1 = V_o - X$$
$$V_1 = 16.0424 \ kg - 1.095 \ kg = 14.9474 \ kg$$

Donde:

 V_1 = caldo fermentado libre de biomasa

* Referirse al Cuadro 27 de datos originales y al Cuadro 270 de datos calculados.

Cálculo 38. Determinación de la corriente de extracto en la salida y la corriente de entrada de refinado en la etapa 3 para la extracción líquido-líquido del sistema aguaacetato de etilo – ácido láctico con una F/S de 1:6 en 3 etapas para un lote de caldo

fermentado producido en el biorreactor

$$R_2 + S_1 = R_3 + E_3$$
$$[C]_{R_2}R_2 + [C]_{S_1}S_1 = [C]_{R_3}R_3 + [C]_{E_3}E_3$$

Donde:

 R_2 = refinado proveniente de la etapa 2

 S_1 = disolvete

 R_3 = refinado que sale de la etapa 3

 E_3 = extración que sale de la etapa 3

 $[C]_n$ = concentración de ácido láctico en las corrientes

$$R_2 + 80.7160 \ kg = 11.6114 \ kg + E_3$$

$$0.004198 \left(\frac{kg}{kg}\right) * R_2 + 0 \left(\frac{kg}{kg}\right) * 80.7160 \ kg = 0.00167 \ \left(\frac{kg}{kg}\right) * 11.6114 \ kg + 0.000489 \left(\frac{kg}{kg}\right) * E_3$$
$$R_2 = 14.3438 \ kg$$
$$E_3 = 83.4484 \ kg$$

* Referirse a los cuadros 180-184 y cuadro 271 de datos calculados.

Cálculo 39. Determinación del peso molecular promedio de la corriente de extracto obtenida de la extracción líquido-líquido del sistema agua-acetato de etilo – ácido láctico con una F/S de 1:6 en 3 etapas para un lote de caldo fermentado producido en el biorreactor

$$PM_{av} = [A]\left(\frac{m}{m}\right) * PM_A + [B]\left(\frac{m}{m}\right) * PM_B + [C]\left(\frac{m}{m}\right) * PM_c$$

Donde:

 PM_{av} = peso molecular promedio

$$PM_{av} = 0.1347 \left(\frac{kmol}{kmol}\right) * 0.8631 \frac{kg}{kmol} + [B] \left(\frac{kmol}{kmol}\right) * 88.11 \frac{kg}{kmol} + 0.002194 \left(\frac{kmol}{kmol}\right) * 90.08 \frac{kg}{kmol}$$

$$PM_{av} = 78.67 \frac{kg}{kmol}$$

Cálculo 40. Determinación de la cantidad de materia de la corriente de extracto obtenida de la extracción líquido-líquido del sistema agua-acetato de etilo – ácido láctico con una F/S de 1:6 en 3 etapas para un lote de caldo fermentado producido en

el biorreactor

$$E(m) = \frac{E(p)}{PM_{av}}$$

Donde:

E(m) = extracto en base molar

E(p) = extracto en base másica

$$E(m) = \frac{82.5573 \ kg}{78.67 \ \frac{kg}{kmol}} = 1.0494 \ kmol$$

* Referirse a los cuadros 242 y 271 de datos calculados.

Cálculo 41. Incertidumbre asociada al cálculo 17

$$s_{y} = \sqrt{\left(\pm 0.006211 \left(\frac{p}{p}\right)\right)^{2} + \left(\pm 0.00308 \left(\frac{p}{p}\right)\right)^{2}} = \pm 0.007085 \left(\frac{p}{p}\right)$$

- * Referirse a la ecuación 59 del marco teórico.
- * Se realizó el mismo cálculo para las incertidumbres asociadas a cálculos con suma y/o resta en sus operaciones.

Cálculo 42. Incertidumbre asociada al cálculo 18

$$s_y = 0.0739 \left(\frac{p}{p}\right) \sqrt{\left(\frac{\pm 0.6887 \, g}{10.0304 \, g}\right)^2 + \left(\frac{\pm 0.05 \, mL}{0.9 \, mL}\right)^2} = \pm 0.006211 \left(\frac{p}{p}\right)$$

* Referirse a la ecuación 60 del marco teórico.

* Se realizó el mismo cálculo para las incertidumbres asociadas a cálculos con multiplicación y/o división en sus operaciones.

Figura 53. Determinación visual de la composición de mezcla mínima para la extracción de ácido láctico en una solución acuosa con acetato de etilo como disolvente

Figura 54. Determinación visual de la composición de mezcla mínima para la extracción de ácido láctico en una solución acuosa con 1-octanol de etilo como disolvente

Figura 55. Elección del número de etapas y relación F/S (eje x) a para una recuperación de ácido láctico mínima del 90% (eje y) en el sistema agua – acetato de etilo – ácido láctico

Figura 56. Elección del número de etapas y relación F/S (eje x) a para una recuperación de ácido láctico mínima del 90% (eje y) en el sistema agua – 1-octanol – ácido láctico

Los siguientes cálculos corresponden al dimensionamiento del condensador para el proceso de destilación simple seleccionado para el sistema agua-acetato de etilo – ácido láctico. Para estos se utilizaron los datos de Cuadro 54 de datos originales y de los cuadros 242 y 275 de datos calculados. El resultado de los cálculos se encuentra en los cuadros 273 y 274 de datos calculados. Referirse a las ecuaciones 20 - 49 y a la Figura 25 del marco teórico.

Cálculo 43. Determinación de flujo de agua de enfriamiento requerido para condensar el vapor destilado

$$\bar{T} = \frac{71.54 \,^{\circ}C + 71.54 \,^{\circ}C}{2} = 71.54 \,^{\circ}C$$
$$\bar{t} = \frac{28 \,^{\circ}C + 55 \,^{\circ}C}{2} = 41.5 \,^{\circ}C$$

 Las temperaturas de entrada y de salida del agua de enfriamiento se definieron por conveniencia según las especificaciones de temperatura máxima de la torre de enfriamiento presente en el laboratorio de operaciones unitarias.

$$m_{agua} = \frac{4048.95 \frac{J}{s}}{4178 \frac{J}{kg \,^{\circ}C} \,(55 \,^{\circ}C - 28 \,^{\circ}C)} = 0.03589 \,\frac{kg}{s}$$

Cálculo 44. Determinación del coeficiente de trasferencia de calor por convección para el flujo del vapor destilado

$$p = 1.5 * 0.036 \ m = 0.054 \ m$$

$$Di_{h} = 0.32 \ m + 0.036 \ m = 0.346 \ m$$

$$De_{h} = 0.32 \ m + 2 * 0.036 \ m + 0.036 \ m = 0.428 \ m$$

$$L_{serp} = N \cdot \sqrt{\left(2 \cdot \pi \cdot \frac{0.36 \ m}{2}\right) + (0.054 \ m)^{2}} = 1.0648 \ (N) \ m$$

$$V_{serp} = \left(\frac{\pi}{4}\right) (0.036 \ m)^{2} * 1.0648 \ (N) \ m = 0.0001085 \ (N) \ m^{3}$$

$$V_{a} = \left(\frac{\pi}{4}\right) * ((0.40 \ m)^{2} - (0.32 \ m)^{2}) * 0.054 \ m = 0.002443 \ (N)$$

$$V_{flujo} = 0.002443 \ (N) \ m^{3} - 0.0001085 \ (N) \ m^{3} = 0.001359 \ (N) \ m^{3}$$

$$D_{eq} = \frac{4 * 0.001359 \ (N) \ m^{3}}{\pi \ 0.036 \ m * 1.0648 \ (N) \ m} = 0.04514 \ m$$

$$G_{vapor} = \frac{0.04514 \ m * 9.7319 \ \frac{kg}{m^{2}s}}{0.004372 \ \frac{kg}{m^{*}s}} = 1004.68$$

$$Pr_{vapor} = \frac{2093.26 \ \frac{J}{kg} \frac{c}{c} * 0.0004372 \ \frac{kg}{m^{*}s}}{0.2584 \ \frac{W}{m^{2} \ c}} = 3.5415$$

$$h_{0} = 0.6 \ \frac{0.2584 \ \frac{W}{m^{2} \ c}}{0.04514 \ m} * 1004.68^{0.5} * 3.5415^{0.31} = 119.5419 \ \frac{W}{m^{2} \ c}}$$

Cálculo 45. Determinación del coeficiente de transferencia de calor por convección para el flujo del agua de enfriamiento

$$A_{serp} = \frac{\pi (0.028 \, m)^2}{4} = 0.0006158 \, m^2$$

$$q_{agua} = \frac{0.03589 \frac{kg}{s}}{994.43 \frac{kg}{m^3}} = 0.00003609 \frac{m^3}{s}$$

$$v_{agua} = \frac{0.00003609 \frac{m^3}{s}}{0.0006158 m^2} = 0.05862 \frac{m}{s}$$

$$Re_{agua} = \frac{0.028m * 0.05862 \frac{m}{s} * 994.43 \frac{kg}{m^3}}{0.000734 \frac{kg}{m * s}} = 2223.65$$

$$Pr_{agua} = \frac{4178 \frac{J}{kg^{\circ}C} * 0.000734 \frac{kg}{m * s}}{0.633 \frac{W}{m^2 \circ C}} = 4.8463$$

$$h_i = \frac{0.633 \frac{W}{m^2 \circ C}}{0.028m} * 0.023 * 2223.65^{0.8} * 4.8463^{0.33} = 416.6415 \frac{W}{m^2 \circ C}$$

* Se supone que $\frac{\mu_{agua}}{\mu_P} = 1$

$$h_{ic} = 417.6415 \frac{W}{m^2 \circ C} \left[1 + 3.5 \left(\frac{0.028 \, m}{0.36 \, m} \right) \right] = 530.0606 \frac{W}{m^2 \circ C}$$
$$h_{i0} = 530.0606 \frac{W}{m^2 \circ C} \left(\frac{0.028 \, m}{0.036 \, m} \right) = 412.2694 \frac{W}{m^2 \circ C}$$

Cálculo 46. Determinación del coeficiente de transferencia de calor global

$$e_t = \frac{0.036 \ m - 0.028 \ m}{2} = 0.004 \ m$$
$$U = \frac{1}{\frac{1}{119.5419 \ \frac{W}{m^2 \ \circ C}} + \frac{1}{412.2694 \ \frac{W}{m^2 \ \circ C}} + \frac{0.004 \ m}{16 \ \frac{W}{m^2 \ \circ C}} + 0.0002 \ \frac{m^2 \ \circ C}{W} + 0.0004 \ \frac{m^2 \ \circ C}{W}} = 86.9043 \ \frac{W}{m^2 \ \circ C}}$$

* Las resistencias de ensuciamiento se determinaron según las características de vapor destilado y el agua de enfriamiento (Towler & Sinnott, 2008).

Cálculo 47. Determinación del área de transferencia de calor

$$DMLT = \frac{(71.54 \ ^{\circ}C - 28 \ ^{\circ}C) - (71.54 \ ^{\circ}C - 55 \ ^{\circ}C)}{ln \frac{(71.54 \ ^{\circ}C - 28 \ ^{\circ}C)}{(71.54 \ ^{\circ}C - 55 \ ^{\circ}C)}} = 27.8907 \ ^{\circ}C$$

$$\Delta t = 27.8907 \,^{\circ}C * 0.99 = 27.6119 \,^{\circ}C$$

* $F_t = 0.99$ (Kern, 2006).

$$A = \frac{4048.95 \frac{J}{s}}{86.9043 \frac{W}{m^2 \circ c} * 27.6119 \circ C} = 1.7070 \ m^2$$

Cálculo 48. Determinación del número de vueltas del serpentín

$$N = \frac{1.7070 \ m^2}{\left[\pi \ 0.036 \ m\left(\frac{1.0648 \ (N) \ m}{N}\right)\right]} = 14.17$$
$$n = 14$$

Cálculo 49. Determinación de la altura del cilindro

H = 14 * 0.054 m + 0.036 m = 0.792 m

Los siguientes cálculos corresponden al dimensionamiento del calderín para el proceso de destilación simple seleccionado para el sistema agua-acetato de etilo – ácido láctico. Para estos se utilizaron los datos de los cuadros 53, 55 de datos originales y los cuadros 242 y 276 de datos calculados. El resultado de los cálculos se encuentra en el Cuadro 277 de datos calculados. Referirse a las ecuaciones 50 - 56.

Cálculo 50. Determinación de flujo de flujo de vapor de agua para la vaporización

$$m_{vap_agua} = \frac{4.04891 \frac{kJ}{s}}{2083.3 \frac{kJ}{kg}} = 0.001944 \frac{kg}{s} = 7 \frac{kg}{h}$$

Cálculo 51. Determinación del área de la chaqueta

$$A_{chaqueta} = \pi \ 0.5 \ m \ * \ 0.5 \ m + \frac{\pi}{4} (0.5 \ m)^2 = 0.9817 \ m^2$$

Cálculo 52. Determinación del coeficiente de convección interno

$$Pr = \frac{2023.55 \frac{kJ}{kg \circ C} * 0.000437 \frac{kg}{m * s}}{0.2455 \frac{W}{m^2 \circ C}} = 3.6047$$

$$h_{icc} = \frac{120 * 0.2455 \frac{W}{m^2 \circ C}}{0.5 m} (3.6047)^{\frac{1}{3}} = 90.3583 \frac{W}{m^2 \circ C}$$

- * j = 100. Debido a que el interior del rehervidor no se encuentra agitado se considera un número de Reynolds especial pequeño (5000) (Kern, 2006).
- * Se supone que $\frac{\mu}{\mu_P} = 1$

Cálculo 53. Determinación del coeficiente de convección externo

$$h_{ioc} = 90.3583 \ \frac{W}{m^2 \ ^{\circ}C} * \frac{0.5 \ m}{0.55 \ m} = \ 82.1439 \frac{W}{m^2 \ ^{\circ}C}$$

Cálculo 54. Determinación del coeficiente global de transferencia de calor

$$U = \frac{1}{\frac{1}{90.3583 \frac{W}{m^2 \circ C} + \frac{1}{82.1439 \frac{W}{m^2 \circ C} + 0.0001 \frac{m^2 \circ C}{W} + 0.0004 \frac{m^2 \circ C}{W}}} = 40.5831 \frac{W}{m^2 \circ C}$$

 Las resistencias de ensuciamiento se determinaron según las características de vapor destilado y el agua de enfriamiento (Towler & Sinnott, 2008).

Cálculo 55. Determinación del área de transferencia de calor requerida para la vaporización

$$DMLT = \frac{(166.28^{\circ}C - 25^{\circ}C) - (166.28^{\circ}C - 75.82^{\circ}C)}{ln \frac{(166.28^{\circ}C - 25^{\circ}C)}{(166.28^{\circ}C - 75.82^{\circ}C)}} = 113.99^{\circ}C$$
$$A = \frac{4.04891 \frac{kJ}{s}}{40.5831 \frac{W}{m^2 \circ C} * 113.99^{\circ}C} = 0.8753 m^2$$

* El área de la chaqueta es mayor que el área de transferencia de calor. Por lo tanto, la chaqueta es adecuada para el calentamiento.

C. DATOS CALCULADOS

Cuadro 56. Pesos promedio de la masa del caldo fermentado y de ácido láctico en un

Sustancia	Peso (g)
Caldo fermentado	$16.0424 \pm 0.00000816497$
Ácido láctico	$17.2203 \pm 0.00000816497$

volumen de $15 \pm 0.1 \text{ mL}$

Cuadro 57. Densidad promedio del caldo fermentado y del ácido láctico

Sustancia	Densidad (g/mL)
Caldo fermentado	1.0695 ± 0.021389
Ácido láctico	1.1480 ± 0.022960

Cuadro 58. Tiempos promedio de desplazamiento de fluidos en un viscosímetro

Ubbelohde

Sustancia	Tiempo (± 0.001732 s)
Agua	12.4167
Caldo fermentado	27.2667
Ácido láctico	433.000

Cuadro 59. Viscosidad promedio obtenidas mediante un viscosímetro Ubbelohde

Sustancia	Viscosidad (N*s/m ²)
Caldo fermentado	0.0021 ± 0.0000032
Ácido láctico	0.0357 ± 0.0000599

Cuadro 60. Parámetros de operación de la centrífuga de canasta

Parámetro	Valor
Fuerza G	939.12
Volumen de la torta (L)	0.995
Espesor de torta (m)	0.028
Radio interior a la torta (m)	0.182
Caudal mínimo (L/h)	0.462
Caudal máximo (L/h)	2.308
Tiempo mínimo de operación (h)	0.988

Radio a la torta (m)	Q (m ³ /s)	Q (L/h)
0.2058	0.0000006411	2.30803
0.2016	0.0000003206	1.15402
0.1976	0.0000002137	0.76934
0.1936	0.0000001603	0.57701
0.1898	0.0000001282	0.46161
0.1860	0.0000001069	0.38467

Cuadro 61. Perfil de caudal de la centrífuga de canasta en función del radio a la torta

Cuadro 62. Perfil de tiempo de la centrífuga de canasta en función del radio de la

Radio a la torta (m)	Tiempo (s)	Tiempo (h)
0.2058	112.82	0.03
0.2016	439.33	0.12
0.1976	962.44	0.27
0.1936	1666.06	0.46
0.1898	2535.08	0.70
0.1860	3555.30	0.99

torta

Cuadro 63. Momentos de inercia y potencia requerida para la centrífuga de canasta

Parámetro	Valor
Momento de inercia rotación del cilindro (kg*m ²)	0.7262
Momento de inercia rotación del líquido (kg*m ²)	1.2397
Torque (N*m)	10.2933
Potencia (W)	2156
Potencia (HP)	2.89
Eficiencia	0.85
Potencia nominal (HP)	3.40

Cuadro 64. Volumen nominal de ácido láctico al 90% a agregar para la preparación soluciones de caldo fermentado - ácido láctico en un balón de aforo de 25 ± 0.040 mL

Concentración nominal (v/v)	Volumen nominal (mL)
0.05	0.90
0.10	2.32
0.20	5.15
0.30	7.99
0.40	10.82
0.50	13.66
0.60	16.49
0.70	19.33
0.80	22.16

previas a la titulación turbidimétrica con acetato de etilo

Cuadro 65. Volumen nominal de ácido láctico al 90% a agregar para la preparación soluciones de acetato de etilo -ácido láctico en un balón de aforo de 25 ± 0.040 mL previas a la titulación turbidimétrica con caldo fermentado

Volumen nominal (mL)
1.39
2.78
5.56
8.33
11.11
12.50
19.44
Cuadro 66. Densidad de las soluciones de caldo fermentado - ácido láctico previas a la titulación turbidimétrica con acetato de etilo

Concentración nominal (v/v)	Densidad (g/mL)
0.05	1.0122 ± 0.028342
0.10	1.1008 ± 0.030823
0.20	1.1093 ± 0.031060
0.30	1.1192 ± 0.031347
0.40	1.1341 ± 0.031766
0.50	1.1356 ± 0.031807
0.60	1.1458 ± 0.032082
0.70	1.1709 ± 0.032796
0.80	1.1552 ± 0.032356

Cuadro 67. Densidad de las soluciones de acetato de etilo - ácido láctico previas a la

titulación	turbidimétrica	con caldo	fermentado

$0.05 \qquad 0.8965 \pm 0.025103$
$0.10 \qquad \qquad 0.8994 \pm 0.025182$
$0.20 0.9608 \pm 0.026901$
$0.30 1.0101 \pm 0.028282$
$0.40 1.1333 \pm 0.031731$
$0.45 1.2283 \pm 0.034392$
$0.70 1.3788 \pm 0.038607$

Cuadro 68. Masa total de las soluciones de caldo fermentado - ácido láctico tituladas

(alícuota de 10 ± 0.1 mL) con acetato de etilo

Concentración nominal (v/v)	Masa total (g)
0.05	10.9304 ± 0.68874
0.10	11.9959 ± 0.65156
0.20	12.1703 ± 0.62296
0.30	12.5386 ± 0.56006
0.40	13.0476 ± 0.51806
0.50	13.4216 ± 0.49434
0.60	14.2415 ± 0.48172

Concentración nominal (v/v)	Masa total (g)
0.05	9.3930 ± 1.22141
0.10	9.5283 ± 1.01215
0.20	10.3563 ± 0.82760
0.30	11.2774 ± 0.65274
0.40	12.8299 ± 0.64908
0.50	13.8874 ± 0.67965
0.60	16.7828 ± 0.67191

Cuadro 69. Masa total de las soluciones de acetato de etilo - ácido láctico tituladas (alícuota de 10 ± 0.1 mL) con caldo fermentado

Cuadro 70. Concentraciones en equilibrio del sistema agua – acetato de etilo – ácido

láctico para la sección acuosa de la curva binodal de solubilidad

Caldo fermentado (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.8728 ± 0.007085	0.0739 ± 0.00621	0.0533 ± 0.003408
0.8333 ± 0.007469	0.0823 ± 0.00583	0.08440 ± 0.004666
0.7492 ± 0.01029	0.0885 ± 0.00584	0.1623 ± 0.008474
0.6079 ± 0.01435	0.1074 ± 0.005987	0.2847 ± 0.01309
0.4902 ± 0.01673	0.1308 ± 0.006229	0.3790 ± 0.01552
0.4300 ± 0.01720	0.1539 ± 0.006582	0.4161 ± 0.01589
0.3207 ± 0.01858	0.1955 ± 0.007325	0.4838 ± 0.01708

Cuadro 71. Concentraciones en equilibrio del sistema agua – acetato de etilo – ác	cido
láctico para la sección oleosa de la curva binodal de solubilidad	

Caldo fermentado (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.0382 ± 0.006898	0.8896 ± 0.01167	0.0721 ± 0.00941
0.0471 ± 0.00687	0.8311 ± 0.01470	0.1217 ± 0.01299
0.0607 ± 0.00651	0.6656 ± 0.02299	0.2737 ± 0.02205
0.0876 ± 0.00645	0.5615 ± 0.02160	0.3509 ± 0.02061
0.0980 ± 0.00607	0.5234 ± 0.02045	0.3786 ± 0.01953
0.0970 ± 0.00574	0.5295 ± 0.01952	0.3735 ± 0.01866
0.1498 ± 0.006568	0.3705 ± 0.02086	0.4797 ± 0.01979

Cuadro 72. Densidad de la fase acuosa y oleosa de las líneas de unión del sistema agua

Línea de	Densidad	Densidad	
unión	fase acuosa (g/mL)	fase orgánica (g/mL)	
1	1.0803 ± 0.031555	0.9055 ± 0.01961	
2	1.0838 ± 0.031227	0.9104 ± 0.01878	
3	1.1102 ± 0.031421	0.9596 ± 0.01922	
4	1.1070 ± 0.031331	0.9546 ± 0.01912	
5	1.0951 ± 0.031019	0.9364 ± 0.01879	
6	1.0967 ± 0.031059	0.9390 ± 0.01883	

- acetato de etilo - ácido láctico

Cuadro 73. Coeficiente de distribución y selectividad de las líneas de unión del sistema

Línea de unión	Selectividad (a)	Coeficiente de distribución (K)
1	6.5807 ± 2.6103	0.2612 ± 0.002894
2	6.8619 ± 1.9791	0.3238 ± 0.002416
3	3.2224 ± 0.46647	0.5495 ± 0.0007686
4	3.8929 ± 0.56560	0.5506 ± 0.0008381
5	6.4094 ± 1.0452	0.5515 ± 0.001233
6	6.0799 ± 0.96880	0.5536 ± 0.001163

agua – acetato de etilo – ácido láctico

Cuadro	74. (Composicio	ones en e	equilibrio	para el	sistema	agua –	acetato	de etilo -	– ácido

láctico en fase acuosa

Agua (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.7875 ± 0.009251	0.0857 ± 0.00592	0.1268 ± 0.006589
0.7431 ± 0.01024	0.0890 ± 0.00596	0.1679 ± 0.007935
0.3471 ± 0.01907	0.1854 ± 0.007007	0.4675 ± 0.01774
0.4061 ± 0.01776	0.1630 + 0.006764	0.4309 ± 0.01655
0.5917 ± 0.01361	0.1106 ± 0.006198	0.2977 ± 0.01218
0.5694 ± 0.01411	0.1150 ± 0.006245	0.3155 ± 0.01277

Agua (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.0313 ± 0.00671	0.9356 ± 0.01344	0.0331 ± 0.0109
0.0351 ± 0.00669	0.9106 ± 0.01388	0.0544 ± 0.0115
0.0592 ± 0.00656	0.6839 ± 0.01780	0.2569 ± 0.01665
0.0574 ± 0.00657	0.7053 ± 0.01743	0.2373 ± 0.01615
0.0509 ± 0.00661	0.7849 ± 0.01605	0.1642 ± 0.01615
0.0518 ± 0.00660	0.7735 ± 0.01625	0.1747 ± 0.01454

Cuadro 75. Composiciones en equilibrio para el sistema agua – acetato de etilo – ácido láctico en fase oleosa

Cuadro 76. Volumen nominal de ácido láctico al 90% a agregar para la preparación soluciones de caldo fermentado - ácido láctico en un balón de aforo de 10 ± 0.020 mL

Concentración	Volumen
nominal (v/v)	nominal (mL)
0.05	0.36
0.10	0.93
0.20	2.06
0.30	3.20
0.40	4.33
0.50	5.46
0.60	6.60
0.70	7.73

previas a la titulación turbidimétrica con 1-octanol

Cuadro 77. Volumen nominal de ácido láctico al 90% a agregar para la preparación soluciones de 1-octanol -ácido láctico en un balón de aforo de 25 ± 0.040 mL previas a la titulación turbidimétrica con caldo fermentado

Concentración nominal (v/v)	Volumen nominal (mL)
0.05	1.39
0.10	2.78
0.20	5.56
0.30	8.33
0.40	11.11
0.50	13.89
0.60	16.67
0.70	19.44

Cuadro 78. Densidad de las soluciones de caldo fermentado - ácido láctico previas a la

Concentración nominal (v/v)	Densidad (g/mL)
0.05	1.0504 ± 0.0021008
0.10	1.0668 ± 0.0021336
0.20	1.0809 ± 0.0021618
0.30	1.0989 ± 0.0021978
0.40	1.1239 ± 0.0022479
0.50	1.1457 ± 0.0022914
0.60	1.1512 ± 0.0023024
0.70	1.1557 ± 0.0023115

titulación turbidimétrica con 1-octanol

Cuadro 79. Densidad de las soluciones de 1-octanol - ácido láctico previas a la titulación turbidimétrica con caldo fermentado

Concentración nominal (v/v)	Densidad (g/mL)
0.05	0.8306 ± 0.0013289
0.10	0.8527 ± 0.0013644
0.20	0.8941 ± 0.0014306
0.30	1.0050 ± 0.0016080
0.40	0.9690 ± 0.0015504
0.50	1.0132 ± 0.0016211
0.60	1.0509 ± 0.0016814
0.70	1.0866 ± 0.0017386

Cuadro 80. Masa total de las soluciones de caldo fermentado - ácido láctico tituladas

(alícuota de 6 ± 0.1 mL) con acetato de etilo

Concentración nominal (v/v)	Masa total (g)
0.05	6.3188 ± 1.5833
0.10	6.4171 ± 1.6079
0.20	6.5185 ± 0.82212
0.30	6.6760 ± 0.35211
0.40	6.9091 ± 0.20805
0.50	7.3708 ± 0.13813

Cuadro 81. Masa total de las soluciones de 1-octanol - ácido láctico tituladas (alícuota

de 10 ± 0.1 m	L) con caldo	fermentado
-------------------	--------------	------------

Concentración nominal (v/v)	Masa total (g)
0.05	9.3751 ± 0.21027
0.10	9.5969 ± 0.21514
0.20	10.7593 ± 0.24120
0.30	12.4030 ± 0.27805
0.40	12.6845 ± 0.28436
0.50	14.1958 ± 0.31824
0.60	15.5356 ± 0.34837
0.70	8.5346 ± 0.24178

* La alícuota de la solución con concentración nominal del 70% (v/v) ácido láctico fue de 5 \pm 0.1 mL.

Cuadro 82. Concentraciones en equilibrio del sistema agua – 1-octanol – a	ácido láctico
para la sección acuosa de la curva binodal de solubilidad	

Caldo fermentado (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.9300 ± 0.01696	0.00262 ± 0.0009276	0.0674 ± 0.0169
0.8936 ± 0.02609	0.00258 ± 0.000913	0.1038 ± 0.02608
0.7740 ± 0.02813	0.00508 ± 0.0009022	0.2209 ± 0.02812
0.6730 ± 0.01745	0.01240 ± 0.0009014	0.3146 ± 0.01742
0.5774 ± 0.01378	0.02397 ± 0.0009381	0.3986 ± 0.01375
0.4588 ± 0.01199	0.06740 ± 0.001382	0.4738 ± 0.01191

Cuadro 83. Concentraciones en equilibrio del sistema agua – 1-octanol – ácido láctico

Caldo fermentado (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.0883 ± 0.00484	0.8482 ± 0.005112	0.0635 ± 0.00165
0.0863 ± 0.00473	0.7927 ± 0.005584	0.1210 ± 0.002971
0.1308 ± 0.004838	0.6492 ± 0.007252	0.2200 ± 0.005402
0.1469 ± 0.004688	0.5696 ± 0.008393	0.2835 ± 0.006961
0.1828 ± 0.005238	0.4462 ± 0.01051	0.3711 ± 0.009109
0.2216 ± 0.005761	0.3733 ± 0.01149	0.4051 ± 0.009944
0.2505 ± 0.006216	0.3004 ± 0.01266	0.4491 ± 0.01102
0.2813 ± 0.009331	0.2531 ± 0.01865	0.4656 ± 0.01615

Cuadro 84. Densidad de la fase acuosa y oleosa de las líneas de unión del sistema agua

- 1-octanol - ácido láctico

Línea de	Densidad	Densidad
unión	fase acuosa (g/mL)	fase orgánica (g/mL)
1	1.0737 ± 0.030777	0.8337 ± 0.02039
2	1.0747 ± 0.030665	0.8354 ± 0.01897
3	1.0800 ± 0.030613	0.8460 ± 0.01733
4	1.0961 ± 0.031013	0.8876 ± 0.01779
5	1.0996 ± 0.031110	0.9037 ± 0.01810
6	1.1031 ± 0.031207	0.9215 ± 0.01845

Cuadro 85. Coeficiente de distribución y selectividad de las líneas de unión del sistema

Línea de unión	Selectividad (a)	Coeficiente de distribución (K)
1	4.4563 ± 1.9053	0.4253 ± 0.006309
2	4.6584 ± 1.5963	0.4498 ± 0.005123
3	5.2437 ± 0.87517	0.5389 ± 0.002600
4	3.1253 ± 0.22050	0.6785 ± 0.001039
5	2.8035 ± 0.18087	0.7504 ± 0.0009319
6	2.2908 ± 0.13722	0.8178 ± 0.0008473

agua – 1-octanol – ácido láctico

Cuadro 86. Composicio	ones en equilibrio para e	el sistema agua – 1-octanol	– ácido
-----------------------	---------------------------	-----------------------------	---------

láctico en fase acuosa

Caldo fermentado (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.9399 ± 0.02429	0.002632 ± 0.0008753	0.0575 ± 0.0244
0.9263 ± 0.02397	0.002617 ± 0.0008751	0.0710 ± 0.0240
0.8550 ± 0.02229	$0.003389 {\pm}\ 0.0008808$	0.1416 ± 0.02219
0.6270 ± 0.01693	0.01798 ± 0.0009867	0.3551 ± 0.01665
0.5746 ± 0.01570	0.02500 ± 0.001038	0.4004 ± 0.01547
0.5039 ± 0.01404	0.05088 ± 0.001226	0.4452 ± 0.01431

Cuadro 87. Composiciones en equilibrio para el sistema agua – 1-octanol – ácido
láctico en fase oleosa

Caldo fermentado (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.0897 ± 0.00424	0.8859 ± 0.003389	0.0244 ± 0.000113
0.0894 ± 0.00424	0.8786 ± 0.003522	0.0319 ± 0.000107
0.0879 ± 0.00421	0.8358 ± 0.004310	0.0763 ± 0.001411
0.1361 ± 0.005051	0.6230 ± 0.008227	0.2409 ± 0.006243
0.1538 ± 0.005360	0.5458 ± 0.009649	0.3004 ± 0.007992
0.1799 ± 0.005816	0.4560 ± 0.01130	0.3641 ± 0.009860

Cuadro 88. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua- acetato de etilo – ácido láctico en base molar bajo el modelo NRLT en base

Agua (m/m)	Acetato de etilo (m/m)	Ácido láctico (m/m)
0.140341	0.859659	0.000000
0.175214	0.740468	0.084318
0.209273	0.645353	0.145374
0.247171	0.557058	0.195771
0.289283	0.474992	0.235725
0.336618	0.398000	0.265383
0.478146	0.243780	0.278074
0.567406	0.163726	0.268868
0.552714	0.172238	0.275048
0.528061	0.190283	0.281656
0.506046	0.208027	0.285927
0.434982	0.274069	0.290950
0.422075	0.288280	0.289645
0.408028	0.303953	0.288019
0.397454	0.316359	0.286187
0.460104	0.258139	0.281757
0.384995	0.332063	0.282942
0.381438	0.336105	0.282457
0.599859	0.140601	0.259541
0.633564	0.121345	0.245091
0.698853	0.089577	0.211569
0.764503	0.064337	0.171160
0.831446	0.044427	0.124127
0.900423	0.029051	0.070526
0.983879	0.016121	0.000000

molar (m/m)

Agua (p/p)	Acetato de etilo (p/p)	Ácido láctico (p/p)
0.032309	0.967691	0.000000
0.041547	0.858508	0.099945
0.051148	0.771236	0.177615
0.062582	0.689636	0.247782
0.076325	0.612774	0.310901
0.093264	0.539178	0.367557
0.156247	0.389512	0.454241
0.213862	0.286242	0.499896
0.213915	0.285781	0.500304
0.209221	0.295188	0.495591
0.206088	0.295593	0.498319
0.204909	0.297329	0.497762
0.199549	0.304052	0.496399
0.192324	0.313404	0.494271
0.184222	0.324586	0.491192
0.171394	0.344505	0.484100
0.134691	0.414951	0.450359
0.128699	0.429805	0.441496
0.122384	0.445770	0.431846
0.117767	0.458338	0.423895
0.114427	0.467628	0.417945
0.114505	0.467534	0.417961
0.146962	0.403156	0.449881
0.112472	0.474328	0.413200
0.110986	0.478177	0.410837
0.232076	0.265974	0.501950
0.258379	0.241969	0.499651
0.318463	0.199591	0.481946
0.395154	0.162600	0.442246
0.498119	0.130141	0.371740
0.645455	0.101824	0.252721
0.925825	0.074175	0.000000

Cuadro 89. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua- acetato de etilo – ácido láctico en base másica bajo el modelo NRLT

Fase Oleosa			Fase Acuosa		
Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)	Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)
0.140354	0.000000	0.859646	0.983879	0.000000	0.016121
0.153177	0.034150	0.812673	0.951266	0.028213	0.020521
0.167588	0.068055	0.764357	0.917359	0.056673	0.025967
0.183918	0.101637	0.714445	0.881808	0.085452	0.032740
0.202632	0.134807	0.662561	0.844131	0.114634	0.041234
0.224427	0.167448	0.608125	0.803619	0.144329	0.052052
0.250426	0.199400	0.550174	0.759136	0.174690	0.066175
0.282694	0.230412	0.486894	0.708603	0.205964	0.085433
0.325983	0.259975	0.414042	0.647260	0.238652	0.114087
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Cuadro 90. Datos de Aspen Plus para las líneas de unión del sistema agua- acetato de etilo – ácido láctico en base molar bajo el modelo NRLT

Cuadro 91. Datos de Aspen Plus para las líneas de unión del sistema agua- acetato de etilo – ácido láctico en base másica bajo el modelo NRLT

Fase Oleosa			Fase Acuosa		
Agua (p/p)	Ácido láctico (p/p)	Acetato de etilo (p/p)	Agua (p/p)	Ácido láctico (p/p)	Acetato de etilo (p/p)
0.032312	0.000000	0.967688	0.925825	0.000000	0.074175
0.035643	0.039723	0.924633	0.797615	0.118253	0.084132
0.039477	0.080138	0.880385	0.690974	0.213390	0.095636
0.043944	0.121394	0.834662	0.600255	0.290776	0.108969
0.049229	0.163717	0.787054	0.521457	0.353994	0.124549
0.055621	0.207451	0.736929	0.451570	0.405416	0.143015
0.063603	0.253162	0.683235	0.388115	0.446459	0.165426
0.074097	0.301898	0.624005	0.328677	0.477564	0.193759
0.089309	0.356046	0.554645	0.269906	0.497477	0.232617
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Agua (m/m)	1-octanol (m/m)	Ácido láctico (m/m)
0.262289	0.737711	0.000000
0.328069	0.589246	0.082685
0.378867	0.490048	0.131085
0.428315	0.404016	0.167669
0.476595	0.328992	0.194414
0.523997	0.263485	0.212518
0.587961	0.190968	0.221072
0.638136	0.141723	0.220141
0.697624	0.093742	0.208634
0.727312	0.072368	0.200320
0.737236	0.065887	0.196877
0.769272	0.045110	0.185619
0.766205	0.046051	0.187745
0.664012	0.118409	0.217579
0.685112	0.102793	0.212096
0.692282	0.097814	0.209904
0.741287	0.063016	0.195697
0.767034	0.046955	0.186011
0.776847	0.040979	0.182174
0.792223	0.034220	0.173557
0.819496	0.024009	0.156496
0.852126	0.014413	0.133460
0.883904	0.007804	0.108292
0.915842	0.003550	0.080608
0.949650	0.001146	0.049204
0.999932	0.000068	0.000000

Cuadro 92. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua- 1-octanol – ácido láctico en base molar bajo el modelo NRLT

Agua (p/p)	1-octanol (p/p)	Ácido láctico (p/p)
0.067786	0.932214	0.000000
0.090563	0.795338	0.114099
0.110448	0.698523	0.191029
0.132117	0.609347	0.258536
0.155899	0.526198	0.317903
0.182280	0.448164	0.369556
0.223830	0.355467	0.420703
0.262439	0.284987	0.452574
0.317257	0.208447	0.474296
0.349243	0.169913	0.480844
0.360760	0.157647	0.481593
0.401138	0.115014	0.483848
0.397020	0.116675	0.486305
0.284906	0.248417	0.466677
0.304769	0.223585	0.471645
0.311862	0.215452	0.472687
0.365585	0.151957	0.482458
0.398155	0.119176	0.482669
0.411491	0.106134	0.482374
0.433587	0.091576	0.474837
0.476675	0.068284	0.455042
0.536011	0.044331	0.419658
0.604006	0.026076	0.369918
0.685434	0.012992	0.301574
0.790573	0.004665	0.204762
0.999666	0.000334	0.000000

Cuadro 93. Datos de Aspen Plus para la curva binodal de solubilidad del sistema agua- 1-octanol – ácido láctico en base másica bajo el modelo NRLT

	Fase Oleosa		Fase Acuosa			
Agua (m/m)	Ácido láctico (m/m)	1-octanol (m/m)	Agua (m/m)	Ácido láctico (m/m)	1-octanol (m/m)	
0.262293	0.000000	0.737708	0.999932	0.000000	0.000068	
0.282274	0.027878	0.689848	0.983340	0.016443	0.000218	
0.304661	0.056136	0.639202	0.966292	0.033157	0.000552	
0.329826	0.084562	0.585612	0.948438	0.050360	0.001202	
0.358239	0.112864	0.528897	0.929309	0.068322	0.002369	
0.390564	0.140651	0.468785	0.908242	0.087390	0.004368	
0.427837	0.167373	0.404790	0.884196	0.108048	0.007755	
0.471927	0.192175	0.335899	0.855301	0.131063	0.013636	
0.527103	0.213433	0.259464	0.817284	0.157948	0.024769	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	

Cuadro 94. Datos de Aspen Plus para las líneas de unión del sistema agua- 1-octanol – ácido láctico en base molar bajo el modelo NRLT

Cuadro 95. Datos de Aspen Plus para las líneas de unión del sistema agua- 1-octanol – ácido láctico en base másica bajo el modelo NRLT

Fase Oleosa			Fase Acuosa			
Agua (p/p)	Ácido láctico (p/p)	1-octanol (p/p)	Agua (p/p)	Ácido láctico (p/p)	1-octanol (p/p)	
0.067787	0.000000	0.932213	0.999666	0.000000	0.000334	
0.074386	0.036725	0.888889	0.921941	0.077062	0.000997	
0.082103	0.075624	0.842272	0.851556	0.146067	0.002376	
0.091215	0.116904	0.791882	0.786393	0.208733	0.004874	
0.102106	0.160808	0.737087	0.724650	0.266319	0.009031	
0.115353	0.207660	0.676987	0.664671	0.319699	0.015630	
0.131895	0.257935	0.610170	0.604687	0.369380	0.025933	
0.153473	0.312411	0.534116	0.542309	0.415415	0.042275	
0.184128	0.372701	0.443171	0.472977	0.456935	0.070087	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	

Cuadro 96. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la fase acuosa en equilibrio líquido-líquido para el sistema agua-acetato de etiloácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.787456546	0.79307122	0.00009483453	0.005614669	0.7130%
2	0.743076792	0.74286877	0.00009348542	-0.000208024	-0.0280%
3	0.347102863	0.3557553	0.00007253841	0.008652435	2.4928%
4	0.406110059	0.40757642	0.00007726385	0.001466359	0.3611%
5	0.591669152	0.58674407	0.00008780708	-0.004925079	-0.8324%
6	0.569449039	0.56958712	0.00008679673	0.000138085	0.0242%
7	0.765266669	0.76737916	0.00009417471	0.002112487	0.2760%
8	0.667372972	0.65424992	0.00009088022	-0.013123057	-1.9664%
9	0.487779549	0.48638475	0.00008255650	-0.001394797	-0.2859%

Cuadro 97. Regresión en Aspen Plus para la composición de acetato de etilo (p/p) experimental en la fase acuosa en equilibrio líquido-líquido para el sistema aguaacetato de etilo- ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Diferencia	Diferencia
1	0.085721134	0.08664798	0.0009268442	1.0812%
2	0.088993251	0.08843324	-0.0005600088	-0.6293%
3	0.185434295	0.18838006	0.0029457600	1.5886%
4	0.162976384	0.16648266	0.0035062714	2.1514%
5	0.110639244	0.10935751	-0.0012817391	-1.1585%
6	0.115048547	0.11492232	-0.0001262317	-0.1097%
7	0.087357192	0.08727125	-0.0000859420	-0.0984%
8	0.099816247	0.09595881	-0.0038574380	-3.8645%
9	0.139012466	0.14076378	0.0017513179	1.2598%

Cuadro 98. Regresión en Aspen Plus para la composición de ácido láctico (p/p) experimental en la fase acuosa en equilibrio líquido-líquido para el sistema aguaacetato de etilo- ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.12682232	0.12028081	0.0000030546	-0.00654151	-5.1580%
2	0.167929957	0.16869799	0.0000042253	0.00076803	0.4574%
3	0.467462842	0.45586465	0.0000195378	-0.01159819	-2.4811%
4	0.430913557	0.42594093	0.0000163961	-0.00497263	-1.1540%
5	0.297691604	0.30389842	0.0000088356	0.00620682	2.0850%
6	0.315502414	0.31549056	0.0000096177	-0.00001185	-0.0038%
7	0.147376139	0.14534959	0.0000036272	-0.00202655	-1.3751%
8	0.232810781	0.24979128	0.0000063405	0.01698050	7.2937%
9	0.373207985	0.37285146	0.0000126327	-0.00035652	-0.0955%

Cuadro 99. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la fase oleosa en equilibrio líquido-líquido para el sistema agua-acetato de etiloácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.031260226	0.0304915	0.000013639313	-0.0007687243	-2.4591%
2	0.03506287	0.03495357	0.000015105357	-0.0001092956	-0.3117%
3	0.059190266	0.0634676	0.000023637394	0.0042773297	7.2264%
4	0.057439465	0.05655791	0.000023058390	-0.0008815572	-1.5348%
5	0.050913218	0.05231518	0.000020845586	0.0014019624	2.7536%
6	0.051848025	0.05165861	0.000021167937	-0.0001894174	-0.3653%
7	0.033161548	0.03275345	0.000014376990	-0.0004080971	-1.2306%
8	0.042988044	0.04533859	0.000018048481	0.0023505416	5.4679%
9	0.054643745	0.05029723	0.000022121138	-0.0043465167	-7.9543%

Cuadro 100. Regresión en Aspen Plus para la composición de acetato de etilo (p/p) experimental en fase oleosa en equilibrio líquido-líquido para el sistema agua-acetato de etilo- ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Diferencia	Diferencia
1	0.935608929	0.9344309	-0.0011780623	-0.1259%
2	0.910563991	0.9108057	0.0002416778	0.0265%
3	0.683939880	0.6783712	-0.0055686608	-0.8142%
4	0.705295719	0.7081630	0.0028672767	0.4065%
5	0.784901244	0.7848433	-0.0000579348	-0.0074%
6	0.773498698	0.7735915	0.0000927893	0.0120%
7	0.92308646	0.9227480	-0.0003384673	-0.0367%
8	0.847732617	0.8518208	0.0040881878	0.4822%
9	0.739397208	0.7473329	0.0079357200	1.0733%

Cuadro 101. Regresión en Aspen Plus para la composición de ácido láctico (p/p) experimental en fase oleosa en equilibrio líquido-líquido para el sistema agua-acetato de etilo- ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.033130845	0.03507763	0.0000028910	0.00194679	5.8761%
2	0.054373139	0.05424076	0.0000046847	-0.00013238	-0.2435%
3	0.256869854	0.25816119	0.0000205154	0.00129133	0.5027%
4	0.237264816	0.2352791	0.0000190489	-0.00198572	-0.8369%
5	0.164185538	0.16284151	0.0000134443	-0.00134403	-0.8186%
6	0.174653277	0.17474991	0.0000142607	0.00009663	0.0553%
7	0.043751992	0.04449856	0.0000037936	0.00074656	1.7064%
8	0.109279339	0.10284061	0.0000091759	-0.00643873	-5.8920%
9	0.205959047	0.20236984	0.0000166750	-0.00358920	-1.7427%

		•			
Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.939898545	0.9446657	0.00009875413	0.004767154	0.5072%
2	0.926347399	0.93133635	0.00009845164	0.004988949	0.5386%
3	0.854963199	0.86229847	0.00009674147	0.007335273	0.8580%
4	0.62697169	0.66481978	0.00008950767	0.037848089	6.0367%
5	0.574620437	0.62382106	0.00008730806	0.049200618	8.5623%
6	0.503944225	0.53855972	0.00008398855	0.034615496	6.8689%
7	0.740967445	0.74848639	0.00009354304	0.007518942	1.0147%
8	0.539282331	0.57663055	0.00008572500	0.037348223	6.9255%
9	0.539636325	0.54870798	0.00008584828	0.009071655	1.6811%

Cuadro 102. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la fase acuosa en equilibrio líquido-líquido para el sistema agua- 1-octanol - ácido láctico

Cuadro 103. Regresión en Aspen Plus para la composición de 1-octanol (p/p) experimental en la fase acuosa en equilibrio líquido-líquido para el sistema agua- 1octanol - ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Diferencia	Diferencia
1	0.002631713	0.00266739	3.56781E-05	1.3557%
2	0.002616741	0.00267722	6.04814E-05	2.3113%
3	0.00338888	0.0035572	0.000168317	4.9668%
4	0.017975072	0.01973788	0.001762809	9.8070%
5	0.024995475	0.02845493	0.003459451	13.8403%
6	0.050880295	0.05590998	0.005029684	9.8853%
7	0.010681976	0.01105238	0.000370406	3.4676%
8	0.037937885	0.04193161	0.003993721	10.5270%
9	0.050494225	0.051907	0.001412776	2.7979%

Cuadro 104. Regresión en Aspen Plus para la composición de ácido láctico (p/p) experimental en la fase acuosa en equilibrio líquido-líquido para el sistema agua- 1octanol - ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.057469742	0.05266691	0.00000120762	-0.004802832	-8.3571%
2	0.07103586	0.06598643	0.00000150989	-0.00504943	-7.1083%
3	0.141647921	0.13414433	0.00000320548	-0.007503591	-5.2974%
4	0.355053238	0.31544234	0.00001013734	-0.039610898	-11.1563%
5	0.400384088	0.34772402	0.00001216657	-0.052660069	-13.1524%
6	0.44517548	0.4055303	0.00001483840	-0.03964518	-8.9055%
7	0.248350579	0.24046123	0.00000627041	-0.007889348	-3.1767%
8	0.422779784	0.38143784	0.00001344076	-0.041341944	-9.7786%
9	0.40986945	0.39938502	0.00001304050	-0.010484431	-2.5580%

Cuadro 105. Regresión en Aspen Plus para la composición de agua (p/p) experimental en la fase oleosa en equilibrio líquido-líquido para el sistema agua- 1-octanol - ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.089704162	0.07904656	0.00004131240	-0.0106576	-11.8808%
2	0.089437743	0.07644946	0.00004114550	-0.0129883	-14.5222%
3	0.087862509	0.07098907	0.00004016595	-0.0168734	-19.2044%
4	0.136107667	0.1254891	0.00005032320	-0.0106186	-7.8016%
5	0.153805294	0.14604685	0.00005314841	-0.0077584	-5.0443%
6	0.179912065	0.17121296	0.00005696891	-0.0086991	-4.8352%
7	0.111985088	0.09255916	0.00004578147	-0.0194259	-17.3469%
8	0.16685868	0.15974241	0.00005514205	-0.0071163	-4.2649%
9	0.180699681	0.16952549	0.00005734353	-0.0111742	-6.1838%

Cuadro 106. Regresión en Aspen Plus para la composición de 1-octanol (p/p) experimental en fase oleosa en equilibrio líquido-líquido para el sistema agua- 1octanol - ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Diferencia	Diferencia
1	0.885853191	0.89532496	0.009471768	1.0692%
2	0.878613284	0.89100513	0.012391849	1.4104%
3	0.835806475	0.85622542	0.020418942	2.4430%
4	0.62299798	0.62553673	0.002538753	0.4075%
5	0.545750623	0.56681977	0.02106915	3.8606%
6	0.456008244	0.49145188	0.035443638	7.7726%
7	0.729402228	0.75761071	0.028208484	3.8673%
8	0.500879433	0.52458022	0.023700784	4.7318%

Cuadro 107. Regresión en Aspen Plus para la composición de ácido láctico (p/p) experimental en fase oleosa en equilibrio líquido-líquido para el sistema agua- 1octanol - ácido láctico con respecto al modelo NRLT

Línea de unión	Valor experimental	Valor regresado	Desviación estándar	Diferencia	Diferencia
1	0.024442647	0.02562848	0.00000225130	0.00118583	4.8515%
2	0.031948973	0.03254541	0.00000293952	0.00059644	1.8668%
3	0.076331016	0.07278551	0.00000697869	-0.0035455	-4.6449%
4	0.240894353	0.24897417	0.00001781273	0.00807981	3.3541%
5	0.300444083	0.28713338	0.00002076351	-0.0133107	-4.4303%
6	0.364079691	0.33733516	0.00002305644	-0.0267445	-7.3458%
7	0.158612684	0.14983013	0.00001296838	-0.0087826	-5.5371%
8	0.332261887	0.31567738	0.00002196003	-0.0165845	-4.9914%

Cuadro 108. Concentración de ácido láctico en el refinado para una extracción del 90% del ácido láctico del caldo fermentado, punto de mezcla y solvente mínimos

Solvente	Concentración mínima refinado (p/p)	Concentración de mezcla mínima (p/p)	Solvente mínimo (kg)
Acetato de etilo	0.001686	0.0030	62.14734
1-octanol	0.001686	0.0035	51.34734

C	TT • 1 1	Entrada		Salida			
Corriente	Unidades	F	S	Е	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	26.2741	25.6134		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-107916	-69349.8		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1383.33	-3573.89		
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.209	-40.5155		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34863	-2.08793		
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116162	0.0510356		
Densidad másica	gm/mL	0.996979	0.896876	0.906198	0.990324		
Flujo de entalpía	cal/sec	-14036	-972.828	-642.407	-14366.4		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0117	19.4046		
Balance molar							
Global	kmol	0.736665	0.0305373	0.0214302	0.745772		
Agua	kmol	0.734147	0	0.00308892	0.731058		
Ácido láctico	kmol	0.00251779	0	8.95922E-05	0.0024282		
Acetato de etilo	kmol	0	0.0305373	0.0182517	1.23E-02		
	F	Tracciones mola	ires				
Agua		0.996582	0	0.144139	0.98027		
Ácido láctico		0.00341783	0	0.00418065	0.00325596		
Acetato de etilo		0	1	0.851681	0.0164738		
	1	Balance másic	20				
Global	kg	13.4527	2.69053	1.67181	14.4714		
Agua	kg	13.2259	0	0.0556477	13.1702		
Ácido láctico	kg	0.2268	0	0.00807036	0.21873		
Acetato de etilo	kg	0	2.69053	1.60809	1.08244		
	F	Tracciones mási	cas				
Agua		0.983141	0	0.033286	0.910086		
Ácido láctico		0.0168591	0	0.00482733	0.0151146		
Acetato de etilo		0	1	0.961887	0.0747989		
	В	alance volumét	rico	1			
Volumen	1	13.4934	2.999892	1.844856	14.61276		

Cuadro 109. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 5:1 en 2 etapas

Comiente	Unidadaa	Entrada		Salida			
Corriente	Unidades	F	S	Ε	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	25.9599	24.5954		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-107956	-69350		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1383.06	-3575.57		
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.302	-40.5689		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34907	-2.09166		
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116139	0.0510984		
Densidad másica	gm/mL	0.996979	0.896876	0.906527	0.99108		
Flujo de entalpía	cal/sec	-14036	-2432.07	-2254.59	-14213.4		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0555	19.3955		
Balance molar							
Global	kmol	0.736665	0.0763433	0.0751838	0.737824		
Agua	kmol	0.734147	0	0.0107898	0.723357		
Ácido láctico	kmol	0.00251779	0	0.000309725	0.00220807		
Acetato de etilo	kmol	0	0.0763433	0.0640843	1.23E-02		
	F	Tracciones mola	ires				
Agua		0.996582	0	0.143512	0.980392		
Ácido láctico		0.00341783	0	0.00411957	0.00299268		
Acetato de etilo		0	1	0.852368	0.0166151		
		Balance másic	20				
Global	kg						
Agua	kg	0.983141	0	0.0331227	0.910625		
Ácido láctico	kg	0.0168591	0	0.00475413	0.0138989		
Acetato de etilo	kg	0	1	0.962123	0.0754759		
	F	racciones mási	cas				
Agua		13.4527	6.72633	5.86851	14.3105		
Ácido láctico		13.2259	0	0.194381	13.0315		
Acetato de etilo		0.2268	0	0.0278997	0.1989		
	В	alance volumét	rico				
Volumen	1	0	403.5798	338.7738	64.806		

Cuadro 110. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 2:1 en 2 etapas

Convionto	Unidadaa	Entrada		Salida			
Corriente	Unidades	F	S	Ε	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	25.2008	23.1309		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-108045	-69345.9		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1382.43	-3578.47		
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.522	-40.6417		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35014	-2.09724		
Densidad molar	mol/mL	0.0545943	0.0101795	0.011609	0.0511976		
Densidad másica	gm/mL	0.996979	0.896876	0.907314	0.992141		
Flujo de entalpía	cal/sec	-14036	-4864.14	-4938.11	-13962		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.156	19.3786		
Balance molar							
Global	kmol	0.736665	0.152687	0.164534	0.724817		
Agua	kmol	0.734147	0	0.0233759	0.710771		
Ácido láctico	kmol	0.00251779	0	0.000648331	0.00186946		
Acetato de etilo	kmol	0	0.152687	0.14051	1.22E-02		
	F	Tracciones mola	ires				
Agua		0.996582	0	0.142073	0.980621		
Ácido láctico		0.00341783	0	0.0039404	0.00257922		
Acetato de etilo		0	1	0.853987	0.0167994		
	1	Balance másic	0	1			
Global	kg	13.4527	13.4527	12.8594	14.046		
Agua	kg	13.2259	0	0.421123	12.8047		
Ácido láctico	kg	0.2268	0	0.0584009	0.168399		
Acetato de etilo	kg	0	13.4527	12.3798	1.07283		
	F	Tracciones mási	cas				
Agua		0.983141	0	0.0327484	0.911631		
Ácido láctico		0.0168591	0	0.00454151	0.0119891		
Acetato de etilo		0	1	0.96271	0.0763798		
	В	alance volumét	rico	1			
Volumen	1	13.4934	14.99946	14.17296	14.15724		

Cuadro 111. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:1 en 2 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	23.6851	21.3436			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108212	-69323.4			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1381.21	-3583.58			
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.948	-40.7161			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.3523	-2.10476			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116006	0.0513464			
Densidad másica	gm/mL	0.996979	0.896876	0.908858	0.993283			
Flujo de entalpía	cal/sec	-14036	-9728.28	-10291.1	-13473.2			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.346	19.3447			
Balance molar								
Global	kmol	0.736665	0.305373	0.342366	0.699672			
Agua	kmol	0.734147	0	0.0477084	0.686438			
Ácido láctico	kmol	0.00251779	0	0.0011883	0.0013295			
Acetato de etilo	kmol	0	0.305373	0.293469	1.19E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.139349	0.981086			
Ácido láctico		0.00341783	0	0.00347085	0.00190017			
Acetato de etilo		0	1	0.85718	0.0170141			
	1	Balance másic	20					
Global	kg	13.4527	26.9053	26.823	13.535			
Agua	kg	13.2259	0	0.85948	12.3664			
Ácido láctico	kg	0.2268	0	0.107041	0.119759			
Acetato de etilo	kg	0	26.9053	25.8565	1.04884			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.0320426	0.913661			
Ácido láctico		0.0168591	0	0.00399063	0.00884814			
Acetato de etilo		0	1	0.963967	0.0774912			
	В	alance volumét	rico	1				
Volumen	1	13.4934	29.99892	29.51286	13.62648			

Cuadro 112. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:2 en 2 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.9862	20.0131			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108384	-69273.5			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1379.61	-3590.54			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.429	-40.7427			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35472	-2.11175			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115894	0.0515133			
Densidad másica	gm/mL	0.996979	0.896876	0.910476	0.993865			
Flujo de entalpía	cal/sec	-14036	-19456.6	-20962.8	-12529.4			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.5613	19.2933			
Balance molar								
Global	kmol	0.736665	0.610747	0.696283	0.651128			
Agua	kmol	0.734147	0	0.0948717	0.639275			
Ácido láctico	kmol	0.00251779	0	0.00181824	0.000699558			
Acetato de etilo	kmol	0	0.610747	0.599593	1.12E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.136255	0.981796			
Ácido láctico		0.00341783	0	0.00261135	0.00107438			
Acetato de etilo		0	1	0.861134	0.0171297			
		Balance másic	20					
Global	kg	13.4527	53.8106	54.7009	12.5624			
Agua	kg	13.2259	0	1.70914	11.5167			
Ácido láctico	kg	0.2268	0	0.163785	0.0630154			
Acetato de etilo	kg	0	53.8106	52.8279	0.982703			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.0312452	0.916758			
Ácido láctico		0.0168591	0	0.00299419	0.00501617			
Acetato de etilo		0	1	0.965761	0.0782255			
	В	alance volumét	rico					
Volumen	1	13.4934	59.9979	60.0792	12.64002			

Cuadro 113. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 2 etapas

Corriente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.1181	19.5468			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108472	-69243.9			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1378.61	-3594.1			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.688	-40.7421			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35594	-2.11472			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115813	0.0515918			
Densidad másica	gm/mL	0.996979	0.896876	0.911241	0.993966			
Flujo de entalpía	cal/sec	-14036	-29184.8	-31606.8	-11613.8			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.682	19.266			
Balance molar								
Global	kmol	0.736665	0.91612	1.04898	0.603806			
Agua	kmol	0.734147	0	0.141104	0.593043			
Ácido láctico	kmol	0.00251779	0	0.00211606	0.000401731			
Acetato de etilo	kmol	0	0.91612	0.905759	1.04E-02			
	F	Tracciones mola	ires	•				
Agua		0.996582	0	0.134515	0.982175			
Ácido láctico		0.00341783	0	0.00201726	0.000665331			
Acetato de etilo		0	1	0.863467	0.0171596			
		Balance másic	0	1				
Global	kg	13.4527	80.716	82.5357	11.6329			
Agua	kg	13.2259	0	2.54202	10.6838			
Ácido láctico	kg	0.2268	0	0.190613	0.0361874			
Acetato de etilo	kg	0	80.716	79.8031	0.912874			
	ŀ	Tracciones mási	cas	1				
Agua		0.983141	0	0.0307991	0.918416			
Ácido láctico		0.0168591	0	0.00230946	0.00311078			
Acetato de etilo		0	1	0.966891	0.0784735			
	В	alance volumét	rico	1				
Volumen	1	13.4934	89.997	90.5748	11.70354			

Cuadro 114. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 2 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	20.3574	19.2567			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108533	-69215.5			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1377.73	-3597.31			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.903	-40.7332			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35704	-2.11701			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115754	0.0516582			
Densidad másica	gm/mL	0.996979	0.896876	0.911874	0.99395			
Flujo de entalpía	cal/sec	-14036	-48641.4	-52880.2	-9796.31			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.777	19.2409			
Balance molar								
Global	kmol	0.736665	1.52687	1.75401	0.509521			
Agua	kmol	0.734147	0	0.233531	0.500616			
Ácido láctico	kmol	0.00251779	0	0.00235663	0.000161161			
Acetato de etilo	kmol	0	1.52687	1.51812	8.74E-03			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.133141	0.982523			
Ácido láctico		0.00341783	0	0.00134357	0.000316299			
Acetato de etilo		0	1	0.865515	0.0171612			
		Balance másic	20					
Global	kg	13.4527	134.527	138.176	9.80365			
Agua	kg	13.2259	0	4.20713	9.01873			
Ácido láctico	kg	0.2268	0	0.212283	0.0145172			
Acetato de etilo	kg	0	134.527	133.756	0.7704			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.0304477	0.919936			
Ácido láctico		0.0168591	0	0.00153633	0.00148079			
Acetato de etilo		0	1	0.968016	0.078583			
	В	alance volumét	rico					
Volumen	1	13.4934	149.9946	151.5294	9.86334			

Cuadro 115. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 2 etapas

Comiente	Unidadaa	Entrada		Salida			
Corriente	Unidades	F	S	Е	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	26.3398	25.6047		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-107908	-69350		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1383.39	-3573.89		
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.189	-40.516		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34854	-2.08796		
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116167	0.051036		
Densidad másica	gm/mL	0.996979	0.896876	0.90613	0.990332		
Flujo de entalpía	cal/sec	-14036	-972.828	-642.454	-14366.4		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0022	19.4046		
Balance molar							
Global	kmol	0.736665	0.0305373	0.0214334	0.745768		
Agua	kmol	0.734147	0	0.00309231	0.731054		
Ácido láctico	kmol	0.00251779	0	8.98734E-05	0.00242792		
Acetato de etilo	kmol	0	0.0305373	0.0182513	1.23E-02		
	F	Tracciones mola	ires	r			
Agua		0.996582	0	0.144275	0.98027		
Ácido láctico		0.00341783	0	0.00419314	0.0032556		
Acetato de etilo		0	1	0.851532	0.0164744		
	1	Balance másic	0	1			
Global	kg	13.4527	2.69053	1.67186	14.4713		
Agua	kg	13.2259	0	0.0557088	13.1702		
Ácido láctico	kg	0.2268	0	0.00809569	0.218704		
Acetato de etilo	kg	0	2.69053	1.60805	1.08248		
	ŀ	racciones mási	cas				
Agua		0.983141	0	0.0333216	0.910085		
Ácido láctico		0.0168591	0	0.00484234	0.0151129		
Acetato de etilo		0	1	0.961836	0.0748017		
	В	alance volumét	rico				
Volumen	1	13.4934	2.999892	1.845054	14.61258		

Cuadro 116. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 5:1 en 3 etapas

Comiente	Unidadaa	Entrada		Salida			
Corriente	Unidades	F	S	Е	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	26.2422	24.5318		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-107924	-69351		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1383.27	-3575.57		
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.224	-40.5732		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34867	-2.09186		
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116153	0.0511006		
Densidad másica	gm/mL	0.996979	0.896876	0.90623	0.991135		
Flujo de entalpía	cal/sec	-14036	-2432.07	-2255.17	-14212.8		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0206	19.3958		
Balance molar							
Global	kmol	0.736665	0.0763433	0.0752254	0.737783		
Agua	kmol	0.734147	0	0.0108334	0.723313		
Ácido láctico	kmol	0.00251779	0	0.000314611	0.00220318		
Acetato de etilo	kmol	0	0.0763433	0.0640774	1.23E-02		
	F	Tracciones mola	ires				
Agua		0.996582	0	0.144013	0.980388		
Ácido láctico		0.00341783	0	0.00418225	0.00298622		
Acetato de etilo		0	1	0.851805	0.0166255		
	1	Balance másic	20				
Global	kg	13.4527	6.72633	5.86913	14.3099		
Agua	kg	13.2259	0	0.195167	13.0307		
Ácido láctico	kg	0.2268	0	0.0283398	0.19846		
Acetato de etilo	kg	0	6.72633	5.64562	1.08071		
	F	Tracciones mási	cas				
Agua		0.983141	0	0.0332532	0.910609		
Ácido láctico		0.0168591	0	0.00482863	0.0138688		
Acetato de etilo		0	1	0.961918	0.075522		
	В	alance volumét	rico				
Volumen	1	13.4934	7.49976	6.4764	14.43786		

Cuadro 117. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 2:1 en 3 etapas

Comiente	Unidades	Entrada		Salida				
Corriente		F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	25.7415	22.7924			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-107982	-69350.8			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1382.93	-3578.56			
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.362	-40.6639			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34938	-2.09829			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116131	0.0512102			
Densidad másica	gm/mL	0.996979	0.896876	0.906771	0.99243			
Flujo de entalpía	cal/sec	-14036	-4864.14	-4941.12	-13959.2			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0819	19.3795			
Balance molar								
Global	kmol	0.736665	0.152687	0.164731	0.72462			
Agua	kmol	0.734147	0	0.023579	0.710568			
Ácido láctico	kmol	0.00251779	0	0.000677772	0.00184002			
Acetato de etilo	kmol	0	0.152687	0.140475	1.22E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.143136	0.980608			
Ácido láctico		0.00341783	0	0.00411441	0.00253929			
Acetato de etilo		0	1	0.85275	0.016853			
		Balance másic	20					
Global	kg	13.4527	13.4527	12.8625	14.0428			
Agua	kg	13.2259	0	0.424781	12.8011			
Ácido láctico	kg	0.2268	0	0.0610529	0.165747			
Acetato de etilo	kg	0	13.4527	12.3767	1.07596			
Fracciones másicas								
Agua		0.983141	0	0.0330247	0.911577			
Ácido láctico		0.0168591	0	0.00474657	0.011803			
Acetato de etilo		0	1	0.962229	0.0766201			
Balance volumétrico								
Volumen	1	13.4934	14.99946	14.18502	14.14992			

Cuadro 118. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:1 en 3 etapas

Comionto	Unidades	Entrada		Salida			
Corriente		F	S	Ε	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	24.2446	20.7103		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-108154	-69323.9		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1381.81	-3584.55		
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.784	-40.7503		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35152	-2.10709		
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116052	0.0513842		
Densidad másica	gm/mL	0.996979	0.896876	0.908342	0.99375		
Flujo de entalpía	cal/sec	-14036	-9728.28	-10300.7	-13463.7		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.2702	19.3396		
Balance molar							
Global	kmol	0.736665	0.305373	0.342867	0.699171		
Agua	kmol	0.734147	0	0.0481524	0.685994		
Ácido láctico	kmol	0.00251779	0	0.00130176	0.00121603		
Acetato de etilo	kmol	0	0.305373	0.293413	1.20E-02		
	F	Tracciones mola	ires				
Agua		0.996582	0	0.14044	0.981154		
Ácido láctico		0.00341783	0	0.0037967	0.00173925		
Acetato de etilo		0	1	0.855763	0.0171064		
		Balance másic	20				
Global	kg	13.4527	26.9053	26.8363	13.5217		
Agua	kg	13.2259	0	0.867478	12.3584		
Ácido láctico	kg	0.2268	0	0.117261	0.109539		
Acetato de etilo	kg	0	26.9053	25.8515	1.05378		
Fracciones másicas							
Agua		0.983141	0	0.0323248	0.913967		
Ácido láctico		0.0168591	0	0.00436951	0.00810095		
Acetato de etilo		0	1	0.963306	0.0779326		
Balance volumétrico							
Volumen	1	13.4934	29.99892	29.54424	13.60674		

Cuadro 119. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:2 en 3 etapas

Material								
Corriento	Unidades	Entrada		Salida				
Corriente		F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	22.1682	19.4555			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108377	-69256.4			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1379.89	-3593.03			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.38	-40.7581			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35446	-2.11453			
Densidad molar	mol/mL	0.0545943	0.0101795	0.011591	0.0515755			
Densidad másica	gm/mL	0.996979	0.896876	0.910363	0.994129			
Flujo de entalpía	cal/sec	-14036	-19456.6	-20974.8	-12517.8			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.5405	19.2752			
Balance molar								
Global	kmol	0.736665	0.610747	0.696726	0.650686			
Agua	kmol	0.734147	0	0.0951438	0.639003			
Ácido láctico	kmol	0.00251779	0	0.00202306	0.000494738			
Acetato de etilo	kmol	0	0.610747	0.599559	1.12E-02			
	Fra	acciones mola	res					
Agua		0.996582	0	0.136558	0.982046			
Ácido láctico		0.00341783	0	0.00290366	0.000760333			
Acetato de etilo		0	1	0.860538	0.0171939			
	ŀ	Balance másico	0					
Global	kg	13.4527	53.8106	54.7212	12.5421			
Agua	kg	13.2259	0	1.71404	11.5118			
Ácido láctico	kg	0.2268	0	0.182235	0.0445654			
Acetato de etilo	kg	0	53.8106	52.8249	0.985716			
Fracciones másicas								
Agua		0.983141	0	0.0313232	0.917854			
Ácido láctico		0.0168591	0	0.00333024	0.00355327			
Acetato de etilo		0	1	0.965347	0.0785926			
Balance volumétrico								
Volumen	1	13.4934	59.9979	60.1092	12.61614			

Cuadro 120. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 3 etapas

Corrignto	Unidades	Entr	ada	Salida				
		F	S	E	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.2063	19.1876			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108467	-69221.7			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1378.81	-3596.8			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.659	-40.7424			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35582	-2.117			
Densidad molar	mol/mL	0.0545943	0.0101795	0.011583	0.0516513			
Densidad másica	gm/mL	0.996979	0.896876	0.911203	0.994048			
Flujo de entalpía	cal/sec	-14036	-29184.8	-31619.6	-11601			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.6671	19.2454			
Balance molar								
Global	kmol	0.736665	0.91612	1.04945	0.603333			
Agua	kmol	0.734147	0	0.141396	0.592751			
Ácido láctico	kmol	0.00251779	0	0.00230256	0.000215238			
Acetato de etilo	kmol	0	0.91612	0.905753	1.04E-02			
Fracciones molares								
Agua		0.996582	0	0.134733	0.98246			
Ácido láctico		0.00341783	0	0.00219406	0.000356748			
Acetato de etilo		0	1	0.863073	0.0171828			
		Balance másic	:0					
Global	kg	13.4527	80.716	82.5573	11.6114			
Agua	kg	13.2259	0	2.54729	10.6786			
Ácido láctico	kg	0.2268	0	0.207412	0.0193884			
Acetato de etilo	kg	0	80.716	79.8026	0.913396			
Fracciones másicas								
Agua		0.983141	0	0.0308548	0.919666			
Ácido láctico		0.0168591	0	0.00251234	0.00166978			
Acetato de etilo		0	1	0.966633	0.078664			
Balance volumétrico								
Volumen	1	13.4934	89.997	90.6024	11.68086			

Cuadro 121. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 3 etapas

Comiente	Unidades	Entrada		Salida			
Corriente		F	S	Ε	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	20.3814	19.0767		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-108532	-69199		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1377.8	-3599.16		
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.894	-40.7292		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35701	-2.1184		
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115761	0.0516969		
Densidad másica	gm/mL	0.996979	0.896876	0.911868	0.993947		
Flujo de entalpía	cal/sec	-14036	-48641.4	-52887.8	-9788.61		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.7717	19.2264		
Balance molar							
Global	kmol	0.736665	1.52687	1.75429	0.509241		
Agua	kmol	0.734147	0	0.233703	0.500444		
Ácido láctico	kmol	0.00251779	0	0.00246242	0.000055375		
Acetato de etilo	kmol	0	1.52687	1.51812	8.74E-03		
	F	Tracciones mola	ares				
Agua		0.996582	0	0.133218	0.982724		
Ácido láctico		0.00341783	0	0.00140366	0.00010874		
Acetato de etilo		0	1	0.865378	0.0171677		
		Balance másic	:0				
Global	kg	13.4527	134.527	138.188	9.79089		
Agua	kg	13.2259	0	4.21023	9.01563		
Ácido láctico	kg	0.2268	0	0.221812	0.00498811		
Acetato de etilo	kg	0	134.527	133.756	0.770271		
Fracciones másicas							
Agua		0.983141	0	0.0304673	0.920818		
Ácido láctico		0.0168591	0	0.00160514	0.000509465		
Acetato de etilo		0	1	0.967928	0.0786722		
Balance volumétrico							
Volumen	1	13.4934	149.9946	151.5444	9.8505		

Cuadro 122. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 3 etapas

Comiente	Unidades	Entrada		Salida				
Corriente		F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	26.3557	25.6109			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-107909	-69350.1			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1383.37	-3573.82			
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.19	-40.5162			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34851	-2.08792			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116161	0.0510344			
Densidad másica	gm/mL	0.996979	0.896876	0.906108	0.990324			
Flujo de entalpía	cal/sec	-14036	-972.828	-642.27	-14366.6			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0046	19.405			
Balance molar								
Global	kmol	0.736665	0.0305373	0.0214271	0.745775			
Agua	kmol	0.734147	0	0.00309067	0.731056			
Ácido láctico	kmol	0.00251779	0	8.98761E-05	0.00242792			
Acetato de etilo	kmol	0	0.0305373	0.0182465	1.23E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.144241	0.980264			
Ácido láctico		0.00341783	0	0.00419451	0.00325557			
Acetato de etilo		0	1	0.851564	0.0164806			
	1	Balance másic	20					
Global	kg	13.4527	2.69053	1.67141	14.4718			
Agua	kg	13.2259	0	0.0556793	13.1702			
Ácido láctico	kg	0.2268	0	0.00809593	0.218704			
Acetato de etilo	kg	0	2.69053	1.60764	1.0829			
Fracciones másicas								
Agua		0.983141	0	0.0333127	0.910059			
Ácido láctico		0.0168591	0	0.00484377	0.0151125			
Acetato de etilo		0	1	0.961844	0.0748281			
Balance volumétrico								
Volumen	1	13.4934	2.999892	1.844604	14.61318			

Cuadro 123. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 5:1 en 4 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	26.3182	24.5115			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-107915	-69351.4			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1383.32	-3575.58			
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.203	-40.5745			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34856	-2.09192			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116156	0.0511013			
Densidad másica	gm/mL	0.996979	0.896876	0.906148	0.991154			
Flujo de entalpía	cal/sec	-14036	-2432.07	-2255.3	-14212.6			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0113	19.3959			
Balance molar								
Global	kmol	0.736665	0.0763433	0.0752361	0.737772			
Agua	kmol	0.734147	0	0.0108449	0.723302			
Ácido láctico	kmol	0.00251779	0	0.000315394	0.0022024			
Acetato de etilo	kmol	0	0.0763433	0.0640758	1.23E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.144145	0.980387			
Ácido láctico		0.00341783	0	0.00419206	0.00298521			
Acetato de etilo		0	1	0.851663	0.0166278			
	1	Balance másic	0	1				
Global	kg	13.4527	6.72633	5.86927	14.3097			
Agua	kg	13.2259	0	0.195374	13.0305			
Ácido láctico	kg	0.2268	0	0.0284103	0.19839			
Acetato de etilo	kg	0	6.72633	5.64548	1.08085			
Fracciones másicas								
Agua		0.983141	0	0.0332876	0.910604			
Ácido láctico		0.0168591	0	0.00484052	0.013864			
Acetato de etilo		0	1	0.961872	0.0755323			
Balance volumétrico								
Volumen	1	13.4934	7.49976	6.47718	14.43744			

Cuadro 124. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 2:1 en 4 etapas
Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	26.0238	22.6421			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-107949	-69353.6			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1383.14	-3578.54			
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.283	-40.6743			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.34898	-2.09873			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116145	0.0512148			
Densidad másica	gm/mL	0.996979	0.896876	0.906471	0.992563			
Flujo de entalpía	cal/sec	-14036	-4864.14	-4942.28	-13958			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.0463	19.3804			
Balance molar								
Global	kmol	0.736665	0.152687	0.16482	0.724531			
Agua	kmol	0.734147	0	0.0236756	0.710471			
Ácido láctico	kmol	0.00251779	0	0.00068684	0.00183095			
Acetato de etilo	kmol	0	0.152687	0.140458	1.22E-02			
	F	Tracciones mola	ires	1				
Agua		0.996582	0	0.143645	0.980595			
Ácido láctico		0.00341783	0	0.0041672	0.00252709			
Acetato de etilo		0	1	0.852188	0.0168781			
	1	Balance másic	0	1				
Global	kg	13.4527	13.4527	12.8636	14.0417			
Agua	kg	13.2259	0	0.426523	12.7993			
Ácido láctico	kg	0.2268	0	0.0618697	0.16493			
Acetato de etilo	kg	0	13.4527	12.3752	1.07743			
	ŀ	racciones mási	cas	1				
Agua		0.983141	0	0.0331573	0.911524			
Ácido láctico		0.0168591	0	0.00480967	0.0117458			
Acetato de etilo		0	1	0.962033	0.0767306			
	В	alance volumét	rico	Γ	1			
Volumen	1	13.4934	14.99946	14.1909	14.14692			

Cuadro 125. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:1 en 4 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	24.582	20.3281			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108118	-69325.9			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1382.14	-3584.97			
Entropía molar	cal/mol-K	-39.2359	-117.73	-105.685	-40.7725			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35104	-2.10842			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0116078	0.0514038			
Densidad másica	gm/mL	0.996979	0.896876	0.908021	0.994044			
Flujo de entalpía	cal/sec	-14036	-9728.28	-10305.8	-13458.6			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.2249	19.3379			
Balance molar								
Global	kmol	0.736665	0.305373	0.343151	0.698887			
Agua	kmol	0.734147	0	0.0484156	0.685731			
Ácido láctico	kmol	0.00251779	0	0.00135932	0.00115848			
Acetato de etilo	kmol	0	0.305373	0.293376	1.20E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.141091	0.981176			
Ácido láctico		0.00341783	0	0.00396129	0.0016576			
Acetato de etilo		0	1	0.854947	0.0171665			
	-	Balance másic	20					
Global	kg	13.4527	26.9053	26.8429	13.515			
Agua	kg	13.2259	0	0.87222	12.3536			
Ácido láctico	kg	0.2268	0	0.122446	0.104354			
Acetato de etilo	kg	0	26.9053	25.8483	1.05705			
	F	racciones mási	cas					
Agua		0.983141	0	0.0324935	0.914066			
Ácido láctico		0.0168591	0	0.00456157	0.00772133			
Acetato de etilo		0	1	0.962945	0.0782127			
	В	alance volumét	rico	1				
Volumen	1	13.4934	29.99892	29.56206	13.596			

Cuadro 126. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:2 en 4 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	22.264	19.2223			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108371	-69242.9			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1380.09	-3594.69			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.348	-40.759			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35434	-2.11597			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115928	0.0516126			
Densidad másica	gm/mL	0.996979	0.896876	0.910316	0.994191			
Flujo de entalpía	cal/sec	-14036	-19456.6	-20983.5	-12509.1			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.5244	19.2626			
Balance molar								
Global	kmol	0.736665	0.610747	0.697054	0.650357			
Agua	kmol	0.734147	0	0.0953525	0.638794			
Ácido láctico	kmol	0.00251779	0	0.00214716	0.000370633			
Acetato de etilo	kmol	0	0.610747	0.599554	1.12E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.136793	0.982221			
Ácido láctico		0.00341783	0	0.00308034	0.000569891			
Acetato de etilo		0	1	0.860126	0.0172092			
	1	Balance másic	0					
Global	kg	13.4527	53.8106	54.7358	12.5275			
Agua	kg	13.2259	0	1.7178	11.5081			
Ácido láctico	kg	0.2268	0	0.193414	0.0333862			
Acetato de etilo	kg	0	53.8106	52.8245	0.9861			
	ŀ	Tracciones mási	cas					
Agua		0.983141	0	0.0313835	0.91862			
Ácido láctico		0.0168591	0	0.00353359	0.00266502			
Acetato de etilo		0	1	0.965083	0.0787145			
	В	alance volumét	rico					
Volumen	1	13.4934	59.9979	60.1284	12.60072			

Cuadro 127. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 4 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.2325	19.0808			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108466	-69208.3			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1378.9	-3598.25			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.649	-40.7368			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35579	-2.11798			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115839	0.0516806			
Densidad másica	gm/mL	0.996979	0.896876	0.911204	0.994018			
Flujo de entalpía	cal/sec	-14036	-29184.8	-31625.9	-11594.7			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.6615	19.2339			
Balance molar								
Global	kmol	0.736665	0.91612	1.04967	0.603118			
Agua	kmol	0.734147	0	0.141511	0.592636			
Ácido láctico	kmol	0.00251779	0	0.00239769	0.000120103			
Acetato de etilo	kmol	0	0.91612	0.905758	1.04E-02			
	F	Tracciones mola	ires	•				
Agua		0.996582	0	0.134815	0.98262			
Ácido láctico		0.00341783	0	0.00228424	0.000199136			
Acetato de etilo		0	1	0.862901	0.0171809			
	1	Balance másic	0	1				
Global	kg	13.4527	80.716	82.5683	11.6003			
Agua	kg	13.2259	0	2.54936	10.6765			
Ácido láctico	kg	0.2268	0	0.215981	0.0108187			
Acetato de etilo	kg	0	80.716	79.803	0.912966			
	F	Tracciones mási	cas	1				
Agua		0.983141	0	0.0308757	0.920365			
Ácido láctico		0.0168591	0	0.00261579	0.000932624			
Acetato de etilo		0	1	0.966508	0.078702			
	В	alance volumét	rico	1				
Volumen	1	13.4934	89.997	90.6144	11.67012			

Cuadro 128. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 4 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	20.3862	19.0427			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108532	-69192.6			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1377.82	-3599.82			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.891	-40.7259			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.357	-2.11881			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115763	0.0517097			
Densidad másica	gm/mL	0.996979	0.896876	0.91187	0.993919			
Flujo de entalpía	cal/sec	-14036	-48641.4	-52890.4	-9786.05			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.7703	19.2211			
Balance molar								
Global	kmol	0.736665	1.52687	1.75438	0.509155			
Agua	kmol	0.734147	0	0.23375	0.500396			
Ácido láctico	kmol	0.00251779	0	0.00249848	1.93136E-05			
Acetato de etilo	kmol	0	1.52687	1.51813	8.74E-03			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.133239	0.982797			
Ácido láctico		0.00341783	0	0.00142414	3.79327E-05			
Acetato de etilo		0	1	0.865337	0.0171651			
		Balance másic	20					
Global	kg	13.4527	134.527	138.193	9.78654			
Agua	kg	13.2259	0	4.21108	9.01478			
Ácido láctico	kg	0.2268	0	0.22506	0.00173975			
Acetato de etilo	kg	0	134.527	133.757	0.770022			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.0304725	0.921141			
Ácido láctico		0.0168591	0	0.0016286	0.00017777			
Acetato de etilo		0	1	0.967899	0.0786817			
	В	alance volumét	rico	1				
Volumen	1	13.4934	149.9946	151.5486	9.84642			

Cuadro 129. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 4 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.1792	19.0763			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108472	-69208.8			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1378.88	-3598.16			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.663	-40.7379			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35587	-2.11796			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115838	0.051679			
Densidad másica	gm/mL	0.996979	0.896876	0.911264	0.99402			
Flujo de entalpía	cal/sec	-14036	-29184.8	-31624.5	-11596.8			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.6672	19.2345			
Balance molar								
Global	kmol	0.736665	0.91612	1.04956	0.603226			
Agua	kmol	0.734147	0	0.141411	0.592736			
Ácido láctico	kmol	0.00251779	0	0.00239738	0.00012041			
Acetato de etilo	kmol	0	0.91612	0.905751	1.04E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.134733	0.982611			
Ácido láctico		0.00341783	0	0.00228418	0.00019961			
Acetato de etilo		0	1	0.862982	0.0171894			
	1	Balance másic	:0	1				
Global	kg	13.4527	80.716	82.5659	11.6027			
Agua	kg	13.2259	0	2.54755	10.6783			
Ácido láctico	kg	0.2268	0	0.215954	0.0108464			
Acetato de etilo	kg	0	80.716	79.8024	0.913583			
	ŀ	racciones mási	cas					
Agua		0.983141	0	0.0308548	0.920327			
Ácido láctico		0.0168591	0	0.00261553	0.000934813			
Acetato de etilo		0	1	0.96653	0.0787386			
	B	alance volumét	rico	1				
Volumen	1	13.4934	89.997	90.606	11.67252			

Cuadro 130. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 6 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.2226	19.0372			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108476	-69189.6			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1378.93	-3600.12			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.656	-40.7237			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.3558	-2.11896			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115836	0.0517152			
Densidad másica	gm/mL	0.996979	0.896876	0.911245	0.993899			
Flujo de entalpía	cal/sec	-14036	-29184.8	-31630.5	-11590.4			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.6669	19.2187			
Balance molar								
Global	kmol	0.736665	0.91612	1.04973	0.603059			
Agua	kmol	0.734147	0	0.141442	0.592705			
Ácido láctico	kmol	0.00251779	0	0.00251323	4.56532E-06			
Acetato de etilo	kmol	0	0.91612	0.905771	1.03E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.134742	0.982831			
Ácido láctico		0.00341783	0	0.00239418	7.57027E-06			
Acetato de etilo		0	1	0.862864	0.0171615			
	1	Balance másic	20					
Global	kg	13.4527	80.716	82.5786	11.59			
Agua	kg	13.2259	0	2.54811	10.6777			
Ácido láctico	kg	0.2268	0	0.226389	0.000411239			
Acetato de etilo	kg	0	80.716	79.8041	0.911847			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.0308568	0.921289			
Ácido láctico		0.0168591	0	0.00274149	3.54822E-05			
Acetato de etilo		0	1	0.966402	0.0786753			
	В	alance volumét	rico	Γ				
Volumen	1	13.4934	89.997	90.6216	11.66112			

Cuadro 131. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 10 etapas

Convionto	Unidadaa	Entr	Entrada		Salida			
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.2234	19.035			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108475	-69188.9			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1378.94	-3600.19			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.655	-40.7234			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.3558	-2.119			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115838	0.0517165			
Densidad másica	gm/mL	0.996979	0.896876	0.911247	0.993896			
Flujo de entalpía	cal/sec	-14036	-29184.8	-31631.1	-11589.8			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.6658	19.2182			
Balance molar								
Global	kmol	0.736665	0.91612	1.04975	0.603035			
Agua	kmol	0.734147	0	0.141461	0.592685			
Ácido láctico	kmol	0.00251779	0	0.00251748	3.16221E-07			
Acetato de etilo	kmol	0	0.91612	0.905771	1.03E-02			
	F	<u>'racciones mola</u>	ires					
Agua		0.996582	0	0.134757	0.982838			
Ácido láctico		0.00341783	0	0.00239817	5.24383E-07			
Acetato de etilo		0	1	0.862845	0.0171612			
		Balance másic	0					
Global	kg	13.4527	80.716	82.5794	11.5892			
Agua	kg	13.2259	0	2.54847	10.6774			
Ácido láctico	kg	0.2268	0	0.226772	2.84848E-05			
Acetato de etilo	kg	0	80.716	79.8042	0.911792			
	F	racciones mási	cas					
Agua		0.983141	0	0.0308608	0.921322			
Ácido láctico		0.0168591	0	0.0027461	2.45787E-06			
Acetato de etilo		0	1	0.966393	0.0786759			
	В	alance volumét	rico					
Volumen	1	13.4934	89.997	90.6222	11.6604			

Cuadro 132. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 15 etapas

Comulanto	Unidadaa	Entr	Entrada		Salida			
Correlente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	21.2233	19.0355			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108475	-69188.9			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1378.94	-3600.19			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.655	-40.7233			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.3558	-2.119			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115838	0.0517165			
Densidad másica	gm/mL	0.996979	0.896876	0.911247	0.993895			
Flujo de entalpía	cal/sec	-14036	-29184.8	-31631.1	-11589.7			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.6656	19.2181			
Balance molar								
Global	kmol	0.736665	0.91612	1.04975	0.603032			
Agua	kmol	0.734147	0	0.141464	0.592683			
Ácido láctico	kmol	0.00251779	0	0.00251777	2.19744E-08			
Acetato de etilo	kmol	0	0.91612	0.905771	1.03E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.134759	0.982839			
Ácido láctico		0.00341783	0	0.00239844	3.64399E-08			
Acetato de etilo		0	1	0.862842	0.0171614			
	-	Balance másic	20					
Global	kg	13.4527	80.716	82.5795	11.5891			
Agua	kg	13.2259	0	2.54852	10.6773			
Ácido láctico	kg	0.2268	0	0.226798	1.97943E-06			
Acetato de etilo	kg	0	80.716	79.8042	0.911802			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.0308614	0.921323			
Ácido láctico		0.0168591	0	0.00274642	1.708E-07			
Acetato de etilo		0	1	0.966392	0.0786772			
	В	alance volumét	rico	1				
Volumen	1	13.4934	89.997	90.6222	11.66034			

Cuadro 133. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 20 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	22.3307	19.032			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108378	-69206.2			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1380.42	-3598.53			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.324	-40.7378			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35426	-2.11825			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115954	0.0516871			
Densidad másica	gm/mL	0.996979	0.896876	0.910364	0.994036			
Flujo de entalpía	cal/sec	-14036	-19456.6	-20999.7	-12492.9			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.5108	19.2318			
Balance molar								
Global	kmol	0.736665	0.610747	0.697552	0.649859			
Agua	kmol	0.734147	0	0.0955637	0.638583			
Ácido láctico	kmol	0.00251779	0	0.00240973	0.000108066			
Acetato de etilo	kmol	0	0.610747	0.599579	1.12E-02			
	F	Tracciones mola	ires	1				
Agua		0.996582	0	0.136999	0.982648			
Ácido láctico		0.00341783	0	0.00345455	0.000166292			
Acetato de etilo		0	1	0.859547	0.0171854			
	1	Balance másic	:0	1				
Global	kg	13.4527	53.8106	54.7653	12.498			
Agua	kg	13.2259	0	1.72161	11.5043			
Ácido láctico	kg	0.2268	0	0.217066	0.0097345			
Acetato de etilo	kg	0	53.8106	52.8267	0.983978			
	ŀ	racciones mási	cas	1				
Agua		0.983141	0	0.0314361	0.92049			
Ácido láctico		0.0168591	0	0.00396356	0.000778887			
Acetato de etilo		0	1	0.9646	0.0787311			
	В	alance volumét	rico	1				
Volumen	1	13.4934	59.9979	60.1578	12.57294			

Cuadro 134. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 10 etapas

Correionto	Unidadaa	Entr	Entrada		Salida			
Correlente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	22.3283	19.0324			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108381	-69196.9			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1380.49	-3599.43			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.322	-40.7299			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35427	-2.11866			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115961	0.0517031			
Densidad másica	gm/mL	0.996979	0.896876	0.910395	0.993961			
Flujo de entalpía	cal/sec	-14036	-19456.6	-21003.4	-12489.2			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.509	19.2244			
Balance molar								
Global	kmol	0.736665	0.610747	0.697653	0.649758			
Agua	kmol	0.734147	0	0.0955965	0.63855			
Ácido láctico	kmol	0.00251779	0	0.00246832	0.000049478			
Acetato de etilo	kmol	0	0.610747	0.599589	1.12E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.137026	0.982751			
Ácido láctico		0.00341783	0	0.00353803	7.61483E-05			
Acetato de etilo		0	1	0.859436	0.0171726			
		Balance másic	20					
Global	kg	13.4527	53.8106	54.7721	12.4912			
Agua	kg	13.2259	0	1.7222	11.5037			
Ácido láctico	kg	0.2268	0	0.222343	0.00445692			
Acetato de etilo	kg	0	53.8106	52.8275	0.983091			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.031443	0.920941			
Ácido láctico		0.0168591	0	0.00405942	0.000356804			
Acetato de etilo		0	1	0.964498	0.0787026			
	В	alance volumét	rico					
Volumen	1	13.4934	59.9979	60.1632	12.56712			

Cuadro 135. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 15 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	22.327	19.0336			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108382	-69192.8			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1380.52	-3599.81			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.321	-40.7266			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35427	-2.11883			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115963	0.0517099			
Densidad másica	gm/mL	0.996979	0.896876	0.910409	0.993928			
Flujo de entalpía	cal/sec	-14036	-19456.6	-21004.9	-12487.7			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.5083	19.2212			
Balance molar								
Global	kmol	0.736665	0.610747	0.697696	0.649715			
Agua	kmol	0.734147	0	0.0956099	0.638537			
Ácido láctico	kmol	0.00251779	0	0.00249331	2.44808E-05			
Acetato de etilo	kmol	0	0.610747	0.599593	1.12E-02			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.137037	0.982795			
Ácido láctico		0.00341783	0	0.00357364	3.76794E-05			
Acetato de etilo		0	1	0.85939	0.0171669			
	-	Balance másic	20					
Global	kg	13.4527	53.8106	54.775	12.4883			
Agua	kg	13.2259	0	1.72244	11.5034			
Ácido láctico	kg	0.2268	0	0.224595	0.00220521			
Acetato de etilo	kg	0	53.8106	52.8279	0.982704			
	F	Tracciones mási	cas					
Agua		0.983141	0	0.0314457	0.921134			
Ácido láctico		0.0168591	0	0.00410032	0.000176581			
Acetato de etilo		0	1	0.964454	0.0786898			
	В	alance volumét	rico					
Volumen	1	13.4934	59.9979	60.165	12.5646			

Cuadro 136. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 20 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	20.374	19.0355			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108537	-69189.4			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1377.78	-3600.14			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.901	-40.7237			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35701	-2.11898			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115755	0.0517157			
Densidad másica	gm/mL	0.996979	0.896876	0.911882	0.993899			
Flujo de entalpía	cal/sec	-14036	-48641.4	-52887.8	-9788.91			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.7769	19.2185			
Balance molar								
Global	kmol	0.736665	1.52687	1.7542	0.509328			
Agua	kmol	0.734147	0	0.233562	0.500585			
Ácido láctico	kmol	0.00251779	0	0.00251541	2.3856E-06			
Acetato de etilo	kmol	0	1.52687	1.51813	8.74E-03			
	F	Tracciones mola	ires	•				
Agua		0.996582	0	0.133144	0.982833			
Ácido láctico		0.00341783	0	0.00143393	4.68382E-06			
Acetato de etilo		0	1	0.865422	0.0171619			
	1	Balance másic	0	1				
Global	kg	13.4527	134.527	138.191	9.78853			
Agua	kg	13.2259	0	4.20769	9.01817			
Ácido láctico	kg	0.2268	0	0.226585	0.000214892			
Acetato de etilo	kg	0	134.527	133.756	0.77014			
	ŀ	Tracciones mási	cas	1				
Agua		0.983141	0	0.0304484	0.9213			
Ácido láctico		0.0168591	0	0.00163965	2.19535E-05			
Acetato de etilo		0	1	0.967912	0.0786779			
	В	alance volumét	rico	I				
Volumen	1	13.4934	149.9946	151.5444	9.84864			

Cuadro 137. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 6 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	20.374	19.0355			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108537	-69189.4			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1377.78	-3600.14			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.901	-40.7237			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35701	-2.11898			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115755	0.0517157			
Densidad másica	gm/mL	0.996979	0.896876	0.911882	0.993899			
Flujo de entalpía	cal/sec	-14036	-48641.4	-52887.8	-9788.91			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.7769	19.2185			
Balance molar								
Global	kmol	0.736665	1.52687	1.7542	0.509328			
Agua	kmol	0.734147	0	0.233562	0.500585			
Ácido láctico	kmol	0.00251779	0	0.00251541	2.3856E-06			
Acetato de etilo	kmol	0	1.52687	1.51813	8.74E-03			
	F	Tracciones mola	ires	•				
Agua		0.996582	0	0.133144	0.982833			
Ácido láctico		0.00341783	0	0.00143393	4.68382E-06			
Acetato de etilo		0	1	0.865422	0.0171619			
	1	Balance másic	20	•				
Global	kg	13.4527	134.527	138.191	9.78853			
Agua	kg	13.2259	0	4.20769	9.01817			
Ácido láctico	kg	0.2268	0	0.226585	0.000214892			
Acetato de etilo	kg	0	134.527	133.756	0.77014			
	F	Tracciones mási	cas	•				
Agua		0.983141	0	0.0304484	0.9213			
Ácido láctico		0.0168591	0	0.00163965	2.19535E-05			
Acetato de etilo		0	1	0.967912	0.0786779			
	В	alance volumét	rico	1				
Volumen	1	13.4934	149.9946	151.5444	9.84864			

Cuadro 138. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 10 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	20.3459	19.035			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-114685	-108548	-69188.9			
Entalpía másica	cal/gm	-3756.11	-1301.67	-1377.67	-3600.19			
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.921	-40.7233			
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35703	-2.11901			
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115738	0.0517165			
Densidad másica	gm/mL	0.996979	0.896876	0.911904	0.993895			
Flujo de entalpía	cal/sec	-14036	-48641.4	-52881	-9796.42			
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.7904	19.2181			
Balance molar								
Global	kmol	0.736665	1.52687	1.75381	0.509722			
Agua	kmol	0.734147	0	0.233172	0.500975			
Ácido láctico	kmol	0.00251779	0	0.00251779	1.97663E-10			
Acetato de etilo	kmol	0	1.52687	1.51812	8.75E-03			
	F	Tracciones mola	ires					
Agua		0.996582	0	0.132952	0.982839			
Ácido láctico		0.00341783	0	0.00143561	3.87785E-10			
Acetato de etilo		0	1	0.865613	0.0171612			
	1	Balance másic	0					
Global	kg	13.4527	134.527	138.183	9.79591			
Agua	kg	13.2259	0	4.20066	9.0252			
Ácido láctico	kg	0.2268	0	0.2268	1.78052E-08			
Acetato de etilo	kg	0	134.527	133.756	0.770707			
	ŀ	Tracciones mási	cas					
Agua		0.983141	0	0.0303992	0.921324			
Ácido láctico		0.0168591	0	0.0016413	1.81762E-09			
Acetato de etilo		0	1	0.96796	0.0786764			
	В	alance volumét	rico					
Volumen	1	13.4934	149.9946	151.533	9.85608			

Cuadro 139. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 15 etapas

Cominute	II	Entr	Entrada		Salida		
Corriente	Unidades	F	S	Е	R		
Fase		Líquida	Líquida	Líquida	Líquida		
Temperatura	°C	25	25	20.3462	19.0353		
Presión	bar	1.00008	1.00008	1.00008	1.00008		
Entalpía molar	cal/mol	-68592.6	-114685	-108548	-69188.9		
Entalpía másica	cal/gm	-3756.11	-1301.67	-1377.67	-3600.19		
Entropía molar	cal/mol-K	-39.2359	-117.73	-106.921	-40.7233		
Entropía másica	cal/gm-K	-2.14855	-1.33623	-1.35703	-2.11901		
Densidad molar	mol/mL	0.0545943	0.0101795	0.0115738	0.0517165		
Densidad másica	gm/mL	0.996979	0.896876	0.911903	0.993895		
Flujo de entalpía	cal/sec	-14036	-48641.4	-52880.9	-9796.47		
Peso molecular promedio	kmol/kg	18.2616	88.1063	78.7905	19.2181		
Balance molar							
Global	kmol	0.736665	1.52687	1.75381	0.509725		
Agua	kmol	0.734147	0	0.23317	0.500977		
Ácido láctico	kmol	0.00251779	0	0.00251779	1.06803E-12		
Acetato de etilo	kmol	0	1.52687	1.51812	8.75E-03		
	F	Tracciones mola	ires				
Agua		0.996582	0	0.132951	0.982839		
Ácido láctico		0.00341783	0	0.00143562	2.09531E-12		
Acetato de etilo		0	1	0.865614	0.0171613		
		Balance másic	20				
Global	kg	13.4527	134.527	138.183	9.79596		
Agua	kg	13.2259	0	4.20062	9.02524		
Ácido láctico	kg	0.2268	0	0.2268	9.6207E-11		
Acetato de etilo	kg	0	134.527	133.756	0.770715		
	F	Tracciones mási	cas				
Agua		0.983141	0	0.0303989	0.921323		
Ácido láctico		0.0168591	0	0.0016413	9.82109E-12		
Acetato de etilo		0	1	0.96796	0.0786768		
	В	alance volumét	rico	•			
Volumen	1	13.4934	149.9946	151.533	9.85614		

Cuadro 140. Simulación en Aspen Plus para el sistema agua- acetato de etilo – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 20 etapas

Correct on the	II	Ent	rada	Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	24.9445	24.5874			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-102609	-93631.5	-68584.6			
Entalpía másica	cal/gm	-3756.11	-787.9	-935.316	-3756.44			
Entropía molar	cal/mol-K	-39.2359	-232.319	-179.221	-39.2614			
Entropía másica	cal/gm-K	-2.14855	-1.78391	-1.7903	-2.15038			
Densidad molar	mol/mL	0.0545943	0.00633095	0.0084511	0.0546099			
Densidadmásica	gm/mL	0.996979	0.824482	0.846013	0.99706			
Flujo de entalpía	cal/sec	-14036	-588.846	-735.958	-13888.9			
Peso molecular promedio	kmol/kg	18.2616	130.23	100.107	18.2579			
Balance molar								
Global	kmol	0.736665	0.0206596	0.0282965	0.729028			
Agua	kmol	0.734147	0	0.00753769	0.726609			
Ácido láctico	kmol	0.00251779	0	0.000163059	0.00235474			
1-octanol	kmol	0	0.0206596	0.0205958	6.38E-05			
]	Fracciones mo	lares					
Agua		0.996582	0	0.266382	0.996683			
Ácido láctico		0.00341783	0	0.0057625	0.00322997			
1-octanol		0	1	0.727855	8.75E-05			
		Balance más	ico					
Global	kg	13.4527	2.6905	2.83268	13.3105			
Agua	kg	13.2259	0	0.135794	13.0901			
Ácido láctico	kg	0.2268	0	0.0146881	0.212112			
1-octanol	kg	0	2.6905	2.6822	0.00830431			
]	Fracciones má	sicas					
Agua		0.983141	0	0.0479383	0.98344			
Ácido láctico		0.0168591	0	0.00518525	0.0159357			
1-octanol		0	1	0.946876	0.000623892			
	E	Balance volum	étrico	1				
Volumen	1	13.4934	3.263262	3.34827	13.34976			

Cuadro 141. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 5:1 en 2 etapas

Convionto	Unidadaa	Enti	Entrada		Salida			
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	24.746	24.0298			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-102609	-93652	-68567.4			
Entalpía másica	cal/gm	-3756.11	-787.9	-935.052	-3759.72			
Entropía molar	cal/mol-K	-39.2359	-232.319	-179.353	-39.2716			
Entropía másica	cal/gm-K	-2.14855	-1.78391	-1.79072	-2.15336			
Densidad molar	mol/mL	0.0545943	0.00633095	0.0084479	0.0546875			
Densidad másica	gm/mL	0.996979	0.824482	0.846116	0.997358			
Flujo de entalpía	cal/sec	-14036	-1472.13	-1842.55	-13665.6			
Peso molecular promedio	kmol/kg	18.2616	130.23	100.157	18.2374			
Balance molar								
Global	kmol	0.736665	0.0516495	0.0708279	0.717486			
Agua	kmol	0.734147	0	0.018838	0.715309			
Ácido láctico	kmol	0.00251779	0	0.000401443	0.00211635			
1-octanol	kmol	0	0.0516495	0.0515885	6.10E-05			
	F	racciones mol	ares					
Agua		0.996582	0	0.266382	0.996683			
Ácido láctico		0.00341783	0	0.0057625	0.00322997			
1-octanol		0	1	0.727855	8.75E-05			
	-	Balance mási	со					
Global	kg	13.4527	2.6905	2.83268	13.3105			
Agua	kg	13.2259	0	0.135794	13.0901			
Ácido láctico	kg	0.2268	0	0.0146881	0.212112			
1-octanol	kg	0	2.6905	2.6822	0.00830431			
	F	Tracciones más	icas					
Agua		0.996582	0	0.265969	0.996965			
Ácido láctico		0.00341783	0	0.00566786	0.00294968			
1-octanol		0	1	0.728363	8.50722E-05			
	В	alance volumé	trico	1				
Volumen	1	13.4934	8.15826	8.3841	13.11972			

Cuadro 142. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 2:1 en 2 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	24.3206	23.3153			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-102609	-93684.1	-68537.6			
Entalpía másica	cal/gm	-3756.11	-787.9	-934.581	-3764.69			
Entropía molar	cal/mol-K	-39.2359	-232.319	-179.598	-39.2782			
Entropía másica	cal/gm-K	-2.14855	-1.78391	-1.79165	-2.15751			
Densidad molar	mol/mL	0.0545943	0.00633095	0.00844298	0.0548008			
Densidad másica	gm/mL	0.996979	0.824482	0.846339	0.997668			
Flujo de entalpía	cal/sec	-14036	-2944.27	-3684	-13296.3			
Peso molecular promedio	kmol/kg	18.2616	130.23	100.242	18.2053			
Balance molar								
Global	kmol	0.736665	0.103299	0.141565	0.698399			
Agua	kmol	0.734147	0	0.0375584	0.696588			
Ácido láctico	kmol	0.00251779	0	0.000764468	0.00175333			
1-octanol	kmol	0	0.103299	0.103242	5.70E-05			
	F	Tracciones mol	ares					
Agua		0.996582	0	0.265309	0.997408			
Ácido láctico		0.00341783	0	0.00540012	0.0025105			
1-octanol		0	1	0.729291	8.16E-05			
		Balance mási	co					
Global	kg	13.4527	13.4527	14.1907	12.7146			
Agua	kg	13.2259	0	0.676626	12.5492			
Ácido láctico	kg	0.2268	0	0.0688624	0.157938			
1-octanol	kg	0	13.4527	13.4452	0.0074198			
	F	Tracciones más	icas					
Agua		0.983141	0	0.0476808	0.986995			
Ácido láctico		0.0168591	0	0.00485263	0.0124218			
1-octanol		0	1	0.947467	0.000583566			
	В	alance volumé	trico	1				
Volumen	1	13.4934	16.31652	16.76718	12.7443			

Cuadro 143. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:1 en 2 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	25	25	23.5901	22.5334			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-68592.6	-102609	-93730.5	-68482.7			
Entalpía másica	cal/gm	-3756.11	-787.9	-933.406	-3772.39			
Entropía molar	cal/mol-K	-39.2359	-232.319	-180.082	-39.2669			
Entropía másica	cal/gm-K	-2.14855	-1.78391	-1.79332	-2.16303			
Densidad molar	mol/mL	0.0545943	0.00633095	0.00843125	0.0549643			
Densidad másica	gm/mL	0.996979	0.824482	0.846647	0.997805			
Flujo de entalpía	cal/sec	-14036	-5888.53	-7353.57	-12570.9			
Peso molecular promedio	kmol/kg	18.2616	130.23	100.418	18.1537			
Balance molar								
Global	kmol	0.736665	0.206598	0.282436	0.660827			
Agua	kmol	0.734147	0	0.0745607	0.659586			
Ácido láctico	kmol	0.00251779	0	0.00132745	0.00119034			
1-octanol	kmol	0	0.206598	0.206547	5.06E-05			
	F	Tracciones mol	ares					
Agua		0.996582	0	0.263992	0.998122			
Ácido láctico		0.00341783	0	0.00470002	0.00180129			
1-octanol		0	1	0.731308	7.65E-05			
	1	Balance mási	co					
Global	kg	13.4527	26.9053	28.3615	11.9964			
Agua	kg	13.2259	0	1.34323	11.8826			
Ácido láctico	kg	0.2268	0	0.119576	0.107224			
1-octanol	kg	0	26.9053	26.8987	0.00658366			
	F	Tracciones más	icas					
Agua		0.983141	0	0.047361	0.990513			
Ácido láctico		0.0168591	0	0.00421611	0.00893803			
1-octanol		0	1	0.948423	0.000548802			
	В	alance volumé	trico	1				
Volumen	1	13.4934	32.63298	33.49866	12.02286			

Cuadro 144. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:2 en 2 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.8258	22.0008	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93760.2	-68412.4	-68592.6	-102609			
Entalpía másica	cal/gm	-931.403	-3780.98	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.72	-39.2322	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79525	-2.16826	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00841208	0.0551345	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846807	0.997596	0.996979	0.824482			
Flujo de entalpía	cal/sec	-14653.6	-11159.3	-14036	-11777.1			
Peso molecular promedio	kmol/kg	100.666	18.0939	18.2616	130.23			
Balance molar								
Global	kmol	0.562637	0.587224	0.736665	0.413196			
Agua	kmol	0.14754	0.586607	0.734147	0			
Ácido láctico	kmol	0.00194264	0.000575159	0.00251779	0			
1-octanol	kmol	0.413154	4.18365E-05	0	4.13E-01			
	F	racciones mo	lares					
Agua		0.262229	0.998949	0.996582	0			
Ácido láctico		0.00345273	0.000979455	0.00341783	0			
1-octanol		0.734318	7.12445E-05	0	1.00E+00			
		Balance más	ico					
Global	kg	56.6382	10.6251	13.4527	53.8106			
Agua	kg	2.65797	10.5679	13.2259	0			
Ácido láctico	kg	0.17499	0.0518097	0.2268	0			
1-octanol	kg	53.8052	0.00544838	0	53.8106			
	ŀ	Tracciones má	sicas					
Agua		0.046929	0.994611	0.983141	0			
Ácido láctico		0.00308962	0.00487614	0.0168591	0			
1-octanol		0.949981	0.000512781	0	1			
	В	alance volum	étrico					
Volumen	1	66.8844	10.65078	13.4934	65.2662			

Cuadro 145. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 2 etapas

Convionto	Unidadas	Entrada	Salida	Corriente	Unidades			
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.4761	21.833	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93764.9	-68377.8	-68592.6	-102609			
Entalpía másica	cal/gm	-930.1	-3784.96	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.08	-39.2112	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79622	-2.17048	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00839983	0.0552105	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846801	0.997415	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21927.8	-9773.56	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.812	18.0657	18.2616	130.23			
Balance molar								
Global	kmol	0.841894	0.514565	0.736665	0.619794			
Agua	kmol	0.219922	0.514225	0.734147	0			
Ácido láctico	kmol	0.00221322	0.000304576	0.00251779	0			
1-octanol	kmol	0.619758	3.54738E-05	0	6.20E-01			
	F	Fracciones mol	ares					
Agua		0.261223	0.999339	0.996582	0			
Ácido láctico		0.00262886	0.00059191	0.00341783	0			
1-octanol		0.736148	6.89394E-05	0	1.00E+00			
	1	Balance mási	со					
Global	kg	84.8727	9.29596	13.4527	80.716			
Agua	kg	3.96195	9.26391	13.2259	0			
Ácido láctico	kg	0.199364	0.0274359	0.2268	0			
1-octanol	kg	80.7113	0.00461976	0	80.716			
	ŀ	Tracciones más	sicas					
Agua		0.0466812	0.996552	0.983141	0			
Ácido láctico		0.00234898	0.00295137	0.0168591	0			
1-octanol		0.95097	0.000496964	0	1			
	В	alance volumé	trico					
Volumen	1	100.2276	9.32004	13.4934	97.899			

Cuadro 146. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 2 etapas

Comiento	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.4761	21.833	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93764.9	-68377.8	-68592.6	-102609			
Entalpía másica	cal/gm	-930.1	-3784.96	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.08	-39.2112	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79622	-2.17048	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00839983	0.0552105	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846801	0.997415	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21927.8	-9773.56	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.812	18.0657	18.2616	130.23			
Balance molar								
Global	kmol	0.841894	0.514565	0.736665	0.619794			
Agua	kmol	0.219922	0.514225	0.734147	0			
Ácido láctico	kmol	0.00221322	0.000304576	0.00251779	0			
1-octanol	kmol	0.619758	3.54738E-05	0	6.20E-01			
	ŀ	racciones mo	lares					
Agua		0.261223	0.999339	0.996582	0			
Ácido láctico		0.00262886	0.00059191	0.00341783	0			
1-octanol		0.736148	6.89394E-05	0	1.00E+00			
		Balance más	ico					
Global	kg	84.8727	9.29596	13.4527	80.716			
Agua	kg	3.96195	9.26391	13.2259	0			
Ácido láctico	kg	0.199364	0.0274359	0.2268	0			
1-octanol	kg	80.7113	0.00461976	0	80.716			
	ŀ	Tracciones má	sicas					
Agua		0.0466812	0.996552	0.983141	0			
Ácido láctico		0.00234898	0.00295137	0.0168591	0			
1-octanol		0.95097	0.000496964	0	1			
	В	alance volume	étrico	1				
Volumen	1	100.2276	9.32004	13.4934	97.899			

Cuadro 147. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 2 etapas

Germiente	TI	Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	24.984	24.5761	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93638.9	-68584.8	-68592.6	-102609			
Entalpía másica	cal/gm	-935.121	-3756.46	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.262	-39.262	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.7902	-2.15042	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00844818	0.0546106	0.0545943	0.00633095			
Densidad másica	gm/mL	0.845963	0.997071	0.996979	0.824482			
Flujo de entalpía	cal/sec	-735.774	-13889.1	-14036	-588.853			
Peso molecular promedio	kmol/kg	100.136	18.2578	18.2616	130.23			
Balance molar								
Global	kmol	0.0282873	0.729037	0.736665	0.0206598			
Agua	kmol	0.00752786	0.726619	0.734147	0			
Ácido láctico	kmol	0.000163347	0.00235445	0.00251779	0			
1-octanol	kmol	0.020596	0.000063753	0	2.07E-02			
	F	Fracciones mol	ares					
Agua		0.266122	0.996683	0.996582	0			
Ácido láctico		0.00577459	0.00322953	0.00341783	0			
1-octanol		0.728103	8.74483E-05	0	1.00E+00			
	1	Balance mási	со					
Global	kg	2.83256	13.3106	13.4527	2.69053			
Agua	kg	0.135617	13.0902	13.2259	0			
Ácido láctico	kg	0.0147141	0.212086	0.2268	0			
1-octanol	kg	2.68223	0.00830258	0	2.69053			
	ŀ	Tracciones más	icas					
Agua		0.0478777	0.983443	0.983141	0			
Ácido láctico		0.00519464	0.0159336	0.0168591	0			
1-octanol		0.946928	0.000623755	0	1			
	В	alance volumé	trico					
Volumen	1	3.348324	13.34976	13.4934	3.263298			

Cuadro 148. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 5:1 en 3 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	24.9055	23.9728	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93640.7	-68567.5	-68592.6	-102609			
Entalpía másica	cal/gm	-935.199	-3759.86	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.268	-39.2743	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79037	-2.15358	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00844937	0.0546922	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846028	0.997405	0.996979	0.824482			
Flujo de entalpía	cal/sec	-1843.11	-13665	-14036	-1472.13			
Peso molecular promedio	kmol/kg	100.129	18.2367	18.2616	130.23			
Balance molar								
Global	kmol	0.0708581	0.717456	0.736665	0.0516495			
Agua	kmol	0.0188613	0.715285	0.734147	0			
Ácido láctico	kmol	0.000408217	0.00210958	0.00251779	0			
1-octanol	kmol	0.0515885	6.09505E-05	0	5.16E-02			
	F	Fracciones mol	ares					
Agua		0.266184	0.996975	0.996582	0			
Ácido láctico		0.00576105	0.00294036	0.00341783	0			
1-octanol		0.728055	8.49537E-05	0	1			
		Balance mási	со					
Global	kg	7.09496	13.084	13.4527	6.72633			
Agua	kg	0.339792	12.8861	13.2259	0			
Ácido láctico	kg	0.0367717	0.190028	0.2268	0			
1-octanol	kg	6.71839	0.00793761	0	6.72633			
	ŀ	Fracciones más	icas					
Agua		0.047892	0.98487	0.983141	0			
Ácido láctico		0.00518279	0.0145237	0.0168591	0			
1-octanol		0.946925	0.000606663	0	1			
	В	alance volumé	trico					
Volumen	1	8.3862	13.1181	13.4934	8.15826			

Cuadro 149. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 2:1 en 3 etapas

Cominute.	II	Ent	Entrada		Salida			
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	24.5926	23.1207	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93667.4	-68535.9	-68592.6	-102609			
Entalpía másica	cal/gm	-935.001	-3765.4	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.423	-39.2855	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79102	-2.15837	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00844711	0.0548203	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846222	0.997811	0.996979	0.824482			
Flujo de entalpía	cal/sec	-3687.02	-13293.2	-14036	-2944.27			
Peso molecular promedio	kmol/kg	100.179	18.2015	18.2616	130.23			
Balance molar								
Global	kmol	0.141706	0.698257	0.736665	0.103299			
Agua	kmol	0.0376624	0.696484	0.734147	0			
Ácido láctico	kmol	0.000801661	0.00171613	0.00251779	0			
1-octanol	kmol	0.103242	5.66036E-05	0	1.03E-01			
	F	Fracciones mol	ares					
Agua		0.265777	0.997461	0.996582	0			
Ácido láctico		0.0056572	0.00245774	0.00341783	0			
1-octanol		0.728565	8.10641E-05	0	1			
	-	Balance mási	co					
Global	kg	14.196	12.7093	13.4527	13.4527			
Agua	kg	0.678498	12.5474	13.2259	0			
Ácido láctico	kg	0.0722127	0.154587	0.2268	0			
1-octanol	kg	13.4453	0.0073715	0	13.4527			
	ŀ	Tracciones más	icas					
Agua		0.047795	0.987257	0.983141	0			
Ácido láctico		0.00508683	0.0121633	0.0168591	0			
1-octanol		0.947118	0.000580008	0	1			
	В	alance volumé	trico					
Volumen	1	16.77576	12.73722	13.4934	16.31652			

Cuadro 150. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:1 en 3 etapas

Coursi on to	Unidadaa	Ent	Entrada		Salida			
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	23.8017	22.2258	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93724.5	-68469.2	-68592.6	-102609			
Entalpía másica	cal/gm	-934.159	-3774.6	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.868	-39.2694	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79276	-2.16486	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00843851	0.0550144	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846639	0.997931	0.996979	0.824482			
Flujo de entalpía	cal/sec	-7363.88	-12560.5	-14036	-5888.53			
Peso molecular promedio	kmol/kg	100.33	18.1394	18.2616	130.23			
Balance molar								
Global	kmol	0.28285	0.660413	0.736665	0.206598			
Agua	kmol	0.0748445	0.659302	0.734147	0			
Ácido láctico	kmol	0.00145706	0.00106073	0.00251779	0			
1-octanol	kmol	0.206548	4.95756E-05	0	2.07E-01			
	F	racciones mo	lares					
Agua		0.264609	0.998319	0.996582	0			
Ácido láctico		0.00515136	0.00160617	0.00341783	0			
1-octanol		0.73024	7.50676E-05	0	1			
		Balance más	ico					
Global	kg	28.3785	11.9795	13.4527	26.9053			
Agua	kg	1.34835	11.8775	13.2259	0			
Ácido láctico	kg	0.13125	0.0955495	0.2268	0			
1-octanol	kg	26.8989	0.00645624	0	26.9053			
	ŀ	Fracciones má	sicas					
Agua		0.047513	0.991485	0.983141	0			
Ácido láctico		0.004625	0.00797607	0.0168591	0			
1-octanol		0.947862	0.00053894	0	1			
	В	alance volume	étrico	1				
Volumen	1	33.51894	12.00438	13.4934	32.63298			

Cuadro 151. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:2 en 3 etapas

Convionto	Unidadaa	Ent	Entrada		Salida			
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.8915	21.7881	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93765.8	-68383.7	-68592.6	-102609			
Entalpía másica	cal/gm	-931.95	-3784.49	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.6	-39.218	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79501	-2.1704	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00841714	0.0552039	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846869	0.997505	0.996979	0.824482			
Flujo de entalpía	cal/sec	-14668.4	-11144.4	-14036	-11777.1			
Peso molecular promedio	kmol/kg	100.613	18.0695	18.2616	130.23			
Balance molar								
Global	kmol	0.563172	0.586689	0.736665	0.413196			
Agua	kmol	0.147877	0.58627	0.734147	0			
Ácido láctico	kmol	0.00213976	0.000378032	0.00251779	0			
1-octanol	kmol	0.413155	0.000040591	0	4.13E-01			
	ŀ	racciones mo	lares					
Agua		0.262578	0.999286	0.996582	0			
Ácido láctico		0.00379948	0.000644349	0.00341783	0			
1-octanol		0.733622	6.91866E-05	0	1			
	1	Balance más	ico					
Global	kg	56.6621	10.6012	13.4527	53.8106			
Agua	kg	2.66404	10.5618	13.2259	0			
Ácido láctico	kg	0.192747	0.0340527	0.2268	0			
1-octanol	kg	53.8054	0.00528618	0	53.8106			
	ŀ	Tracciones má	sicas					
Agua		0.0470162	0.996289	0.983141	0			
Ácido láctico		0.00340169	0.00321217	0.0168591	0			
1-octanol		0.949582	0.000498641	0	1			
	В	alance volum	étrico					
Volumen	1	66.9078	10.62768	13.4934	65.2662			

Cuadro 152. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 3 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.5008	21.6992	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93769	-68350.7	-68592.6	-102609			
Entalpía másica	cal/gm	-930.386	-3788.09	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.021	-39.1953	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79611	-2.17226	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00840245	0.0552704	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846841	0.997275	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21939.4	-9761.94	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.785	18.0436	18.2616	130.23			
Balance molar								
Global	kmol	0.842302	0.514157	0.736665	0.619794			
Agua	kmol	0.220173	0.513974	0.734147	0			
Ácido láctico	kmol	0.00236963	0.000148166	0.00251779	0			
1-octanol	kmol	0.619759	3.45343E-05	0	6.20E-01			
	F	racciones mo	lares					
Agua		0.261394	0.999645	0.996582	0			
Ácido láctico		0.00281328	0.000288173	0.00341783	0			
1-octanol		0.735793	6.71668E-05	0	1			
		Balance más	ico					
Global	kg	84.8914	9.27723	13.4527	80.716			
Agua	kg	3.96647	9.25939	13.2259	0			
Ácido láctico	kg	0.213453	0.0133467	0.2268	0			
1-octanol	kg	80.7115	0.00449741	0	80.716			
	ŀ	Fracciones má	sicas					
Agua		0.046724	0.998077	0.983141	0			
Ácido láctico		0.00251443	0.00143865	0.0168591	0			
1-octanol		0.950762	0.000484779	0	1			
	В	alance volume	étrico					
Volumen	1	100.245	9.30258	13.4934	97.899			

Cuadro 153. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 3 etapas

Corriente	Unidadaa	Ent	Entrada		Salida			
Corriente	Unidades	F	S	E	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.1846	21.6717	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93761.1	-68331.4	-68592.6	-102609			
Entalpía másica	cal/gm	-928.798	-3790.13	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.415	-39.1812	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79709	-2.17326	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00838789	0.0553072	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846748	0.997121	0.996979	0.824482			
Flujo de entalpía	cal/sec	-36458.4	-7019.5	-14036	-29442.7			
Peso molecular promedio	kmol/kg	100.949	18.0288	18.2616	130.23			
Balance molar								
Global	kmol	1.39984	0.369818	0.736665	1.03299			
Agua	kmol	0.364384	0.369763	0.734147	0			
Ácido láctico	kmol	0.0024866	3.11928E-05	0.00251779	0			
1-octanol	kmol	1.03297	2.44246E-05	0	1.03E+00			
	ŀ	racciones mo	lares					
Agua		0.260305	0.99985	0.996582	0			
Ácido láctico		0.00177635	8.43464E-05	0.00341783	0			
1-octanol		0.737919	6.60449E-05	0	1			
		Balance más	ico					
Global	kg	141.312	6.66737	13.4527	134.527			
Agua	kg	6.56448	6.66138	13.2259	0			
Ácido láctico	kg	0.22399	0.00280982	0.2268	0			
1-octanol	kg	134.523	0.00318082	0	134.527			
	ŀ	Tracciones má	sicas					
Agua		0.0464538	0.999101	0.983141	0			
Ácido láctico		0.00158508	0.000421428	0.0168591	0			
1-octanol		0.951961	0.000477073	0	1			
	В	alance volume	étrico					
Volumen	1	166.8876	6.68664	13.4934	163.1652			

Cuadro 154. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 3 etapas

0	TI	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	24.9898	24.5754	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93638.3	-68584.8	-68592.6	-102609			
Entalpía másica	cal/gm	-935.125	-3756.46	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.259	-39.2621	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79018	-2.15043	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00844824	0.0546106	0.0545943	0.00633095			
Densidad másica	gm/mL	0.84596	0.997071	0.996979	0.824482			
Flujo de entalpía	cal/sec	-735.78	-13889.1	-14036	-588.853			
Peso molecular promedio	kmol/kg	100.134	18.2578	18.2616	130.23			
Balance molar								
Global	kmol	0.0282877	0.729037	0.736665	0.0206598			
Agua	kmol	0.00752824	0.726619	0.734147	0			
Ácido láctico	kmol	0.000163385	0.00235441	0.00251779	0			
1-octanol	kmol	0.020596	6.37522E-05	0	2.07E-02			
	ŀ	Tracciones mol	ares					
Agua		0.266132	0.996683	0.996582	0			
Ácido láctico		0.00577583	0.00322948	0.00341783	0			
1-octanol		0.728093	8.74472E-05	0	1			
	1	Balance mási	со					
Global	kg	2.83257	13.3106	13.4527	2.69053			
Agua	kg	0.135623	13.0902	13.2259	0			
Ácido láctico	kg	0.0147175	0.212082	0.2268	0			
1-octanol	kg	2.68223	0.00830247	0	2.69053			
	ŀ	racciones más	icas					
Agua		0.04788	0.983443	0.983141	0			
Ácido láctico		0.00519582	0.0159333	0.0168591	0			
1-octanol		0.946924	0.000623748	0	1			
	В	alance volumé	trico					
Volumen	1	3.348354	13.3497	13.4934	3.263298			

Cuadro 155. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 5:1 en 4 etapas

Corriente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	24.9606	23.9529	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93636.3	-68567.7	-68592.6	-102609			
Entalpía másica	cal/gm	-935.219	-3759.9	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.244	-39.2753	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79025	-2.15365	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00844958	0.0546935	0.0545943	0.00633095			
Densidad másica	gm/mL	0.845992	0.997423	0.996979	0.824482			
Flujo de entalpía	cal/sec	-1843.2	-13665	-14036	-1472.13			
Peso molecular promedio	kmol/kg	100.122	18.2366	18.2616	130.23			
Balance molar								
Global	kmol	0.0708649	0.717449	0.736665	0.0516495			
Agua	kmol	0.018867	0.71528	0.734147	0			
Ácido láctico	kmol	0.000409311	0.00210848	0.00251779	0			
1-octanol	kmol	0.0515886	6.09287E-05	0	5.16E-02			
	ŀ	Tracciones mol	ares					
Agua		0.266239	0.996976	0.996582	0			
Ácido láctico		0.00577594	0.00293886	0.00341783	0			
1-octanol		0.727985	8.49241E-05	0	1			
	T	Balance mási	со					
Global	kg	7.09516	13.0838	13.4527	6.72633			
Agua	kg	0.339894	12.886	13.2259	0			
Ácido láctico	kg	0.0368703	0.18993	0.2268	0			
1-octanol	kg	6.7184	0.00793477	0	6.72633			
	ŀ	racciones más	sicas					
Agua		0.0479051	0.984877	0.983141	0			
Ácido láctico		0.00519654	0.0145164	0.0168591	0			
1-octanol		0.946898	0.000606456	0	1			
	В	alance volumé	trico					
Volumen	1	8.3868	13.11762	13.4934	8.15826			

Cuadro 156. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 2:1 en 4 etapas

Comiento	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	24.7405	23.0146	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93656.1	-68536.2	-68592.6	-102609			
Entalpía másica	cal/gm	-935.142	-3765.67	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.342	-39.2905	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.7907	-2.15879	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00844858	0.0548289	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846141	0.997899	0.996979	0.824482			
Flujo de entalpía	cal/sec	-3688.07	-13292.2	-14036	-2944.27			
Peso molecular promedio	kmol/kg	100.152	18.2002	18.2616	130.23			
Balance molar								
Global	kmol	0.141764	0.6982	0.736665	0.103299			
Agua	kmol	0.0377078	0.696439	0.734147	0			
Ácido láctico	kmol	0.000813612	0.00170418	0.00251779	0			
1-octanol	kmol	0.103243	5.64555E-05	0	1.03E-01			
	ŀ	Fracciones mol	ares					
Agua		0.26599	0.997478	0.996582	0			
Ácido láctico		0.0057392	0.00244082	0.00341783	0			
1-octanol		0.728271	8.08586E-05	0	1			
	1	Balance mási	со		1			
Global	kg	14.1979	12.7074	13.4527	13.4527			
Agua	kg	0.679316	12.5465	13.2259	0			
Ácido láctico	kg	0.0732892	0.153511	0.2268	0			
1-octanol	kg	13.4453	0.00735221	0	13.4527			
	ŀ	Tracciones más	sicas					
Agua		0.0478462	0.987341	0.983141	0			
Ácido láctico		0.00516197	0.0120804	0.0168591	0			
1-octanol		0.946992	0.000578577	0	1			
	В	alance volumé	trico		Γ			
Volumen	1	16.7796	12.73416	13.4934	16.31652			

Cuadro 157. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:1 en 4 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	23.9123	22.0319	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93727.1	-68462.5	-68592.6	-102609			
Entalpía másica	cal/gm	-934.453	-3775.82	-3756.11	-787.9			
Entropía molar	cal/mol-K	-179.786	-39.2725	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79245	-2.16594	-2.14855	-1.78391			
Densidad molar	mol/mL	0.0084408	0.0550428	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846625	0.998026	0.996979	0.824482			
Flujo de entalpía	cal/sec	-7368.27	-12556.2	-14036	-5888.53			
Peso molecular promedio	kmol/kg	100.302	18.1318	18.2616	130.23			
Balance molar								
Global	kmol	0.283011	0.660252	0.736665	0.206598			
Agua	kmol	0.0749353	0.659211	0.734147	0			
Ácido láctico	kmol	0.00152651	0.000991283	0.00251779	0			
1-octanol	kmol	0.206549	4.90359E-05	0	2.07E-01			
	ŀ	racciones mo	lares					
Agua		0.264779	0.998424	0.996582	0			
Ácido láctico		0.00539383	0.00150137	0.00341783	0			
1-octanol		0.729827	7.42684E-05	0	1			
	1	Balance más	ico		Γ			
Global	kg	28.3864	11.9716	13.4527	26.9053			
Agua	kg	1.34998	11.8759	13.2259	0			
Ácido láctico	kg	0.137506	0.0892936	0.2268	0			
1-octanol	kg	26.8989	0.00638596	0	26.9053			
	ŀ	Tracciones má	sicas					
Agua		0.0475573	0.992008	0.983141	0			
Ácido láctico		0.00484409	0.00745881	0.0168591	0			
1-octanol		0.947599	0.000533427	0	1			
	В	alance volum	étrico					
Volumen	1	33.5289	11.99526	13.4934	32.63298			

Cuadro 158. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:2 en 4 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.9157	21.71	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93770.6	-68365.9	-68592.6	-102609			
Entalpía másica	cal/gm	-932.267	-3786.51	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.536	-39.2071	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79489	-2.17152	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00842004	0.0552423	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846916	0.997405	0.996979	0.824482			
Flujo de entalpía	cal/sec	-14677	-11135.8	-14036	-11777.1			
Peso molecular promedio	kmol/kg	100.583	18.0551	18.2616	130.23			
Balance molar								
Global	kmol	0.563473	0.586388	0.736665	0.413196			
Agua	kmol	0.148061	0.586086	0.734147	0			
Ácido láctico	kmol	0.00225574	0.000262056	0.00251779	0			
1-octanol	kmol	0.413156	3.98945E-05	0	4.13E-01			
	F	racciones mo	lares					
Agua		0.262765	0.999485	0.996582	0			
Ácido láctico		0.00400328	0.000446899	0.00341783	0			
1-octanol		0.733232	6.80344E-05	0	1			
		Balance más	ico					
Global	kg	56.676	10.5873	13.4527	53.8106			
Agua	kg	2.66736	10.5585	13.2259	0			
Ácido láctico	kg	0.203194	0.0236057	0.2268	0			
1-octanol	kg	53.8054	0.00519548	0	53.8106			
	ŀ	Fracciones má	sicas					
Agua		0.0470633	0.99728	0.983141	0			
Ácido láctico		0.00358519	0.00222962	0.0168591	0			
1-octanol		0.949352	0.000490727	0	1			
	В	alance volum	étrico					
Volumen	1	66.9204	10.61484	13.4934	65.2662			

Cuadro 159. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 4 etapas

Q t	TI I I	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.508	21.6654	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93771.1	-68337.4	-68592.6	-102609			
Entalpía másica	cal/gm	-930.526	-3789.54	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.994	-39.1862	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79607	-2.17301	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00840375	0.0552971	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846864	0.997181	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21945	-9756.31	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.772	18.0332	18.2616	130.23			
Balance molar								
Global	kmol	0.842498	0.51396	0.736665	0.619794			
Agua	kmol	0.220295	0.513852	0.734147	0			
Ácido láctico	kmol	0.00244343	0.000074366	0.00251779	0			
1-octanol	kmol	0.61976	3.41093E-05	0	6.20E-01			
	F	racciones mo	lares					
Agua		0.261478	0.999789	0.996582	0			
Ácido láctico		0.00290022	0.000144692	0.00341783	0			
1-octanol		0.735622	6.63656E-05	0	1			
		Balance más	ico					
Global	kg	84.9003	9.26833	13.4527	80.716			
Agua	kg	3.96867	9.25719	13.2259	0			
Ácido láctico	kg	0.220101	0.00669881	0.2268	0			
1-octanol	kg	80.7115	0.00444206	0	80.716			
	ŀ	Fracciones má	sicas					
Agua		0.0467451	0.998798	0.983141	0			
Ácido láctico		0.00259247	0.000722763	0.0168591	0			
1-octanol		0.950662	0.000479274	0	1			
	В	alance volume	étrico					
Volumen	1	100.2528	9.29454	13.4934	97.899			

Cuadro 160. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 4 etapas
Corriente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.1921	21.6499	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93758.6	-68326.1	-68592.6	-102609			
Entalpía másica	cal/gm	-928.867	-3790.73	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.395	-39.1782	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79708	-2.1736	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00838878	0.0553185	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846753	0.99709	0.996979	0.824482			
Flujo de entalpía	cal/sec	-36462.4	-7015.34	-14036	-29442.7			
Peso molecular promedio	kmol/kg	100.939	18.0245	18.2616	130.23			
Balance molar								
Global	kmol	1.40003	0.369627	0.736665	1.03299			
Agua	kmol	0.364553	0.369594	0.734147	0			
Ácido láctico	kmol	0.00250815	9.64426E-06	0.00251779	0			
1-octanol	kmol	1.03297	0.000024288	0	1.03E+00			
	ŀ	racciones mo	lares					
Agua		0.26039	0.999908	0.996582	0			
Ácido láctico		0.0017915	2.60918E-05	0.00341783	0			
1-octanol		0.737818	6.57093E-05	0	1			
	I	Balance más	ico					
Global	kg	141.317	6.66236	13.4527	134.527			
Agua	kg	6.56753	6.65833	13.2259	0			
Ácido láctico	kg	0.225931	0.000868744	0.2268	0			
1-octanol	kg	134.523	0.00316303	0	134.527			
	ŀ	Tracciones má	sicas					
Agua		0.0464738	0.999395	0.983141	0			
Ácido láctico		0.00159876	0.000130396	0.0168591	0			
1-octanol		0.951927	0.000474761	0	1			
	В	alance volum	étrico					
Volumen	1	166.893	6.68178	13.4934	163.1652			

Cuadro 161. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 4 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.8948	21.6626	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93789.9	-68346.2	-68592.6	-102609			
Entalpía másica	cal/gm	-932.416	-3788.65	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.54	-39.1933	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79484	-2.17261	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00842028	0.0552815	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846979	0.997264	0.996979	0.824482			
Flujo de entalpía	cal/sec	-14682	-11131.1	-14036	-11777.1			
Peso molecular promedio	kmol/kg	100.588	18.0397	18.2616	130.23			
Balance molar								
Global	kmol	0.56355	0.58631	0.736665	0.413196			
Agua	kmol	0.148014	0.586133	0.734147	0			
Ácido láctico	kmol	0.00237991	0.000137882	0.00251779	0			
1-octanol	kmol	0.413157	0.000039191	0	4.13E-01			
	ŀ	racciones mo	lares					
Agua		0.262645	0.999698	0.996582	0			
Ácido láctico		0.00422307	0.000235169	0.00341783	0			
1-octanol		0.733132	6.68434E-05	0	1			
	1	Balance más	ico					
Global	kg	56.6864	10.5769	13.4527	53.8106			
Agua	kg	2.66651	10.5593	13.2259	0			
Ácido láctico	kg	0.21438	0.0124203	0.2268	0			
1-octanol	kg	53.8055	0.00510385	0	53.8106			
	ŀ	Tracciones má	sicas					
Agua		0.0470397	0.998343	0.983141	0			
Ácido láctico		0.00378185	0.00117428	0.0168591	0			
1-octanol		0.949178	0.000482548	0	1			
	В	alance volum	étrico					
Volumen	1	66.9276	10.6059	13.4934	65.2662			

Cuadro 162. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 6 etapas

Comised to	The start as a	Ent	rada	Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.9012	21.6543	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93794.6	-68330.9	-68592.6	-102609			
Entalpía másica	cal/gm	-932.678	-3790.23	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.491	-39.1816	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79478	-2.17336	-2.14855	-1.78391			
Densidad molar	mol/mL	0.0084227	0.0553096	0.0545943	0.00633095			
Densidad másica	gm/mL	0.847027	0.99713	0.996979	0.824482			
Flujo de entalpía	cal/sec	-14689	-11124.1	-14036	-11777.1			
Peso molecular promedio	kmol/kg	100.565	18.0282	18.2616	130.23			
Balance molar								
Global	kmol	0.563791	0.586069	0.736665	0.413196			
Agua	kmol	0.148161	0.585986	0.734147	0			
Ácido láctico	kmol	0.00247333	4.44654E-05	0.00251779	0			
1-octanol	kmol	0.413157	3.86725E-05	0	4.13E-01			
	F	racciones mo	lares					
Agua		0.262794	0.999858	0.996582	0			
Ácido láctico		0.00438696	7.58706E-05	0.00341783	0			
1-octanol		0.732819	6.59863E-05	0	1			
	1	Balance más	ico					
Global	kg	56.6976	10.5657	13.4527	53.8106			
Agua	kg	2.66916	10.5567	13.2259	0			
Ácido láctico	kg	0.222795	0.00400539	0.2268	0			
1-octanol	kg	53.8056	0.00503634	0	53.8106			
	ŀ	Tracciones má	sicas					
Agua		0.0470771	0.999144	0.983141	0			
Ácido láctico		0.00392953	0.000379092	0.0168591	0			
1-octanol		0.948993	0.000476667	0	1			
	В	alance volume	étrico					
Volumen	1	66.9372	10.59618	13.4934	65.2662			

Cuadro 163. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 10 etapas

Cominute	II	Ent	rada	Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.9031	21.6515	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93796.2	-68325.6	-68592.6	-102609			
Entalpía másica	cal/gm	-932.77	-3790.78	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.474	-39.1777	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79475	-2.17362	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00842355	0.0553194	0.0545943	0.00633095			
Densidad másica	gm/mL	0.847044	0.997084	0.996979	0.824482			
Flujo de entalpía	cal/sec	-14691.5	-11121.6	-14036	-11777.1			
Peso molecular promedio	kmol/kg	100.557	18.0241	18.2616	130.23			
Balance molar								
Global	kmol	0.563875	0.585985	0.736665	0.413196			
Agua	kmol	0.148212	0.585935	0.734147	0			
Ácido láctico	kmol	0.00250578	1.20185E-05	0.00251779	0			
1-octanol	kmol	0.413157	0.000038493	0	4.13E-01			
	F	racciones mo	lares					
Agua		0.262845	0.999914	0.996582	0			
Ácido láctico		0.00444385	2.05099E-05	0.00341783	0			
1-octanol		0.732711	6.56894E-05	0	1			
		Balance más	ico					
Global	kg	56.7014	10.5619	13.4527	53.8106			
Agua	kg	2.67008	10.5558	13.2259	0			
Ácido láctico	kg	0.225717	0.00108261	0.2268	0			
1-octanol	kg	53.8056	0.00501295	0	53.8106			
	ŀ	Fracciones má	sicas					
Agua		0.0470902	0.999423	0.983141	0			
Ácido láctico		0.00398081	0.000102502	0.0168591	0			
1-octanol		0.948929	0.000474627	0	1			
	В	alance volum	étrico					
Volumen	1	66.9402	10.59276	13.4934	65.2662			

Cuadro 164. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 15 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.9035	21.6506	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93796.5	-68324.1	-68592.6	-102609			
Entalpía másica	cal/gm	-932.797	-3790.93	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.469	-39.1767	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79475	-2.1737	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00842382	0.055322	0.0545943	0.00633095			
Densidad másica	gm/mL	0.847049	0.997072	0.996979	0.824482			
Flujo de entalpía	cal/sec	-14692.2	-11120.9	-14036	-11777.1			
Peso molecular promedio	kmol/kg	100.554	18.0231	18.2616	130.23			
Balance molar								
Global	kmol	0.563901	0.58596	0.736665	0.413196			
Agua	kmol	0.148229	0.585918	0.734147	0			
Ácido láctico	kmol	0.00251443	3.36861E-06	0.00251779	0			
1-octanol	kmol	0.413157	3.84445E-05	0	4.13E-01			
	F	racciones mo	lares					
Agua		0.262863	0.999929	0.996582	0			
Ácido láctico		0.00445899	5.74888E-06	0.00341783	0			
1-octanol		0.732678	6.56095E-05	0	1			
		Balance más	ico					
Global	kg	56.7025	10.5608	13.4527	53.8106			
Agua	kg	2.67038	10.5555	13.2259	0			
Ácido láctico	kg	0.226497	0.000303441	0.2268	0			
1-octanol	kg	53.8056	0.00500664	0	53.8106			
	ŀ	Tracciones má	sicas					
Agua		0.0470946	0.999497	0.983141	0			
Ácido láctico		0.00399447	2.87328E-05	0.0168591	0			
1-octanol		0.948911	0.000474079	0	1			
	В	alance volum	étrico					
Volumen	1	66.9414	10.5918	13.4934	65.2662			

Cuadro 165. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:4 en 20 etapas

a : ,		Entrada		Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.5378	21.6496	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93766.5	-68327.3	-68592.6	-102609			
Entalpía másica	cal/gm	-930.706	-3790.61	-3756.11	-787.9			
Entropía molar	cal/mol-K	-180.942	-39.1791	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.796	-2.17355	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00840586	0.0553165	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846871	0.997101	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21951.6	-9749.24	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.748	18.0254	18.2616	130.23			
Balance molar								
Global	kmol	0.842795	0.513664	0.736665	0.619794			
Agua	kmol	0.220536	0.513611	0.734147	0			
Ácido láctico	kmol	0.00249833	1.94622E-05	0.00251779	0			
1-octanol	kmol	0.61976	3.37872E-05	0	6.20E-01			
	F	racciones mo	lares					
Agua		0.261672	0.999896	0.996582	0			
Ácido láctico		0.00296434	0.000037889	0.00341783	0			
1-octanol		0.735363	6.57768E-05	0	1			
	-	Balance más	ico					
Global	kg	84.9096	9.25899	13.4527	80.716			
Agua	kg	3.97302	9.25284	13.2259	0			
Ácido láctico	kg	0.225047	0.00175314	0.2268	0			
1-octanol	kg	80.7116	0.00440011	0	80.716			
	F	racciones má	sicas					
Agua		0.0467912	0.999335	0.983141	0			
Ácido láctico		0.00265043	0.000189344	0.0168591	0			
1-octanol		0.950558	0.000475226	0	1			
	В	alance volume	étrico					
Volumen	1	100.263	9.2859	13.4934	97.899			

Cuadro 166. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 6 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.4946	21.651	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93780.9	-68323.8	-68592.6	-102609			
Entalpía másica	cal/gm	-930.55	-3790.96	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.006	-39.1764	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79605	-2.17371	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00840333	0.0553225	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846888	0.997069	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21946.8	-9754.7	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.78	18.0228	18.2616	130.23			
Balance molar								
Global	kmol	0.842481	0.513978	0.736665	0.619794			
Agua	kmol	0.220204	0.513942	0.734147	0			
Ácido láctico	kmol	0.0025164	1.39373E-06	0.00251779	0			
1-octanol	kmol	0.61976	3.37141E-05	0	6.20E-01			
	ŀ	racciones mo	lares					
Agua		0.261376	0.999932	0.996582	0			
Ácido láctico		0.00298689	2.71166E-06	0.00341783	0			
1-octanol		0.735637	6.55946E-05	0	1			
		Balance más	ico					
Global	kg	84.9053	9.26333	13.4527	80.716			
Agua	kg	3.96704	9.25882	13.2259	0			
Ácido láctico	kg	0.226674	0.000125546	0.2268	0			
1-octanol	kg	80.7116	0.0043906	0	80.716			
	ŀ	racciones má	sicas					
Agua		0.0467232	0.999512	0.983141	0			
Ácido láctico		0.00266973	0.000013553	0.0168591	0			
1-octanol		0.950607	0.000473977	0	1			
	В	alance volume	étrico					
Volumen	1	100.2558	9.29058	13.4934	97.899			

Cuadro 167. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 10 etapas

		Ent	rada	Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.4898	21.6507	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93782.4	-68323.6	-68592.6	-102609			
Entalpía másica	cal/gm	-930.531	-3790.99	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.014	-39.1763	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79606	-2.17373	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00840304	0.055323	0.0545943	0.00633095			
Densidad másica	gm/mL	0.84689	0.997066	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21946.2	-9755.36	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.784	18.0226	18.2616	130.23			
Balance molar								
Global	kmol	0.842444	0.514014	0.736665	0.619794			
Agua	kmol	0.220166	0.513981	0.734147	0			
Ácido láctico	kmol	0.00251774	5.20776E-08	0.00251779	0			
1-octanol	kmol	0.61976	3.37091E-05	0	6.20E-01			
	F	racciones mo	lares					
Agua		0.261342	0.999934	0.996582	0			
Ácido láctico		0.00298862	1.01315E-07	0.00341783	0			
1-octanol		0.735669	6.55801E-05	0	1			
		Balance más	ico					
Global	kg	84.9047	9.2639	13.4527	80.716			
Agua	kg	3.96636	9.2595	13.2259	0			
Ácido láctico	kg	0.226795	4.69109E-06	0.2268	0			
1-octanol	kg	80.7116	0.00438995	0	80.716			
	ŀ	Fracciones má	sicas					
Agua		0.0467154	0.999526	0.983141	0			
Ácido láctico		0.00267117	5.06384E-07	0.0168591	0			
1-octanol		0.950613	0.000473877	0	1			
	В	alance volum	étrico					
Volumen	1	100.2546	9.29118	13.4934	97.899			

Cuadro 168. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 15 etapas

Cominute	II	Ent	rada	Salida				
Corriente	Unidades	F	S	Е	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.4887	21.6502	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93782.5	-68323.6	-68592.6	-102609			
Entalpía másica	cal/gm	-930.533	-3790.99	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.014	-39.1763	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79606	-2.17373	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00840306	0.055323	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846891	0.997067	0.996979	0.824482			
Flujo de entalpía	cal/sec	-21946.3	-9755.33	-14036	-17665.6			
Peso molecular promedio	kmol/kg	100.784	18.0226	18.2616	130.23			
Balance molar								
Global	kmol	0.842446	0.514013	0.736665	0.619794			
Agua	kmol	0.220168	0.513979	0.734147	0			
Ácido láctico	kmol	0.00251779	1.94816E-09	0.00251779	0			
1-octanol	kmol	0.61976	3.37081E-05	0	6.20E-01			
	ŀ	racciones mo	lares					
Agua		0.261344	0.999934	0.996582	0			
Ácido láctico		0.00298867	3.7901E-09	0.00341783	0			
1-octanol		0.735668	6.55784E-05	0	1			
		Balance más	ico					
Global	kg	84.9048	9.26386	13.4527	80.716			
Agua	kg	3.96639	9.25947	13.2259	0			
Ácido láctico	kg	0.2268	1.75488E-07	0.2268	0			
1-octanol	kg	80.7116	0.00438982	0	80.716			
	ŀ	Fracciones má	sicas					
Agua		0.0467157	0.999526	0.983141	0			
Ácido láctico		0.00267123	1.89433E-08	0.0168591	0			
1-octanol		0.950613	0.000473865	0	1			
	В	alance volum	étrico					
Volumen	1	100.2546	9.29112	13.4934	97.899			

Cuadro 169. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:6 en 20 etapas

Convionto	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.1963	21.6509	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93757.7	-68323.8	-68592.6	-102609			
Entalpía másica	cal/gm	-928.891	-3790.96	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.387	-39.1764	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79707	-2.17371	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00838908	0.0553225	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846753	0.997068	0.996979	0.824482			
Flujo de entalpía	cal/sec	-36463.8	-7013.8	-14036	-29442.7			
Peso molecular promedio	kmol/kg	100.935	18.0228	18.2616	130.23			
Balance molar								
Global	kmol	1.4001	0.369559	0.736665	1.03299			
Agua	kmol	0.364613	0.369534	0.734147	0			
Ácido láctico	kmol	0.00251687	9.29079E-07	0.00251779	0			
1-octanol	kmol	1.03297	2.42405E-05	0	1.03E+00			
	ŀ	racciones mo	lares					
Agua		0.26042	0.999932	0.996582	0			
Ácido láctico		0.00179764	2.51402E-06	0.00341783	0			
1-octanol		0.737782	6.55929E-05	0	1			
		Balance más	ico					
Global	kg	141.319	6.6605	13.4527	134.527			
Agua	kg	6.5686	6.65726	13.2259	0			
Ácido láctico	kg	0.226716	8.36904E-05	0.2268	0			
1-octanol	kg	134.523	0.00315684	0	134.527			
	ŀ	Tracciones má	sicas					
Agua		0.0464807	0.999513	0.983141	0			
Ácido láctico		0.00160429	1.25652E-05	0.0168591	0			
1-octanol		0.951915	0.000473965	0	1			
	В	alance volume	étrico					
Volumen	1	166.8948	6.6801	13.4934	163.1652			

Cuadro 170. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 6 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.1603	21.6497	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93769.1	-68323.6	-68592.6	-102609			
Entalpía másica	cal/gm	-928.735	-3790.99	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.445	-39.1763	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79712	-2.17373	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00838674	0.055323	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846762	0.997067	0.996979	0.824482			
Flujo de entalpía	cal/sec	-36455.4	-7023.12	-14036	-29442.7			
Peso molecular promedio	kmol/kg	100.964	18.0226	18.2616	130.23			
Balance molar								
Global	kmol	1.3996	0.370051	0.736665	1.03299			
Agua	kmol	0.36412	0.370027	0.734147	0			
Ácido láctico	kmol	0.00251779	8.72115E-09	0.00251779	0			
1-octanol	kmol	1.03297	0.000024267	0	1.03E+00			
	F	racciones mo	lares					
Agua		0.260159	0.999934	0.996582	0			
Ácido láctico		0.00179893	2.35674E-08	0.00341783	0			
1-octanol		0.738042	6.55774E-05	0	1			
		Balance más	ico					
Global	kg	141.31	6.6693	13.4527	134.527			
Agua	kg	6.55972	6.66614	13.2259	0			
Ácido láctico	kg	0.226799	7.85591E-07	0.2268	0			
1-octanol	kg	134.523	0.0031603	0	134.527			
	ŀ	Fracciones má	sicas					
Agua		0.0464208	0.999526	0.983141	0			
Ácido láctico		0.00160498	1.17792E-07	0.0168591	0			
1-octanol		0.951974	0.000473857	0	1			
	В	alance volum	étrico					
Volumen	1	166.8828	6.68892	13.4934	163.1652			

Cuadro 171. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 10 etapas

Comiente	Unidadaa	Entrada		Salida				
Corriente	Unidades	F	S	Ε	R			
Fase		Líquida	Líquida	Líquida	Líquida			
Temperatura	°C	22.1553	21.6502	25	25			
Presión	bar	1.00008	1.00008	1.00008	1.00008			
Entalpía molar	cal/mol	-93770.8	-68323.6	-68592.6	-102609			
Entalpía másica	cal/gm	-928.709	-3790.99	-3756.11	-787.9			
Entropía molar	cal/mol-K	-181.455	-39.1763	-39.2359	-232.319			
Entropía másica	cal/gm-K	-1.79713	-2.17373	-2.14855	-1.78391			
Densidad molar	mol/mL	0.00838636	0.055323	0.0545943	0.00633095			
Densidad másica	gm/mL	0.846763	0.997067	0.996979	0.824482			
Flujo de entalpía	cal/sec	-36454	-7024.63	-14036	-29442.7			
Peso molecular promedio	kmol/kg	100.969	18.0226	18.2616	130.23			
Balance molar								
Global	kmol	1.39952	0.370131	0.736665	1.03299			
Agua	kmol	0.36404	0.370106	0.734147	0			
Ácido láctico	kmol	0.00251779	2.53744E-11	0.00251779	0			
1-octanol	kmol	1.03297	2.42726E-05	0	1.03E+00			
	F	racciones mo	lares					
Agua		0.260117	0.999934	0.996582	0			
Ácido láctico		0.00179904	6.85553E-11	0.00341783	0			
1-octanol		0.738084	6.55784E-05	0	1			
		Balance más	ico					
Global	kg	141.309	6.67073	13.4527	134.527			
Agua	kg	6.55829	6.66757	13.2259	0			
Ácido láctico	kg	0.2268	2.2857E-09	0.2268	0			
1-octanol	kg	134.523	0.00316103	0	134.527			
	ŀ	Fracciones má	sicas					
Agua		0.0464111	0.999526	0.983141	0			
Ácido láctico		0.001605	3.42646E-10	0.0168591	0			
1-octanol		0.951984	0.000473865	0	1			
	В	alance volume	étrico					
Volumen	1	166.881	6.69036	13.4934	163.1652			

Cuadro 172. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 15 etapas

Comiente	Corriente Unidados Entrada		rada	Salida	
Corriente	Unidades	F	S	Ε	R
Fase		Líquida	Líquida	Líquida	Líquida
Temperatura	°C	22.1545	21.6503	25	25
Presión	bar	1.00008	1.00008	1.00008	1.00008
Entalpía molar	cal/mol	-93771	-68323.6	-68592.6	-102609
Entalpía másica	cal/gm	-928.708	-3790.99	-3756.11	-787.9
Entropía molar	cal/mol-K	-181.455	-39.1763	-39.2359	-232.319
Entropía másica	cal/gm-K	-1.79713	-2.17373	-2.14855	-1.78391
Densidad molar	mol/mL	0.00838634	0.055323	0.0545943	0.00633095
Densidad másica	gm/mL	0.846763	0.997067	0.996979	0.824482
Flujo de entalpía	cal/sec	-36454	-7024.72	-14036	-29442.7
Peso molecular promedio	kmol/kg	100.969	18.0226	18.2616	130.23
Balance molar					
Global	kmol	1.39952	0.370136	0.736665	1.03299
Agua	kmol	0.364035	0.370111	0.734147	0
Ácido láctico	kmol	0.00251779	7.37896E-14	0.00251779	0
1-octanol	kmol	1.03297	2.42728E-05	0	1.03E+00
	F	racciones mo	lares		
Agua		0.260115	0.999934	0.996582	0
Ácido láctico		0.00179904	1.99358E-13	0.00341783	0
1-octanol		0.738086	6.55782E-05	0	1
		Balance más	ico		
Global	kg	141.308	6.67082	13.4527	134.527
Agua	kg	6.5582	6.66766	13.2259	0
Ácido láctico	kg	0.2268	6.64688E-12	0.2268	0
1-octanol	kg	134.523	0.00316106	0	134.527
Fracciones másicas					
Agua		0.0464105	0.999526	0.983141	0
Ácido láctico		0.001605	9.96411E-13	0.0168591	0
1-octanol		0.951984	0.000473863	0	1
	В	alance volum	étrico		
Volumen	1	166.881	6.69042	13.4934	163.1652

Cuadro 173. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:10 en 20 etapas

Convionto	Unidadaa	Entrada		Salida	
Corriente	Unidades	F	S	Ε	R
Fase		Líquida	Líquida	Líquida	Líquida
Temperatura	°C	22.6413	21.7211	22.6413	21.7211
Presión	bar	1.00008	1.00008	1.00008	1.00008
Entalpía molar	cal/mol	-93776.8	-68363.5	-93776.8	-68363.5
Entalpía másica	cal/gm	-930.956	-3786.73	-930.956	-3786.73
Entropía molar	cal/mol-K	-180.881	-39.2046	-180.881	-39.2046
Entropía másica	cal/gm-K	-1.79567	-2.17159	-1.79567	-2.17159
Densidad molar	mol/mL	0.00840713	0.0552457	0.00840713	0.0552457
Densidad másica	gm/mL	0.846864	0.997374	0.846864	0.997374
Flujo de entalpía	cal/sec	-18302.9	-10454.5	-18302.9	-10454.5
Peso molecular promedio	kmol/kg	100.732	18.0534	100.732	18.0534
Balance molar					
Global	kmol	0.702629	0.550531	0.702629	0.550531
Agua	kmol	0.183887	0.55026	0.183887	0.55026
Ácido láctico	kmol	0.00228449	0.000233302	0.00228449	0.000233302
1-octanol	kmol	0.516458	3.73908E-05	0.516458	3.74E-05
	F	racciones mo	lares		
Agua		0.261713	0.999508	0.261713	0.999508
Ácido láctico		0.00325135	0.000423777	0.00325135	0.000423777
1-octanol		0.735036	6.79178E-05	0.735036	6.79178E-05
		Balance más	ico		
Global	kg	70.777	9.93897	70.777	9.93897
Agua	kg	3.31278	9.91308	3.31278	9.91308
Ácido láctico	kg	0.205784	0.0210156	0.205784	0.0210156
1-octanol	kg	67.2584	0.00486942	67.2584	0.00486942
	ŀ	Fracciones má	sicas		
Agua		0.0468058	0.997396	0.0468058	0.997396
Ácido láctico		0.0029075	0.00211446	0.0029075	0.00211446
1-octanol		0.950287	0.000489932	0.950287	0.000489932
	В	alance volum	étrico	1	
Volumen	1	83.5752	9.96516	83.5752	9.96516

Cuadro 174. Simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico en Aspen Plus para una relación F/S de 1:5 en 3 etapas

Figura 57. Equilibrio líquido-líquido en base molar para el sistema agua-acetato de etilo ácido láctico

Figura 58. Equilibrio líquido-líquido en base molar para el sistema agua- 1-octanolácido láctico

Cuadro 175. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de la relación de alimentación/disolvente (F/S) para 2 etapas

F/S	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
5:1	13.45266	2.690532	1.671805624	14.47138638
2:1	13.45266	6.72633	5.868513702	14.3104763
1:1	13.45266	13.45266	12.85889904	14.04642096
1:2	13.45266	26.90532	26.82299826	13.53498174
1:4	13.45266	53.81064	54.70086186	12.56243814
1:6	13.45266	80.71596	82.53572235	11.63289765
1:10	13.45266	134.5266	138.1756112	9.803648752

* Referirse a los cuadros 109-115.

Cuadro 176. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de la relación de (F/S) para 2 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.98314088	0	0.03328599	0.910086424
2:1	0.98314088	0	0.03312267	0.910625117
1:1	0.98314088	0	0.03274548	0.911605115
1:2	0.98314088	0	0.03204263	0.91366067
1:4	0.98314088	0	0.03124521	0.916758334
1:6	0.98314088	0	0.03079908	0.918415714
1:10	0.98314088	0	0.0304477	0.91993617

* Referirse a los cuadros 109-115.

Cuadro 177. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 2 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0	1	0.96188668	0.07479895
2:1	0	1	0.96212321	0.07547595
1:1	0	1	0.96271478	0.07640436
1:2	0	1	0.96396674	0.07749119
1:4	0	1	0.9657606	0.07822549
1:6	0	1	0.96689147	0.0784735
1:10	0	1	0.96801598	0.07858304

* Referirse a los cuadros 109-115.

Cuadro 178. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.01685912	0	0.00482733	0.01511463
2:1	0.01685912	0	0.00475413	0.01389893
1:1	0.01685912	0	0.00453974	0.011990524
1:2	0.01685912	0	0.00399063	0.008848144
1:4	0.01685912	0	0.00299419	0.005016175
1:6	0.01685912	0	0.00230946	0.00311078
1:10	0.01685912	0	0.00153633	0.001480794

de la (F/S) para 2 etapas

* Referirse a los cuadros 109-115.

Cuadro 179. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de la relación de (F/S) para 2 etapas

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
3.56%	40.23%	99.58%	1.082444506
12.30%	16.06%	98.53%	1.080096794
25.74%	7.98%	96.82%	1.073207804
47.20%	3.90%	93.50%	1.048841842
72.22%	1.83%	87.08%	0.982702879
84.04%	1.13%	80.78%	0.912874217
93.60%	0.57%	68.19%	0.770400522

* Referirse a los cuadros 109-115.

F/S	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
5:1	13.45266	2.690532	1.671856153	14.4713359
2:1	13.45266	6.72633	5.869127599	14.3098624
1:1	13.45266	13.45266	12.86253515	14.0427849
1:2	13.45266	26.90532	26.83627917	13.5217008
1:4	13.45266	53.81064	54.72120075	12.5420993
1:6	13.45266	80.71596	82.55726334	11.6113567
1:10	13.45266	134.5266	138.1883703	9.79088969

Cuadro 180. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 3 etapas

* Referirse a los cuadros 116-122.

Cuadro 181. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función (F/S) para 3 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.98314088	0	0.03332155	0.910085378
2:1	0.98314088	0	0.03325321	0.91060922
1:1	0.98314088	0	0.03302471	0.911576916
1:2	0.98314088	0	0.03232484	0.913966504
1:4	0.98314088	0	0.03132318	0.91785416
1:6	0.98314088	0	0.0308548	0.919666186
1:10	0.98314088	0	0.03046732	0.9208183

* Referirse a los cuadros 116-122.

Cuadro 182. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 3 etapas.

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0	1	0.96183611	0.07480169
2:1	0	1	0.96191816	0.07552201
1:1	0	1	0.96222872	0.07662007
1:2	0	1	0.96330565	0.07793255
1:4	0	1	0.96534658	0.07859257
1:6	0	1	0.96663286	0.07866404
1:10	0	1	0.96792754	0.07867224

* Referirse a los cuadros 116-122.

Cuadro 183. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 3 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.01685912	0	0.00484234	0.015112932
2:1	0.01685912	0	0.00482863	0.01386877
1:1	0.01685912	0	0.00474657	0.011803009
1:2	0.01685912	0	0.00436951	0.008100946
1:4	0.01685912	0	0.00333024	0.003553267
1:6	0.01685912	0	0.00251234	0.001669779
1:10	0.01685912	0	0.00160514	0.000509465

* Referirse a los cuadros 116-122.

Cuadro 184. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 3 etapas

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
3.57%	40.23%	99.58%	1.082480375
12.50%	16.07%	98.52%	1.080709577
26.92%	8.00%	96.79%	1.075959227
51.70%	3.92%	93.44%	1.053780634
80.35%	1.83%	87.04%	0.985715851
91.45%	1.13%	80.74%	0.913396168
97.80%	0.57%	68.17%	0.770271177

* Referirse a los cuadros 116-122.

Cuadro 185. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 4 etapas

F/S	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
5:1	13.45266	2.690532	1.671411584	14.4717804
2:1	13.45266	6.72633	5.869267508	14.3097225
1:1	13.45266	13.45266	12.86362482	14.0416952
1:2	13.45266	26.90532	26.84293828	13.5150417
1:4	13.45266	53.81064	54.73575536	12.5275446
1:6	13.45266	80.71596	82.56833125	11.6002888
1:10	13.45266	134.5266	138.192718	9.78654203

* Referirse a los cuadros 123-129.

Cuadro 186. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.98314088	0	0.03331273	0.910059463
2:1	0.98314088	0	0.03328759	0.9106037
1:1	0.98314088	0	0.03315727	0.911523658
1:2	0.98314088	0	0.0324935	0.914066
1:4	0.98314088	0	0.03138353	0.918620463
1:6	0.98314088	0	0.03087572	0.92036533
1:10	0.98314088	0	0.03047251	0.921140542

de (F/S) para 4 etapas

* Referirse a los cuadros 123-129.

Cuadro 187. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función de (F/S) para 4 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0	1	0.9618435	0.07482809
2:1	0	1	0.96187189	0.07553232
1:1	0	1	0.96203307	0.07673059
1:2	0	1	0.96294495	0.07821271
1:4	0	1	0.96508288	0.07871452
1:6	0	1	0.96650849	0.07870205
1:10	0	1	0.96789889	0.07868169

* Referirse a los cuadros 123-129.

Cuadro 188. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.01685912	0	0.00484377	0.015112451
2:1	0.01685912	0	0.00484052	0.013863979
1:1	0.01685912	0	0.00480967	0.011745752
1:2	0.01685912	0	0.00456157	0.007721334
1:4	0.01685912	0	0.00353359	0.00266502
1:6	0.01685912	0	0.00261579	0.000932624
1:10	0.01685912	0	0.0016286	0.00017777

de (F/S) para 4 etapas

* Referirse a los cuadros 123-129.

Cuadro 189. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para 4 etapas

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
3.57%	40.25%	99.58%	1.08289563
12.53%	16.07%	98.52%	1.080846557
27.28%	8.01%	96.78%	1.077427548
53.99%	3.93%	93.41%	1.057048072
85.28%	1.83%	87.01%	0.986099627
95.23%	1.13%	80.72%	0.912966462
99.23%	0.57%	68.16%	0.770021653

* Referirse a los cuadros 123-129.

Cuadro 190. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	13.45266	53.81064	54.70086186	12.5624381
3	13.45266	53.81064	54.72120075	12.5420993
4	13.45266	53.81064	54.73575536	12.5275446
6	13.45266	53.81064	54.75107493	12.5122251
10	13.45266	53.81064	54.76452386	12.4987761
15	13.45266	53.81064	54.77208971	12.4912103
20	13.45266	53.81064	54.77497018	12.4883298

1:4

* Referirse a los cuadros 113, 120, 127 y del 134-136.

Cuadro 191. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de 1:4

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0.98314088	0	0.03124521	0.916758334
3	0.98314088	0	0.03132318	0.91785416
4	0.98314088	0	0.03138353	0.918620463
6	0.98314088	0	0.03141356	0.919575358
10	0.98314088	0	0.03142687	0.920472719
15	0.98314088	0	0.03143607	0.92049005
20	0.98314088	0	0.03144574	0.921133611

* Referirse a los cuadros 113, 120, 127 y del 134-136.

Cuadro 192. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0	1	0.9657606	0.07822549
3	0	1	0.96534658	0.07859257
4	0	1	0.96508288	0.07871452
6	0	1	0.96482335	0.07876493
10	0	1	0.96461047	0.07874425
15	0	1	0.96460037	0.07873106
20	0	1	0.96445394	0.07868981

función del número de etapas para una F/S de 1:4

* Referirse a los cuadros 113, 120, 127 y del 134-136.

Cuadro 193. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido en función del número de etapas para una F/S de 1:4

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0.01685912	0	0.00299419	0.00501618
3	0.01685912	0	0.00333024	0.00355327
4	0.01685912	0	0.00353359	0.00266502
6	0.01685912	0	0.00376309	0.00165971
10	0.01685912	0	0.00396266	0.000783034
15	0.01685912	0	0.00405942	0.000356804
20	0.01685912	0	0.00410032	0.000176581

* Referirse a los cuadros 113, 120, 127 y del 134-136.

Cuadro 194. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de 1:4

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
72.22%	1.83%	87.08%	0.982702879
80.35%	1.83%	87.04%	0.985715813
85.28%	1.83%	87.01%	0.986099663
90.84%	1.83%	87.00%	0.985524555
95.68%	1.83%	86.99%	0.984206724
98.03%	1.83%	86.94%	0.983446262
99.03%	1.83%	86.98%	0.982704269

* Referirse a los cuadros 113, 120, 127 y del 134-136.

Cuadro 195. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de

1	•	6
-	•	υ

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	13.45266	80.71596	82.53572235	11.6328977
3	13.45266	80.71596	82.55726334	11.6113567
4	13.45266	80.71596	82.56833125	11.6002888
6	13.45266	80.71596	82.56588392	11.6027361
10	13.45266	80.71596	82.57861335	11.5900067
15	13.45266	80.71596	82.57940551	11.5892145
20	13.45266	80.71596	82.57947124	11.5891488

* Referirse a los cuadros 114, 121, 128 y del 130-133.

Cuadro 196. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de 1:6

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0.98314088	0	0.03079908	0.918415714
3	0.98314088	0	0.0308548	0.919666186
4	0.98314088	0	0.03087572	0.92036533
6	0.98314088	0	0.0308548	0.92032657
10	0.98314088	0	0.0308568	0.921289252
15	0.98314088	0	0.03086079	0.921321628
20	0.98314088	0	0.03086136	0.921322612

* Referirse a los cuadros 114, 121, 128 y del 130-133.

Cuadro 197. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de 1:6

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0	1	0.96689147	0.0784735
3	0	1	0.96663286	0.07866404
4	0	1	0.96650849	0.07870205
6	0	1	0.96652967	0.07873862
10	0	1	0.96640171	0.07867527
15	0	1	0.9663931	0.07867591
20	0	1	0.96639221	0.07867722

* Referirse a los cuadros 114, 121, 128 y del 130-133.

Cuadro 198. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido en función del

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0.01685912	0	0.00230946	0.00311078
3	0.01685912	0	0.00251234	0.00166978
4	0.01685912	0	0.00261579	0.00093262
6	0.01685912	0	0.00268553	0.000934813
10	0.01685912	0	0.00274149	0.0000355
15	0.01685912	0	0.0027461	0.00000246
20	0.01685912	0	0.00274642	0.00000171

número de etapas para una F/S de 1:6

* Referirse a los cuadros 114, 121, 128 y del 130-133.

Cuadro 199. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de 1:6

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
84.04%	1.13%	80.78%	0.912874194
91.45%	1.13%	80.74%	0.913396225
95.23%	1.13%	80.72%	0.912966505
97.77%	1.13%	80.74%	0.913583392
99.82%	1.13%	80.73%	0.911846852
99.99%	1.13%	80.73%	0.911792045
100.00%	1.13%	80.73%	0.911801973

* Referirse a los cuadros 114, 121, 128 y del 130-133.

Cuadro 200. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	13.45266	134.5266	138.1756112	9.80364875
3	13.45266	134.5266	138.1883703	9.79088969
4	13.45266	134.5266	138.192718	9.78654203
6	13.45266	134.5266	138.1907349	9.78852512
10	13.45266	134.5266	138.183797	9.79546299
15	13.45266	134.5266	138.1833541	9.79590588
20	13.45266	134.5266	138.1833014	9.79595864

1:10

* Referirse a los cuadros 115, 122, 129 y del 137-140.

Cuadro 201. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de 1:10

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0.98314088	0	0.0304477	0.91993617
3	0.98314088	0	0.03046732	0.9208183
4	0.98314088	0	0.03047251	0.921140542
6	0.98314088	0	0.03044842	0.921300187
10	0.98314088	0	0.03040207	0.921323146
15	0.98314088	0	0.03039918	0.921323589
20	0.98314088	0	0.03039887	0.921323187

* Referirse a los cuadros 115, 122, 129 y del 137-140.

Cuadro 202. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo - ácido láctico en función del número de etapas para una F/S de 1:10

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0	1	0.96801598	0.07858304
3	0	1	0.96792754	0.07867224
4	0	1	0.96789889	0.07868169
6	0	1	0.96791192	0.07867786
10	0	1	0.96795666	0.07867652
15	0	1	0.96795952	0.07867641
20	0	1	0.96795983	0.07867681

* Referirse a los cuadros 115, 122, 129 y del 137-140.

Cuadro 203. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- acetato de etilo - ácido en función del número de etapas para una F/S de 1:10

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0.01685912	0	0.00153633	0.00148079
3	0.01685912	0	0.00160514	0.00050946
4	0.01685912	0	0.0016286	0.00017777
6	0.01685912	0	0.00163965	0.00002200
10	0.01685912	0	0.00164127	0.00000337
15	0.01685912	0	0.0016413	1.82E-09
20	0.01685912	0	0.0016413	9.82E-12

* Referirse a los cuadros 115, 122, 129 y del 137-140.

Cuadro 204. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- acetato de etilo – ácido láctico en función del número de etapas para una F/S de 1:10

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
93.60%	0.57%	68.19%	0.770400522
97.80%	0.57%	68.17%	0.770271224
99.23%	0.57%	68.16%	0.770021666
99.91%	0.57%	68.19%	0.770140208
100.00%	0.57%	68.24%	0.770672913
100.00%	0.57%	68.24%	0.77070670
100.00%	0.57%	68.24%	0.77071481

* Referirse a los cuadros 115, 122, 129 y del 137-140.

Cuadro 205. Sensibilidad del balance de masa de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de la relación de alimentación/disolvente (F/S) para 2 etapas

F/S	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
5:1	13.45266	2.690532	2.832677466	13.31048253
2:1	13.45266	6.72633	7.093915051	13.08507495
1:1	13.45266	13.45266	14.19072837	12.71459163
1:2	13.45266	26.90532	28.36154385	11.99643615
1:4	13.45266	53.81064	56.63815494	10.62514506
1:6	13.45266	80.71596	84.87265862	9.295961379
1:10	13.45266	134.5266	141.302939	6.676321037

* Referirse a los cuadros 141-147.

Cuadro 206. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de la relación de (F/S) para 2 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.98314088	0	0.04793826	0.983440407
2:1	0.98314088	0	0.04783996	0.984823355
1:1	0.98314088	0	0.04768084	0.986994671
1:2	0.98314088	0	0.04736103	0.99051317
1:4	0.98314088	0	0.04692902	0.99461108
1:6	0.98314088	0	0.04668116	0.996551663
1:10	0.98314088	0	0.0464388	0.998142752

* Referirse a los cuadros 141-147.

Cuadro 207. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 2 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0	1	0.94687649	0.00062389
2:1	0	1	0.94706251	0.00060749
1:1	0	1	0.94746653	0.00058357
1:2	0	1	0.94842285	0.0005488
1:4	0	1	0.94998136	0.00051278
1:6	0	1	0.95096986	0.00049696
1:10	0	1	0.952021	0.00048455

* Referirse a los cuadros 141-147.

Cuadro 208. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de la

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.01685912	0	0.00518525	0.0159357
2:1	0.01685912	0	0.00509754	0.01456916
1:1	0.01685912	0	0.00485263	0.01242176
1:2	0.01685912	0	0.00421611	0.00893803
1:4	0.01685912	0	0.00308962	0.00487614
1:6	0.01685912	0	0.00234898	0.00295137
1:10	0.01685912	0	0.0015402	0.0013727

(F/S) para 2 etapas

* Referirse a los cuadros 141-147.

Cuadro 209. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de la relación de (F/S) para 2 etapas

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
6.48%	0.31%	98.97%	0.008304306
15.94%	0.12%	97.43%	0.007949019
30.36%	0.06%	94.88%	0.007419802
52.72%	0.02%	89.84%	0.006583663
77.16%	0.01%	79.90%	0.005448378
87.90%	0.01%	70.04%	0.004619761
95.96%	0.00%	50.39%	0.00323500

* Referirse a los cuadros 141-147.

F/S	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
5:1	13.45266	2.690532	2.832560097	13.3106319
2:1	13.45266	6.72633	7.094955831	13.08403417
1:1	13.45266	13.45266	14.19599939	12.70932061
1:2	13.45266	26.90532	28.37845969	11.97952031
1:4	13.45266	53.81064	56.66214209	10.60115791
1:6	13.45266	80.71596	84.89138519	9.277234806
1:10	13.45266	134.5266	141.3118897	6.667370283

Cuadro 210. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 3 etapas

* Referirse a los cuadros 148-154.

Cuadro 211. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función (F/S)

para 3 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.98314088	0	0.04787773	0.983442675
2:1	0.98314088	0	0.04789202	0.984869657
1:1	0.98314088	0	0.04779503	0.98725669
1:2	0.98314088	0	0.04751299	0.991484987
1:4	0.98314088	0	0.04701624	0.996289191
1:6	0.98314088	0	0.04672405	0.998076574
1:10	0.98314088	0	0.04645384	0.999101499

* Referirse a los cuadros 148-154.

Cuadro 212. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0	1	0.94692763	0.00062376
2:1	0	1	0.94692519	0.00060666
1:1	0	1	0.94711814	0.00058001
1:2	0	1	0.94786201	0.00053894
1:4	0	1	0.94958206	0.00049864
1:6	0	1	0.95076152	0.00048478
1:10	0	1	0.95196108	0.00047707

(F/S) para 3 etapas

* Referirse a los cuadros 148-154.

Cuadro 213. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 3 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.01685912	0	0.00519464	0.01593357
2:1	0.01685912	0	0.00518279	0.01452368
1:1	0.01685912	0	0.00508683	0.0121633
1:2	0.01685912	0	0.004625	0.00797607
1:4	0.01685912	0	0.00340169	0.00321217
1:6	0.01685912	0	0.00251443	0.00143865
1:10	0.01685912	0	0.00158508	0.00042143

* Referirse a los cuadros 148-154.

Cuadro 214. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 3 etapas

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
6.49%	0.31%	98.97%	0.008302577
16.21%	0.12%	97.43%	0.007937606
31.84%	0.05%	94.87%	0.007371504
57.87%	0.02%	89.81%	0.006456243
84.99%	0.01%	79.86%	0.005286177
94.12%	0.01%	70.01%	0.004497412
98.76%	0.00%	50.37%	0.003180824

* Referirse a los cuadros 148-154.

Cuadro 215. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 4 etapas

F/S	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
5:1	13.45266	2.690532	2.832570406	13.31062159
2:1	13.45266	6.72633	7.095159812	13.08383019
1:1	13.45266	13.45266	14.19791296	12.70740704
1:2	13.45266	26.90532	28.38642168	11.97155832
1:4	13.45266	53.81064	56.67599681	10.58730319
1:6	13.45266	80.71596	84.90029172	9.26832828
1:10	13.45266	134.5266	141.3168968	6.662363199

* Referirse a los cuadros 155-161.
Cuadro 216. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.98314088	0	0.04787996	0.983442925
2:1	0.98314088	0	0.0479051	0.984877171
1:1	0.98314088	0	0.04784618	0.987341005
1:2	0.98314088	0	0.04755729	0.992007762
1:4	0.98314088	0	0.04706327	0.99727965
1:6	0.98314088	0	0.0467451	0.998797963
1:10	0.98314088	0	0.04647377	0.999394843

(F/S) para 4 etapas

Referirse a los cuadros 155-161. *

Cuadro 217. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de (F/S) para 4 etapas

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0	1	0.94692422	0.00062375
2:1	0	1	0.94689837	0.00060646
1:1	0	1	0.94699184	0.00057858
1:2	0	1	0.94759862	0.00053343
1:4	0	1	0.94935153	0.00049073
1:6	0	1	0.95066243	0.00047927
1:10	0	1	0.95192748	0.00047476

Referirse a los cuadros 155-161. *

Cuadro 218. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función de

F/S	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
5:1	0.01685912	0	0.00519582	0.01593333
2:1	0.01685912	0	0.00519654	0.01451637
1:1	0.01685912	0	0.00516197	0.01208042
1:2	0.01685912	0	0.00484409	0.00745881
1:4	0.01685912	0	0.00358519	0.00222962
1:6	0.01685912	0	0.00259247	0.00072276
1:10	0.01685912	0	0.00159876	0.0001304

(F/S) para 4 etapas

* Referirse a los cuadros 155-161.

Cuadro 219. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para 4 etapas

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
6.49%	0.31%	98.97%	0.008302470
16.26%	0.12%	97.43%	0.007934768
32.31%	0.05%	94.86%	0.007352214
60.63%	0.02%	89.79%	0.006385956
89.59%	0.01%	79.83%	0.005195479
97.05%	0.01%	69.99%	0.004442064
99.62%	0.00%	50.34%	0.003163031

* Referirse a los cuadros 155-161.

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	13.45266	53.81064	56.63815494	10.62514506
3	13.45266	53.81064	56.66214209	10.60115791
4	13.45266	53.81064	56.67599681	10.58730319
6	13.45266	53.81064	56.68642595	10.57687405
10	13.45266	53.81064	56.697556	10.56574400
15	13.45266	53.81064	56.70142651	10.56187349
20	13.45266	53.81064	56.70251427	10.56078573

Cuadro 220. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:4

* Referirse a los cuadros 145, 152, 159 y 162-165.

Cuadro 221. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:4

Etapas	Alimentación (p/p)	Solvente (p/p)	Extracto (p/p)	Refinado (p/p)
2	0.98314088	0	0.04692902	0.99461108
3	0.98314088	0	0.04701624	0.996289191
4	0.98314088	0	0.04706327	0.99727965
6	0.98314088	0	0.04703966	0.998343167
10	0.98314088	0	0.04707712	0.999144241
15	0.98314088	0	0.04709021	0.999422871
20	0.98314088	0	0.04709464	0.999497188

* Referirse a los cuadros 145, 152, 159 y 162-165.

Cuadro 222. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:4.

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0	1	0.94998136	0.00051278
3	0	1	0.94958206	0.00049864
4	0	1	0.94935153	0.00049073
6	0	1	0.94917849	0.00048255
10	0	1	0.94899335	0.00047667
15	0	1	0.94892898	0.00047463
20	0	1	0.94891089	0.00047408

* Referirse a los cuadros 145, 152, 159 y 162-165.

Cuadro 223. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido en función del número de etapas para una F/S de 1:4

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0.01685912	0	0.00308962	0.00487614
3	0.01685912	0	0.00340169	0.00321217
4	0.01685912	0	0.00358519	0.00222962
6	0.01685912	0	0.00378185	0.00117428
10	0.01685912	0	0.00392953	0.00037909
15	0.01685912	0	0.00398081	0.0001025
20	0.01685912	0	0.00399447	2.87E-05

* Referirse a los cuadros 145, 152, 159 y 162-165.

Cuadro 224. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:4

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
77.16%	0.01%	79.90%	0.005448378
84.99%	0.01%	79.86%	0.005286177
89.59%	0.01%	79.83%	0.005195479
94.52%	0.01%	79.84%	0.005103851
98.23%	0.01%	79.82%	0.005036336
99.52%	0.01%	79.81%	0.005012954
99.87%	0.01%	79.81%	0.005006645

* Referirse a los cuadros 145, 152, 159 y 162-165.

Cuadro 225. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- 1octanol – ácido láctico en función del número de etapas para una F/S de 1:6

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	13.45266	80.71596	84.87265862	9.295961379
3	13.45266	80.71596	84.89138519	9.277234806
4	13.45266	80.71596	84.90029172	9.26832828
6	13.45266	80.71596	84.90962742	9.258992577
10	13.45266	80.71596	84.90528685	9.263333149
15	13.45266	80.71596	84.904722	9.263898004
20	13.45266	80.71596	84.90475503	9.263864969

* Referirse a los cuadros 146, 153, 160 y 166-169.

Cuadro 226. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:6

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0.98314088	0	0.04668116	0.996551663
3	0.98314088	0	0.04672405	0.998076574
4	0.98314088	0	0.0467451	0.998797963
6	0.98314088	0	0.04679117	0.99933543
10	0.98314088	0	0.04672316	0.99951247
15	0.98314088	0	0.04671538	0.999525617
20	0.98314088	0	0.0467157	0.999526116

* Referirse a los cuadros 146, 153, 160 y 166-169.

Cuadro 227. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:6

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0	1	0.95096986	0.00049696
3	0	1	0.95076152	0.00048478
4	0	1	0.95066243	0.00047927
6	0	1	0.9505584	0.00047523
10	0	1	0.95060711	0.00047398
15	0	1	0.95061344	0.00047388
20	0	1	0.95061307	0.00047386

* Referirse a los cuadros 146, 153, 160 y 166-169.

Cuadro 228. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido en función del número

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0.01685912	0	0.00234898	0.00295137
3	0.01685912	0	0.00251443	0.00143865
4	0.01685912	0	0.00259247	0.00072276
6	0.01685912	0	0.00265043	0.00018934
10	0.01685912	0	0.00266973	1.36E-05
15	0.01685912	0	0.00267117	5.06E-07
20	0.01685912	0	0.00267123	1.89E-08

de etapas para una F/S de 1:6

* Referirse a los cuadros 146, 153, 160 y 166-169.

Cuadro 229. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:6

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
87.90%	0.01%	70.04%	0.004619761
94.12%	0.01%	70.01%	0.004497412
97.05%	0.01%	69.99%	0.004442064
99.23%	0.01%	69.96%	0.004400114
99.94%	0.01%	70.01%	0.004390603
100.00%	0.01%	70.01%	0.004389949
100.00%	0.01%	70.01%	0.004389819

* Referirse a los cuadros 146, 153, 160 y 166-169.

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	13.45266	134.5266	141.302939	6.676321037
3	13.45266	134.5266	141.3118897	6.667370283
4	13.45266	134.5266	141.3168968	6.662363199
6	13.45266	134.5266	141.3187612	6.660498763
10	13.45266	134.5266	141.3099574	6.66930262
15	13.45266	134.5266	141.308528	6.67073202
20	13.45266	134.5266	141.3084378	6.67082223

Cuadro 230. Sensibilidad del balance masa de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:10

* Referirse a los cuadros 147, 154, 161 y 170-173.

Cuadro 231. Sensibilidad de las composiciones de agua en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de stance pare uno E/S de 1:10

número de	etapas	para	una	F/S	de	1:10	

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0.98314088	0	0.0464388	0.998142752
3	0.98314088	0	0.04645384	0.999101499
4	0.98314088	0	0.04647377	0.999394843
6	0.98314088	0	0.04648075	0.99951347
10	0.98314088	0	0.04642078	0.999526025
15	0.98314088	0	0.04641113	0.999526135
20	0.98314088	0	0.04641053	0.999526137

* Referirse a los cuadros 147, 154, 161 y 170-173.

Cuadro 232. Sensibilidad de las composiciones de acetato de etilo en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:10

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0	1	0.952021	0.00048455
3	0	1	0.95196108	0.00047707
4	0	1	0.95192748	0.00047476
6	0	1	0.95191496	0.00047396
10	0	1	0.95197424	0.00047386
15	0	1	0.95198387	0.00047386
20	0	1	0.95198447	0.00047386

* Referirse a los cuadros 147, 154, 161 y 170-173.

Cuadro 233. Sensibilidad de las composiciones de ácido láctico en las corrientes de la extracción líquido-líquido del sistema agua- 1-octanol – ácido en función del número de etapas para una F/S de 1:10

Etapas	Alimentación (kg)	Solvente (kg)	Extracto (kg)	Refinado (kg)
2	0.01685912	0	0.0015402	0.0013727
3	0.01685912	0	0.00158508	0.00042143
4	0.01685912	0	0.00159876	0.0001304
6	0.01685912	0	0.00160429	1.26E-05
10	0.01685912	0	0.00160498	1.18E-07
15	0.01685912	0	0.001605	3.43E-10
20	0.01685912	0	0.001605	9.96E-13

* Referirse a los cuadros 147, 154, 161 y 170-173.

Cuadro 234. Sensibilidad de los rendimientos y aporte de disolvente al final de un ciclo de la extracción líquido-líquido del sistema agua- 1-octanol – ácido láctico en función del número de etapas para una F/S de 1:10

Recuperación de ácido láctico en el extracto	Pérdidas de disolvente en refinado	Solvente eliminado	Aporte de disolvente (kg)
95.96%	0.00%	50.39%	0.00323500
98.76%	0.00%	50.37%	0.003180824
99.62%	0.00%	50.34%	0.003163031
99.96%	0.00%	50.34%	0.003156842
100.00%	0.00%	50.40%	0.003160298
100.00%	0.00%	50.41%	0.003161025
100.00%	0.00%	50.41%	0.003161057

* Referirse a los cuadros 147, 154, 161 y 170-173.

Cuadro 235. Perfil de temperatura y presión por etapas obtenido de simulación en Aspen Plus para el sistema agua-acetato de etilo – ácido láctico para F/S de 1:6 y 3

etapas

Etapa	Temperatura (°C)	Presión (atm)
1	21.1511	0.987
2	19.6289	0.987
3	19.179	0.987

Cuadro 236. Perfil de composición en el extracto obtenido de simulación en Aspen Plus para el sistema agua-acetato de etilo – ácido láctico para F/S de 1:6 y 3 etapas

Etapa	Agua (p/p)	Ácido láctico (p/p)	Acetato de etilo (p/p)
1	0.913955	0.00847793	0.077567
2	0.917299	0.0041980	0.0785033
3	0.91961	0.00167317	0.0787166

*Referirse al cuadro 121.

Etapa	Agua (p/p)	Ácido láctico (p/p)	Acetato de etilo (p/p)
1	0.0308279	0.00251189	0.96666
2	0.0300704	0.00123234	0.968697
3	0.0298036	0.000489245	0.969707

Cuadro 237. Perfil de composición en el refinado obtenido de simulación en Aspen Plus para el sistema agua-acetato de etilo – ácido láctico para F/S de 1:6 y 3 etapas

Cuadro 238. Perfil de temperatura y presión por etapas obtenido de simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico para F/S de 1:5 y 3 etapas

Etapa	Temperatura (°C)	Presión (atm)
1	22.6413	0.958025
2	21.9307	0.955912
3	21.7211	1.26714

Cuadro 239. Perfil de composición en el extracto obtenido de simulación en Aspen Plus para el sistema agua- 1-octanol – ácido láctico para F/S de 1:5 y 3 etapas

Etapa	Agua (p/p)	Ácido láctico (p/p)	Acetato de etilo (p/p)
1	0.989891	0.00955466	0.000554572
2	0.994508	0.00497866	0.0005131
3	0.997396	0.00211446	0.000489932

Cuadro 240. Perfil de composición en el refinado obtenido de simulación en Aspen Plus para el sistema agua- 1-octanol– ácido láctico para F/S de 1:5 y 3 etapas

Etapa	Agua (p/p)	Ácido láctico (p/p)	Acetato de etilo (p/p)
1	0.0468058	0.0029075	0.950287
2	0.0463315	0.00150415	0.952164
3	0.046106	0.000636275	0.953258

*Referirse al cuadro 158.

Cuadro 241. Fuerza G, momentos de inercia y potencia requerida para el extractor centrífugo

Parámetro	Valor
Fuerza G	489.01
Momento de inercia rotación del cilindro (kg*m^2)	0.000717
Momento de inercia rotación del líquido (kg*m^2)	0.004225
Torque (N*m)	0.11644
Potencia (W)	32.92377
Potencia (HP)	0.04415
Eficiencia	0.85000
Potencia nominal (HP)	38.73385

Cuadro 242. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 1 etapa sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)				
	Rehervidor									
0.0000	75.8206	4048.91	0.8631	0.0022	0.134700	1.000000				
0.2857	75.8206	4048.91	0.8631	0.0022	0.134700	0.999999				
0.5714	75.8206	4048.91	0.8631	0.0022	0.134700	0.999999				
0.8571	75.8206	4048.91	0.8631	0.0022	0.134700	0.999999				
1.1429	75.9645	4048.91	0.86947	0.002346	0.128186	0.937804				
1.4286	76.2871	4048.91	0.882746	0.002702	0.114555	0.814607				
1.7143	76.6752	4048.91	0.8972	0.003182	0.099622	0.691390				
2.0000	77.1492	4048.91	0.912937	0.003875	0.083192	0.567877				
2.2857	77.7286	4048.91	0.929741	0.004957	0.065304	0.444028				
2.5714	78.4362	4048.91	0.94695	0.00688	0.046170	0.319719				
2.8572	79.3086	4048.91	0.962015	0.011309	0.026676	0.195029				
3.1429	80.7197	4048.91	0.959616	0.03193	8.4540E-03	0.070151				
3.4286	165.894	6.98259	0.102411	0.897448	1.4125E-04	0.002391				
3.7143	166.283	0.00364	0.101379	0.898481	1.4010E-04	0.002387				
4.0000	166.283	-0.00001	0.101378	0.898486	1.4010E-04	0.002387				
	Condensador									
0	71.5356	-3128.76	0	0	0	0				
0.2857	71.5356	-4048.91	0.762307	1.14334E-06	0.237692	0.000001				

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
0.5714	71.5356	-4048.91	0.762307	1.14334E-06	0.237692	0.000001
0.8571	71.5356	-4048.91	0.762307	1.14334E-06	0.237692	0.000001
1.1429	71.6256	-4063.90	0.767132	1.20573E-06	0.232866	0.062198
1.4286	71.8269	-4022.04	0.776862	1.34477E-06	0.223138	0.185391
1.7143	72.08	-4026.52	0.786722	1.50555E-06	0.213278	0.308611
2.0000	72.4489	-4025.11	0.797629	1.71522E-06	0.202369	0.432126
2.2857	72.9886	-4020.65	0.809888	2.00633E-06	0.190113	0.555974
2.5714	73.7725	-4026.70	0.823693	2.44564E-06	0.176305	0.680277
2.8572	74.899	-4011.18	0.839128	3.22212E-06	0.16087	0.804969
3.1429	76.3612	-3889.22	0.855768	5.22907E-06	0.144227	0.929850
3.4286	81.2171	-3.48407	0.864921	5.46634E-05	0.135024	0.997609
3.7143	81.2967	-0.00182	0.864922	5.52021E-05	0.135023	0.997619
4.0000	81.2971	0.00000	0.864922	5.52632E-05	0.135022	0.997625

Cuadro 243. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor			
0.0000	75.8652	4048.91	0.865106	0.002245	0.132649	0.980000
0.2857	75.8652	4048.91	0.865106	0.002245	0.132649	0.979999
0.5714	75.8652	4048.91	0.865106	0.002245	0.132649	0.979999
0.8571	75.8652	4048.91	0.865106	0.002245	0.132649	0.979999
1.1429	76.0115	4048.91	0.871496	0.002394	0.126111	0.918888
1.4286	76.3482	4048.91	0.88514	0.002769	0.112091	0.794881
1.7143	76.7479	4048.91	0.899737	0.003276	0.096989	0.671842
2.0000	77.2347	4048.91	0.915579	0.004011	0.080414	0.548456
2.2857	77.8303	4048.91	0.932446	0.005181	0.062369	0.424686
2.5714	78.5566	4048.91	0.949469	0.007319	0.043206	0.300493
2.8572	79.4602	4048.91	0.963561	0.012568	0.023871	0.175926
3.1429	81.1752	4048.91	0.950588	0.043101	6.3110E-03	0.051966
3.4286	166.204	1.41974	0.101583	0.898271	1.4614E-04	0.002388
3.7143	166.283	0.00168	0.101374	0.898479	1.4590E-04	0.002387
4.0000	166.283	0.00000	0.101373	0.898481	1.4590E-04	0.002387

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Condensado	or		
0	71.0533	-2589.50	0	0	0	0
0.2857	71.0533	-4048.88	0.667736	4.1584E-10	0.332264	0.000001
0.5714	71.0533	-4048.91	0.667735	4.1584E-10	0.332265	0.000001
0.8571	71.0533	-4048.91	0.667734	4.1583E-10	0.332266	0.000001
1.1429	71.5936	-4141.33	0.737712	1.5114E-09	0.262288	0.062156
1.4286	71.8437	-4028.44	0.767105	4.2779E-09	0.232894	0.186885
1.7143	72.1107	-4018.06	0.781679	7.631E-09	0.21832	0.310466
2.0000	72.4882	-4020.47	0.794688	1.1864E-08	0.205312	0.434405
2.2857	73.0461	-4021.00	0.808233	1.7638E-08	0.191769	0.558758
2.5714	73.8656	-4015.43	0.822979	2.5976E-08	0.177026	0.683584
2.8572	75.0237	-4005.04	0.839128	3.9235E-08	0.160872	0.808858
3.1429	76.4977	-3798.03	0.856199	6.4007E-08	0.143801	0.933773
3.4286	77.1128	-1.61561	0.863241	9.114E-08	0.136759	0.984874
3.7143	77.1129	0.00000	0.863241	9.115E-08	0.136758	0.984877
4.0000	77.113	0.00000	0.863241	9.1151E-08	0.136758	0.984878

Cuadro 244. Simulación en Aspen Batch Modeler para la destilación simple del

sistema agua- acetato de etilo – ácido láctico para 3 etapas sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor			
0.0000	75.9522	4048.91	0.869049	0.002292	0.128659	0.960000
0.2857	75.9522	4048.91	0.869049	0.002292	0.128659	0.959999
0.5714	75.9522	4048.91	0.869049	0.002292	0.128659	0.959999
0.8571	75.9522	4048.91	0.869049	0.002292	0.128659	0.959999
1.1429	76.1017	4048.91	0.875403	0.002444	0.122156	0.900120
1.4286	76.4544	4048.91	0.889311	0.002838	0.107851	0.775379
1.7143	76.8675	4048.91	0.903958	0.003375	0.092669	0.652260
2.0000	77.3669	4048.91	0.919724	0.004159	0.076119	0.528938
2.2857	77.9764	4048.91	0.936384	0.005435	0.058183	0.405174
2.5714	78.7172	4048.91	0.952881	0.007843	0.039276	0.280934
2.8572	79.6787	4048.91	0.966167	0.014139	0.019695	0.155432

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
3.1429	82.065	4048.91	0.928927	0.066986	4.0870E-03	0.033676
3.4286	166.265	0.33318	0.101422	0.898431	1.4671E-04	0.002386
3.7143	166.283	0.00051	0.101373	0.89848	1.4665E-04	0.002386
4.0000	166.284	0.00000	0.101373	0.898481	1.4665E-04	0.002386
			Condensador			
0	70.9906	-2368.68	0	0	0	0
0.2857	70.9906	-4048.91	0.617288	1.2338E-13	0.382712	0.000001
0.5714	70.9906	-4048.91	0.617288	1.2338E-13	0.382712	0.000001
0.8571	70.9906	-4048.91	0.617287	1.2337E-13	0.382713	0.000001
1.1429	71.4185	-4252.77	0.686602	9.6324E-13	0.313398	0.061004
1.4286	71.8814	-4047.67	0.749076	8.5263E-12	0.250924	0.187193
1.7143	72.169	-4013.71	0.772498	2.6077E-11	0.227502	0.311046
2.0000	72.5689	-4013.39	0.789437	5.622E-11	0.210563	0.435069
2.2857	73.149	-4015.60	0.805221	1.0681E-10	0.19478	0.559560
2.5714	73.996	-4015.20	0.821436	1.911E-10	0.178568	0.684584
2.8572	75.1914	-4100.59	0.838540	3.3269E-10	0.161462	0.810850
3.1429	76.6353	-3633.51	0.856090	5.8532E-10	0.143908	0.933953
3.4286	77.0244	-0.44456	0.860688	6.8694E-10	0.139312	0.966622
3.7143	77.0245	0.00000	0.860689	6.8695E-10	0.139311	0.966624
4.0000	77.0245	0.00000	0.860689	6.8695E-10	0.139311	0.966626

Cuadro 245. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 8 etapas sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor			
0.0000	76.6635	4048.91	0.898167	0.002558	0.099275	0.860000
0.2857	76.6635	4048.91	0.898167	0.002558	0.099275	0.859999
0.5714	76.6635	4048.91	0.898167	0.002558	0.099275	0.859999
0.8571	76.6635	4048.91	0.898167	0.002558	0.099275	0.859999
1.1429	76.8394	4048.91	0.904346	0.002741	0.092915	0.802666
1.4286	77.2598	4048.91	0.918058	0.003243	0.078701	0.678267
1.7143	77.7474	4048.91	0.93229	0.003984	0.063724	0.552356

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
2.0000	78.2871	4048.91	0.94605	0.005139	0.048807	0.428254
2.2857	78.9124	4048.91	0.959198	0.007249	0.033553	0.303849
2.5714	79.6587	4048.91	0.968772	0.012397	0.018832	0.179381
2.8572	81.0458	4048.91	0.953999	0.039443	0.006558	0.058859
3.1429	166.059	4.02397	0.101967	0.897886	1.4705E-04	0.002387
3.4286	166.283	0.00301	0.101374	0.898478	1.4637E-04	0.002385
3.7143	166.284	0.00000	0.101373	0.898481	1.4637E-04	0.002385
4.0000	166.284	0.00000	0.101373	0.898481	1.4637E-04	0.002385
			Condensador			
0	70.9869	-2195.04	0	0	0	0
0.2857	70.9871	-4048.91	0.597235	9.5596E-22	0.402765	0.000001
0.5714	70.9873	-4048.91	0.597235	1.876E-21	0.402765	0.000001
0.8571	70.9875	-4048.91	0.597235	2.7643E-21	0.402765	0.000001
1.1429	70.9877	-4100.20	0.597552	3.7267E-22	0.402448	0.057341
1.4286	71.4698	-4287.97	0.630124	4.1507E-22	0.369876	0.182379
1.7143	72.7192	-4068.98	0.709999	5.8582E-22	0.290001	0.310661
2.0000	73.2797	-4012.60	0.755621	7.0779E-22	0.244379	0.435795
2.2857	73.9891	-4011.69	0.787242	8.7909E-22	0.212758	0.560960
2.5714	74.9376	-3991.64	0.813092	1.3937E-21	0.186908	0.686357
2.8572	76.0069	-3725.89	0.835336	3.105E-21	0.164663	0.808021
3.1429	76.5664	-4.61136	0.845024	4.6313E-21	0.154976	0.866174
3.4286	76.5667	0.00000	0.845026	4.6316E-21	0.154974	0.866185
3.7143	76.5667	0.00000	0.845026	4.6316E-21	0.154973	0.866186
4.0000	76.5667	0.00000	0.845026	4.6316E-21	0.154973	0.866187

Cuadro 246. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 12 etapas sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)				
	Rehervidor									
0.0000	77.4745	4048.91	0.926028	0.00282	0.071151	0.780000				
0.2857	77.4745	4048.91	0.926029	0.00282	0.071151	0.7799999				
0.5714	77.4746	4048.91	0.926029	0.00282	0.071151	0.779999				

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
0.8571	77.4746	4048.91	0.926029	0.00282	0.071151	0.779999
1.1429	77.6614	4048.91	0.931514	0.00304	0.065446	0.723662
1.4286	78.0962	4048.91	0.943418	0.003657	0.052924	0.601464
1.7143	78.5833	4048.91	0.955262	0.00463	0.040108	0.475051
2.0000	79.0959	4048.91	0.965659	0.006306	0.028035	0.348786
2.2857	79.6528	4048.91	0.973101	0.00987	0.017029	0.223475
2.5714	80.5306	4048.91	0.970586	0.023135	0.006278	0.096879
2.8572	143.934	422.825	0.178507	0.821364	0.000128	0.002636
3.1429	166.281	0.01721	0.101434	0.898479	8.2225E-05	0.002385
3.4286	166.283	0.00004	0.101431	0.898486	8.2223E-05	0.002385
3.7143	166.283	0.00000	0.101431	0.898486	8.2223E-05	0.002385
4.0000	166.283	0.00000	0.101431	0.898486	8.2223E-05	0.002385
			Condensador			
0	70.9869	-2105.52	0	0	0	0
0.2857	70.9871	-4048.91	0.597566	4.9772E-21	0.402434	0.000001
0.5714	70.9873	-4048.91	0.597566	9.7843E-21	0.402434	0.000001
0.8571	70.9875	-4048.91	0.597566	1.442E-20	0.402434	0.000001
1.1429	70.9877	-4066.15	0.597305	3.7923E-21	0.402695	0.056472
1.4286	70.9889	-4099.66	0.598579	3.798E-21	0.401421	0.178537
1.7143	73.2715	-4217.47	0.657414	4.7861E-21	0.342586	0.307912
2.0000	74.1938	-4051.29	0.729827	6.3967E-21	0.270173	0.435871
2.2857	74.952	-4014.42	0.775305	7.436E-21	0.224695	0.562099
2.5714	75.8346	-4004.16	0.808641	8.2209E-21	0.191359	0.689390
2.8572	76.5758	-276.734	0.829435	8.7242E-21	0.170565	0.785801
3.1429	76.5793	0.00000	0.829525	8.7264E-21	0.170475	0.786251
3.4286	76.5794	0.00000	0.829526	8.7264E-21	0.170475	0.786254
3.7143	76.5794	0.00000	0.829527	8.7264E-21	0.170474	0.786256
4.0000	76.5794	0.00000	0.829528	8.7264E-21	0.170474	0.786259

Cuadro 247. Simulación en Aspen Batch Modeler para la destilación simple del

sistema agua- acetato de etilo – ácido láctico para 20 etapas sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor			
0.0000	79.7172	4048.91	0.985684	0.003548	0.010768	0.620000
0.2857	79.7172	4048.91	0.985684	0.003548	0.010768	0.619999
0.5714	79.7172	4048.91	0.985684	0.003548	0.010768	0.619999
0.8571	79.7172	4048.91	0.985684	0.003548	0.010768	0.619999
1.1429	79.7883	4048.91	0.986742	0.003888	0.009367	0.565796
1.4286	79.9449	4048.91	0.988498	0.004959	0.006541	0.443540
1.7143	80.1146	4048.91	0.989078	0.006873	0.004048	0.319970
2.0000	80.3529	4048.91	0.98639	0.011595	0.002014	0.190548
2.2857	81.1715	4048.91	0.964186	0.035262	0.000553	0.063686
2.5714	165.86	7.59560	0.102621	0.897368	0.000011	0.002388
2.8572	166.282	0.00551	0.101497	0.898491	0.000011	0.002385
3.1429	166.283	0.00001	0.101496	0.898493	1.1255E-05	0.002385
3.4286	166.283	0.00000	0.101496	0.898493	1.1255E-05	0.002385
3.7143	166.283	0.00000	0.101496	0.898493	1.1255E-05	0.002385
4.0000	166.283	0.00000	0.101496	0.898493	1.1255E-05	0.002385
			Condensador			
0	70.9869	-1935.43	0	0	0	0
0.2857	70.9871	-4048.82	0.597840	4.6047E-21	0.40216	0.000001
0.5714	70.9872	-4048.91	0.597840	9.0238E-21	0.40216	0.000001
0.8571	70.9873	-4048.91	0.597840	1.3278E-20	0.40216	0.000001
1.1429	70.9874	-4066.01	0.597686	1.9395E-20	0.402315	0.054437
1.4286	70.9876	-4078.71	0.597499	1.9387E-20	0.402499	0.176720
1.7143	71.0348	-4270.55	0.600280	1.9455E-20	0.39972	0.300029
2.0000	76.7036	-4100.04	0.694328	2.9046E-20	0.305672	0.435870
2.2857	76.945	-3865.65	0.762267	3.7152E-20	0.237733	0.564347
2.5714	77.0364	-7.27588	0.785827	3.9994E-20	0.214173	0.627648
2.8572	77.0365	0.00000	0.785832	3.9995E-20	0.214168	0.627663
3.1429	77.0365	0.00000	0.785833	3.9995E-20	0.214168	0.627664
3.4286	77.0366	0.00000	0.785834	3.9995E-20	0.214168	0.627664
3.7143	77.0367	0.00000	0.785835	3.9995E-20	0.214167	0.627665
4.0000	77.0367	0.00000	0.785836	3.9995E-20	0.214167	0.627665

Cuadro 248. Simulación en Aspen Batch Modeler para la destilación simple del

sistema agua- acetato de etilo - ácido láctico para 30 etapas sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor	·	•	
0.0000	80.2448	4048.91	0.994759	0.005238	0.000003	0.420000
0.2857	80.245	4048.91	0.994759	0.005238	0.000003	0.419999
0.5714	80.2452	4048.91	0.994759	0.005238	0.000003	0.419999
0.8571	80.2454	4048.91	0.994759	0.005238	0.000003	0.419999
1.1429	80.2691	4048.91	0.993984	0.006012	0.000002	0.365928
1.4286	80.3634	4048.91	0.990958	0.009037	0.000001	0.243349
1.7143	80.655	4048.91	0.981671	0.018329	0.000000	0.120000
2.0000	94.2509	2150.88	0.646211	0.353789	0.000000	0.006233
2.2857	166.278	0.09284	0.10152	0.89848	0.000000	0.002385
2.5714	166.283	0.00010	0.101506	0.898493	0.000000	0.002385
2.8572	166.283	0.00000	0.101506	0.898494	0.000000	0.002385
3.1429	166.283	0.00000	0.101506	0.898494	3.4825E-09	0.002385
3.4286	166.283	0.00000	0.101506	0.898494	3.4825E-09	0.002385
3.7143	166.283	0.00000	0.101506	0.898494	3.4825E-09	0.002385
4.0000	166.283	0.00000	0.101506	0.898494	3.4825E-09	0.002385
			Condensador			
0	70.9869	-1904.15	0.597978	0	0.402022	0
0.2857	70.9871	-4048.91	0.597978	3.8943E-20	0.402022	0.000001
0.5714	70.9872	-4048.91	0.597978	7.7181E-21	0.402022	0.000001
0.8571	70.9873	-4048.91	0.597978	8.0632E-23	0.402022	0.000001
1.1429	70.9874	-4028.10	0.597817	1.7173E-25	0.402183	0.054235
1.4286	70.9875	-4076.44	0.597591	5.9151E-25	0.402415	0.176837
1.7143	71.0074	-4182.94	0.626671	1.0499E-24	0.373329	0.299998
2.0000	77.1637	-1556.02	0.999132	7.2604E-24	0.00086773	0.420938
2.2857	77.1775	-0.13678	0.999442	7.5177E-24	0.00055806	0.425429
2.5714	77.1775	-0.00035	0.999442	7.5177E-24	0.00055805	0.425431
2.8572	77.1776	0.00000	0.999443	7.5177E-24	0.00055805	0.425431
3.1429	77.1776	0.00000	0.999443	7.5177E-24	0.00055805	0.425431
3.4286	77.1776	0.00000	0.999443	7.5177E-24	0.00055805	0.425432
3.7143	77.1776	0.00000	0.999444	7.5177E-24	0.00055805	0.425432
4.0000	77.1776	0.00000	0.999444	7.5177E-24	0.00055805	0.425432

Cuadro 249. Simulación en Aspen Batch Modeler para la destilación simple del

sistema agua- acetato de etilo – ácido láctico para 50 etapas sin reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor	•		
0.0000	83.7205	4048.91	0.890134	0.109866	0.000000	0.020000
0.2857	83.7206	4048.91	0.890133	0.109867	0.000000	0.019999
0.5714	83.7206	4048.91	0.890133	0.109867	0.000000	0.019999
0.8571	83.7206	4048.91	0.890133	0.109867	0.000000	0.019999
1.1429	162.652	65.5913	0.111487	0.888513	0.000000	0.002421
1.4286	166.282	0.01867	0.101509	0.898488	0.000000	0.002390
1.7143	166.283	0.00004	0.101506	0.898494	0.000000	0.002390
2.0000	166.283	0.00000	0.101506	0.898494	0.000000	0.002390
2.2857	166.283	0.00000	0.101506	0.898495	0.000000	0.002390
2.5714	166.283	0.00000	0.101506	0.898495	0.000000	0.002390
2.8572	166.283	0.00000	0.101506	0.898495	0.000000	0.002390
3.1429	166.283	0.00000	0.101506	0.898495	2.3832E-15	0.002390
3.4286	166.283	0.00000	0.101506	0.898496	2.3832E-15	0.002390
3.7143	166.283	0.00000	0.101506	0.898496	2.3832E-15	0.002390
4.0000	166.283	0.00000	0.101506	0.898496	2.3832E-15	0.002390
			Condensador			
0	70.9869	-1668.28	0	0	0	0
0.2857	70.9869	-4048.91	0.598087	5.2754E-21	0.401913	0.000001
0.5714	70.9869	-4048.91	0.598086	1.0299E-20	0.401914	0.000001
0.8571	70.9869	-4048.91	0.598085	1.5104E-20	0.401915	0.000001
1.1429	70.9869	-280.12	0.598066	4.7616E-22	0.401934	0.021597
1.4286	70.9869	-0.1751	0.598065	4.7615E-22	0.401935	0.022259
1.7143	70.9869	0.00000	0.598065	4.7615E-22	0.401935	0.022260
2.0000	70.9869	0.00000	0.598065	4.7615E-22	0.401935	0.022260
2.2857	70.987	0.00000	0.598065	4.7615E-22	0.401935	0.022260
2.5714	70.987	0.00000	0.598065	4.7615E-22	0.401935	0.022260
2.8572	70.987	0.00000	0.598065	4.7615E-22	0.401935	0.022260
3.1429	70.987	0.00000	0.598065	4.7615E-22	0.401935	0.022260
3.4286	70.987	0.00000	0.598065	4.7615E-22	0.401935	0.022260
3.7143	70.987	0.00000	0.598065	4.7615E-22	0.401935	0.022260
4.0000	70.987	0.00000	0.598065	4.7615E-22	0.401935	0.022260

Cuadro 250. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas con una relación de reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor			
0.0000	75.8652	4048.91	0.865106	0.002245	0.132649	0.980000
1.5000	76.1403	4048.91	0.877148	0.002423	0.120431	0.908094
3.0000	77.264	4048.91	0.918323	0.003181	0.078494	0.691597
4.5000	78.7322	4048.91	0.959224	0.004653	0.036120	0.472889
6.0000	80.0145	4048.91	0.983523	0.008787	0.007689	0.250566
7.5000	82.8144	4048.91	0.915925	0.08398	0.000095	0.026489
9.0000	166.283	0.00000	0.101501	0.898494	0.000005	0.002336
10.5000	166.283	0.00000	0.101501	0.898495	0.000005	0.002336
12.0000	166.283	0.00000	0.101501	0.898496	0.000005	0.002336
13.5000	166.283	0.00000	0.101501	0.898497	0.000005	0.002336
15.0000	166.283	0.00000	0.101502	0.898498	0.000005	0.002336
16.5000	166.283	0.00000	0.101502	0.898499	5.3116E-06	0.002336
18.0000	166.283	0.00000	0.101502	0.8985	5.3116E-06	0.002336
19.5000	166.283	0.00000	0.101502	0.898501	5.3116E-06	0.002336
21.0000	166.283	0.00000	0.101502	0.898502	5.3116E-06	0.002336
			Condensador			
0	71.0533	-2589.50	0	0	0	0
1.5000	71.2069	-4052.08	0.699571	6.9745E-10	0.300429	0.071900
3.0000	71.6665	-4049.81	0.730009	1.0044E-09	0.269993	0.288403
4.5000	73.1549	-4054.81	0.770454	1.589E-09	0.229547	0.507111
6.0000	75.9018	-4062.77	0.818332	2.9502E-09	0.181667	0.729434
7.5000	77.1813	-3899.80	0.858736	8.8981E-09	0.141264	0.953511
9.0000	77.1986	-0.00001	0.862222	1.764E-08	0.137778	0.977670
10.5000	77.1986	-0.00003	0.862222	1.764E-08	0.137778	0.977672
12.0000	77.1986	-0.00009	0.862222	1.764E-08	0.137777	0.977673
13.5000	77.1986	-0.00025	0.862222	1.764E-08	0.137777	0.977675
15.0000	77.1986	-0.00073	0.862222	1.764E-08	0.137777	0.977676
16.5000	77.1986	-0.00213	0.862222	1.7641E-08	0.137777	0.977678
18.0000	77.1986	-0.00620	0.862222	1.7641E-08	0.137777	0.977679
19.5000	77.1986	-0.01799	0.862222	1.7644E-08	0.137776	0.977680
21.0000	77,1986	-0.05224	0.862222	1.7651E-08	0.137776	0.977682

Cuadro 251. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas con una relación de reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
	•		Rehervidor		•	
0.0000	75.8652	4048.91	0.865106	0.002245	0.132649	0.980000
1.5000	76.0362	4048.91	0.872722	0.002348	0.124930	0.936920
3.0000	76.6779	4048.91	0.898337	0.002725	0.098938	0.807308
4.5000	77.4975	4048.91	0.925876	0.00325	0.070867	0.677000
6.0000	78.4522	4048.91	0.952806	0.004031	0.043161	0.545738
7.5000	79.3759	4048.91	0.974422	0.005325	0.020249	0.413187
9.0000	80.0491	4048.91	0.985868	0.007882	0.006247	0.279158
10.5000	80.5199	4048.91	0.983853	0.015274	0.000867	0.144014
12.0000	87.3288	3114.68	0.795352	0.204638	0.000010	0.010759
13.5000	166.283	0.00000	0.101505	0.898494	0.000001	0.002263
15.0000	166.283	0.00000	0.101505	0.898494	0.000001	0.002263
16.5000	166.283	0.00000	0.101504	0.898494	1.4640E-06	0.002263
18.0000	166.283	0.00000	0.101504	0.898494	1.4640E-06	0.002263
19.5000	166.283	0.00000	0.101504	0.898494	1.4640E-06	0.002263
21.0000	166.283	0.00000	0.101504	0.898494	1.4640E-06	0.002263
			Condensador			
0	71.0533	-2589.50	0	0	0	0
1.5000	71.1284	-4054.17	0.686020	5.5698E-10	0.31398	0.043078
3.0000	71.2832	-4052.98	0.702227	6.8112E-10	0.297774	0.172692
4.5000	71.6539	-4052.52	0.722174	8.5335E-10	0.277827	0.302998
6.0000	72.5143	-4054.01	0.747761	1.1288E-09	0.25224	0.434262
7.5000	74.1284	-4057.44	0.778483	1.5868E-09	0.221517	0.566814
9.0000	75.9888	-4059.97	0.810633	2.3491E-09	0.189366	0.700843
10.5000	77.0114	-4060.85	0.839060	3.7108E-09	0.160938	0.835984
12.0000	77.2002	-3021.10	0.861023	1.0114E-08	0.138976	0.969244
13.5000	77.2016	0.00000	0.862233	1.8703E-08	0.137768	0.977743
15.0000	77.2016	0.00000	0.862234	1.8703E-08	0.137768	0.977743
16.5000	77.2016	0.00000	0.862235	1.8703E-08	0.137768	0.977743
18.0000	77.2016	0.00000	0.862236	1.8703E-08	0.137768	0.977743
19.5000	77.2016	0.00000	0.862237	1.8703E-08	0.137768	0.977743
21.0000	77.2016	0.00000	0.862239	1.8703E-08	0.137768	0.977743

Cuadro 252. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas con una relación de reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor			
0.0000	75.8652	4048.91	0.865106	0.002245	0.132649	0.980000
2.2143	76.1153	4048.91	0.876143	0.002386	0.121471	0.921899
4.4286	76.6734	4048.91	0.898229	0.002697	0.099082	0.815623
6.6429	77.365	4048.91	0.921855	0.003104	0.075038	0.708827
8.8572	78.1713	4048.91	0.945583	0.003658	0.050756	0.601359
11.0714	79.0016	4048.91	0.966612	0.004462	0.028925	0.493048
13.2857	79.698	4048.91	0.981446	0.005733	0.012818	0.383749
15.5000	80.1553	4048.91	0.988006	0.008043	0.003947	0.273500
17.7143	80.4735	4048.91	0.985799	0.013525	0.000673	0.162638
19.9286	81.4345	4048.91	0.957292	0.04268	0.000029	0.051624
22.1429	166.28	0.04119	0.101513	0.898487	0.000000	0.002086
24.3572	166.283	0.00000	0.101506	0.898494	4.5553E-07	0.002086
26.5714	166.283	0.00000	0.101506	0.898494	4.5553E-07	0.002086
28.7857	166.283	0.00000	0.101506	0.898494	4.5553E-07	0.002086
31.0000	166.283	0.00000	0.101506	0.898494	4.5553E-07	0.002086
			Condensador			
0	71.0533	-2589.50	0	0	0	0
2.2143	71.1116	-4053.16	0.681371	5.1204E-10	0.318631	0.058099
4.4286	71.228	-4052.54	0.693957	5.9755E-10	0.306044	0.164376
6.6429	71.4832	-4052.13	0.709882	7.1706E-10	0.290119	0.271172
8.8572	72.0471	-4052.36	0.730166	8.9478E-10	0.269833	0.378641
11.0714	73.1686	-4053.56	0.755110	1.1678E-09	0.244889	0.486953
13.2857	74.8315	-4055.07	0.783243	1.5858E-09	0.216756	0.596251
15.5000	76.3287	-4055.96	0.811109	2.2103E-09	0.188891	0.706501
17.7143	77.0412	-4055.98	0.835369	3.1899E-09	0.16463	0.817364
19.9286	77.1954	-4045.92	0.854898	5.3454E-09	0.145101	0.928384
22.1429	77.2027	-0.05049	0.862249	2.2867E-08	0.137751	0.977932
24.3572	77.2027	0.00000	0.862251	2.2872E-08	0.137751	0.977932
26.5714	77.2027	0.00000	0.862252	2.2872E-08	0.137751	0.977932
28.7857	77.2027	0.00000	0.862253	2.2872E-08	0.137751	0.977932
31,0000	77.2027	0.00000	0.862254	2.2872E-08	0.137751	0.977932

Cuadro 253. Simulación en Aspen Batch Modeler para la destilación simple del sistema agua- acetato de etilo – ácido láctico para 2 etapas con una relación de reflujo

Tiempo (h)	Temperatura (°C)	Flujo de calor (J/s)	Acetato de etilo (kmol/kmol)	Ácido láctico (kmol/kmol)	Agua (kmol/kmol)	Retención del líquido (kmol)
			Rehervidor	•		
0.0000	75.8652	4048.91	0.865106	0.002245	0.132649	0.980000
2.2143	76.0691	4048.91	0.874172	0.002359	0.123471	0.932480
4.4286	76.5103	4048.91	0.892103	0.002602	0.105300	0.845610
6.6429	77.0417	4048.91	0.911273	0.002901	0.085828	0.758409
8.8572	77.6635	4048.91	0.931096	0.00328	0.065623	0.670795
11.0714	78.3488	4048.91	0.950413	0.003776	0.045811	0.582675
13.2857	79.0322	4048.91	0.967404	0.004454	0.028139	0.493961
15.5000	79.6172	4048.91	0.980048	0.005438	0.014513	0.404578
17.7143	80.0353	4048.91	0.987079	0.006994	0.005926	0.314538
19.9286	80.3092	4048.91	0.988433	0.009819	0.001745	0.224001
22.1429	80.5848	4048.91	0.983187	0.016516	0.000297	0.133209
24.3572	81.7392	4048.91	0.948019	0.051966	1.4848E-05	0.042395
26.5714	166.14	2.33639	0.101885	0.898113	3.3616E-07	0.001963
28.7857	166.283	0.00007	0.101506	0.898496	3.3472E-07	0.001959
31.0000	166.283	0.00000	0.101506	0.898503	3.3472E-07	0.001959
			Condensador			
0	71.0533	-2589.50	0	0	0	0
2.2143	71.0987	-4052.72	0.678742	4.9225E-10	0.321257	0.047518
4.4286	71.1778	-4052.32	0.688533	5.5638E-10	0.311468	0.134388
6.6429	71.3292	-4051.93	0.700408	6.397E-10	0.299594	0.221590
8.8572	71.6251	-4051.76	0.715018	7.5333E-10	0.284983	0.309205
11.0714	72.1933	-4052.06	0.732841	9.1317E-10	0.267159	0.397323
13.2857	73.1817	-4052.90	0.753888	1.1417E-09	0.246113	0.486039
15.5000	74.5609	-4053.92	0.777199	1.4663E-09	0.222801	0.575423
17.7143	75.9204	-4054.62	0.800771	1.9168E-09	0.199227	0.665463
19.9286	76.7878	-4054.76	0.822440	2.5427E-09	0.177558	0.756000
22.1429	77.1292	-4054.40	0.840987	3.5E-09	0.159012	0.846792
24.3572	77.1987	-4044.57	0.856331	5.6978E-09	0.143669	0.937606
26.5714	77.2029	-2.58112	0.862271	2.6312E-08	0.137729	0.978048
28.7857	77.2031	-0.00008	0.862272	2.6435E-08	0.137728	0.978057
31.0000	77.2032	0.00000	0.862272	2.6435E-08	0.137728	0.978058

Cuadro 254. Equilibrio binario líquido vapor del sistema agua – ácido láctico a presión constante en composiciones molares (0.987 atm) obtenido mediante Aspen Plus bajo el modelo NRLT

Temperatura (°C)	Agua en fase vapor (m/m)	Ácido láctico en fase vapor (m/m)	Agua en fase líquida (m/m)	Ácido láctico en fase líquida (m/m)
215.808	0	1	0	1
189.183	0.623261	0.376739	0.05	0.95
171.21	0.824561	0.175439	0.1	0.9
158.582	0.904184	0.0958161	0.15	0.85
149.178	0.941759	0.058241	0.2	0.8
141.823	0.961943	0.0380572	0.25	0.75
135.851	0.97385	0.0261499	0.3	0.7
130.86	0.981379	0.0186206	0.35	0.65
126.596	0.986399	0.0136013	0.4	0.6
122.887	0.989886	0.0101145	0.45	0.55
119.615	0.992389	0.00761121	0.5	0.5
116.694	0.994235	0.00576528	0.55	0.45
114.062	0.995626	0.00437373	0.6	0.4
111.669	0.996695	0.00330521	0.65	0.35
109.479	0.997528	0.00247188	0.7	0.3
107.462	0.998187	0.00181334	0.75	0.25
105.595	0.998713	0.00128703	0.8	0.2
103.857	0.999138	0.00086231	0.85	0.15
102.234	0.999483	0.000516715	0.9	0.1
100.712	0.999767	0.000233502	0.95	0.05
99.2807	1	0	1	0

Cuadro 255. Equilibrio binario líquido vapor del sistema acetato de etilo – ácido láctico a presión constante en composiciones molares (0.987 atm) obtenido mediante Aspen Plus bajo el modelo NRLT

Temperatura (°C)	Acetato de etilo en fase vapor (m/m)	Ácido láctico en fase vapor (m/m)	Acetato de etilo en fase líquida (m/m)	Ácido láctico en fase líquida (m/m)
215.808	1	0	1	0
184.615	0.316779	0.683221	0.95	0.05
161.514	0.115658	0.884342	0.9	0.1
145.339	0.051365	0.948635	0.85	0.15
133.614	0.0265623	0.973438	0.8	0.2
124.679	0.0152697	0.98473	0.75	0.25
117.574	0.00944957	0.99055	0.7	0.3
111.733	0.00616251	0.993838	0.65	0.35
106.807	0.00417387	0.995826	0.6	0.4
102.568	0.00290529	0.997095	0.55	0.45
98.8614	0.00206156	0.997938	0.5	0.5
95.577	0.00148128	0.998519	0.45	0.55
92.6351	0.00107116	0.998929	0.4	0.6
89.9759	0.000774721	0.999225	0.35	0.65
87.5535	0.000556426	0.999444	0.3	0.7
85.3319	0.000393158	0.999607	0.25	0.75
83.2827	0.000269455	0.999731	0.2	0.8
81.3828	0.000174717	0.999825	0.15	0.85
79.6135	0.000101519	0.999899	0.1	0.9
77.9591	4.46E-05	0.999955	0.05	0.95
76.4067	0	1	0	1

Cuadro 256. Equilibrio binario líquido-líquido vapor del sistema acetato de etilo – agua a presión constante en composiciones molares (0.987 atm) obtenido mediante

Temperatura (°C)	Agua en fase vapor (m/m)	Acetato de etilo en fase vapor (m/m)	Agua en fase líquida oleosa (m/m)	Acetato de etilo en líquida oleosa (m/m)	Agua en fase líquida acuosa (m/m)	Acetato de etilo en fase líquida acuosa (m/m)
99.2807	1	0	1	0		
70.8765	0.324856	0.675144	0.227427	0.772573	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
70.8765	0.324856	0.675144	0.227428	0.772572	0.988792	0.0112076
71.1675	0.303287	0.696713	0.2	0.8		
71.9066	0.254706	0.745294	0.15	0.85		
72.9729	0.191348	0.808652	0.1	0.9		
74.4437	0.108622	0.891378	0.05	0.95		
76.4067	0	1	0	1		

Aspen Plus bajo el modelo NRLT

Figura 59. Diagrama de composiciones en fase líquida y vapor para el sistema en equilibrio agua – ácido láctico

Figura 60. Diagrama de composiciones en fase líquida y vapor para el sistema en equilibrio acetato de etilo – ácido láctico

Cuadro 257. Determinación de azeótropos mediante Aspen Plus para el sistema aguaacetato de etilo - ácido láctico

	Physical Property Model: NRTL	/alid Phase: VAP-LIQ	
	Mixture Investigated For Azeotropes A	t A Pressure Of 0.974 ATM	
Comp ID	Component Name	Classification	Temperature
WATER	WATER	Saddle	99.28 C
LACTI-01	LACTIC-ACID	Stable node	215.81 C
ETHYL-01	ETHYL-ACETATE	Saddle	76.41 C
	The Azeotrop	e	
Number Of Components: 2		Temperature	70.25 C
Homogeneous		Classification: Uns	table node
01		MOLE BASIS	MASS BASIS
	WATER	0.4000	0.1199
		0.0000	0.0004

Cuadro 258. Composiciones molares de las curvas residuales obtenidas mediante Aspen Plus para la destilación del sistema agua- acetato de etilo -ácido láctico (1/5)

	Curva 1		Curva 2		
Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)	Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)
0.3990621	0	0.6009379	0.3949295	1.23E-18	0.6050705
0.4023003	7.31E-11	0.5976997	0.3793784	5.43E-15	0.6206216
0.4200145	3.47E-07	0.5799852	0.3543784	2.08E-14	0.6456216
0.4700145	1.49E-06	0.529984	0.3293784	4.14E-14	0.6706216
0.4950145	2.06E-06	0.5049835	0.3043784	6.72E-14	0.6956216
0.5700145	3.66E-06	0.4299819	0.2543784	1.38E-13	0.7456216
0.5950145	4.15E-06	0.4049814	0.2293784	1.87E-13	0.7706216
0.6200145	4.61E-06	0.3799809	0.2043784	2.47E-13	0.7956216
0.6950145	5.89E-06	0.3049796	0.1793784	3.24E-13	0.8206216
0.7700145	7.00E-06	0.2299785	0.1543784	4.25E-13	0.8456216
0.7950145	7.33E-06	0.2049782	0.1293784	5.65E-13	0.8706216
0.8450145	7.97E-06	0.1549776	0.1043784	7.71E-13	0.8956216
0.8950145	8.56E-06	0.104977	0.0793783	1.12E-12	0.9206216
0.9200145	8.85E-06	0.0799766	0.0543783	1.86E-12	0.9456216
0.9450145	9.14E-06	0.0549763	0.0293783	5.43E-12	0.9706216
0.9700145	9.45E-06	0.029976	0.012212	7.49E-09	0.9877879
0.9950145	9.95E-06	0.00497557	0.00497557	9.95E-06	0.9950145

	Curva 3		Curva 4		
Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)	Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)
0.3917512	2.90E-07	0.6082485	0.3981961	9.46E-11	0.6018039
0.3681478	0.00124617	0.630606	0.3945621	4.30E-07	0.6054374
0.3432274	0.00323958	0.653533	0.3801895	0.00188628	0.6179243
0.3183664	0.00587237	0.6757612	0.3563632	0.00945648	0.6341804
0.2689399	0.0133768	0.7176832	0.3130433	0.0341918	0.6527648
0.2444833	0.0185607	0.736956	0.2941723	0.0505895	0.6552382
0.1738385	0.0432806	0.7828808	0.2494364	0.1105076	0.6400561
0.1522909	0.0559574	0.7917516	0.2379576	0.1327165	0.6293258
0.0808576	0.1250274	0.7941149	0.1968018	0.2505643	0.552634
0.0688723	0.1469671	0.7841605	0.1906786	0.2748028	0.5345186
0.0593716	0.1700915	0.7705369	0.1849862	0.2991461	0.5158677
0.0518913	0.1939462	0.7541625	0.1796431	0.3235684	0.4967885
0.0459644	0.2182335	0.7358021	0.1745796	0.3480503	0.4773701
0.0412063	0.2427765	0.7160172	0.1697357	0.3725765	0.4576878
0.0270941	0.3669319	0.605974	0.1471682	0.4955216	0.3573103
0.0237855	0.4168219	0.5593925	0.1382117	0.5447128	0.3170755
0.0223902	0.441783	0.5358268	0.1336207	0.5692877	0.2970916
0.0211252	0.4667509	0.5121239	0.1289157	0.5938409	0.2772434
0.0199664	0.4917241	0.4883095	0.1240677	0.6183663	0.257566
0.0188946	0.5167011	0.4644043	0.1190476	0.6428571	0.2380952
0.0178938	0.541681	0.4404251	0.1190476	0.6428571	0.2380952
0.0169507	0.5666632	0.4163861	0.1140276	0.6673479	0.2186245
0.0160539	0.5916471	0.3922989	0.1087979	0.6917948	0.1994073
0.0119566	0.7165799	0.2714634	0.0782291	0.8129738	0.108797
0.0111624	0.7415673	0.2472703	0.0709382	0.836887	0.0921747
0.0103603	0.7665544	0.2230853	0.063142	0.8606403	0.0762176
0.00954287	0.7915411	0.1989161	0.0547856	0.8842024	0.0610119
0.00870174	0.8165269	0.1747714	0.0458109	0.9075359	0.046653
0.00782729	0.8415116	0.1506611	0.0361568	0.9305967	0.0332464
0.00690781	0.8664947	0.1265975	0.0257559	0.9533304	0.0209136
0.00592845	0.8914755	0.1025961	0.0145192	0.9756628	0.00981799
0.00370303	0.9414258	0.0548711	0.00224606	0.9974428	0.000311129
9.84E-06	0.9999803	9.84E-06	1.00E-05	0.99998	1.00E-05

Cuadro 259. Composiciones molares de las curvas residuales obtenidas mediante Aspen Plus para la destilación del sistema agua- acetato de etilo -ácido láctico (2/5)

	Curva 5		Curva 6		
Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)	Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)
0.3981677	1.51E-10	0.6018323	0.3987312	1.86E-13	0.6012688
0.3944169	6.87E-07	0.6055824	0.3973607	8.49E-10	0.6026393
0.3809911	0.00300893	0.6159999	0.3903977	3.83E-06	0.6095985
0.3608039	0.0177559	0.6214401	0.3797448	0.0159613	0.6042938
0.3228582	0.0818547	0.595287	0.375713	0.0904988	0.5337882
0.3149862	0.105583	0.5794308	0.3781672	0.1153781	0.5064547
0.3085024	0.1297276	0.56177	0.3813602	0.1401733	0.4784665
0.3030441	0.1541244	0.5428315	0.3850044	0.1649063	0.4500893
0.2942015	0.2033331	0.5024655	0.3928571	0.2142857	0.3928571
0.2904588	0.2280513	0.4814898	0.3928571	0.2142857	0.3928571
0.2804819	0.3023841	0.4171341	0.4044339	0.2883861	0.30718
0.2772774	0.3271778	0.3955447	0.407819	0.3131559	0.2790251
0.2670661	0.4014785	0.3314554	0.4145113	0.3878358	0.1976529
0.2632719	0.4261889	0.3105392	0.4149859	0.4128313	0.1721828
0.2591952	0.4508543	0.2899505	0.4142269	0.4378198	0.1479533
0.2343078	0.5733313	0.1923609	0.3739524	0.5810089	0.0450386
0.2280938	0.5975467	0.1743596	0.361363	0.6026077	0.0360293
0.2213121	0.6216093	0.1570787	0.34764	0.6235046	0.0288553
0.2139225	0.6454922	0.1405853	0.333032	0.6437927	0.0231753
0.2058904	0.6691668	0.1249428	0.3177448	0.663574	0.0186811
0.1971885	0.6926034	0.1102081	0.3019402	0.6829444	0.0151153
0.1877984	0.7157729	0.0964286	0.2857411	0.7019862	0.0122726
0.1777124	0.7386481	0.0836395	0.2692402	0.7207671	0.00999273
0.1433667	0.8052965	0.0513368	0.218537	0.7760292	0.00543383
0.1173275	0.8479755	0.034697	0.1841133	0.812292	0.00359463
0.1034826	0.8687918	0.0277256	0.1667854	0.8303127	0.00290186
0.0891476	0.8892737	0.0215786	0.1493996	0.8482774	0.00232299
0.0743676	0.9094368	0.0161954	0.1319663	0.8661962	0.00183745
0.0591845	0.9292982	0.0115172	0.1144941	0.8840769	0.00142898
0.0436352	0.9488741	0.00749066	0.0969893	0.9019259	0.00108472
0.0277478	0.9681768	0.00407534	0.0794574	0.9197481	0.000794429
0.011531	0.9872034	0.00126555	0.0619024	0.9375475	0.000550048
1.00E-05	0.99998	1.00E-05	0.0091246	0.9908345	4.09E-05

Cuadro 260. Composiciones molares de las curvas residuales obtenidas mediante Aspen Plus para la destilación del sistema agua- acetato de etilo -ácido láctico (3/5)

	Curva 7		Curva 8		
Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)	Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)
0.3990078	1.87E-11	0.6009922	0.3986312	1.51E-10	0.6013688
0.3988523	8.57E-08	0.6011476	0.3968299	6.89E-07	0.6031694
0.3986548	0.000391664	0.6009536	0.392337	0.00308219	0.6045808
0.4197929	0.01374	0.566467	0.4000166	0.0268734	0.5731099
0.4413906	0.0263312	0.5322781	0.4109871	0.0493378	0.5396751
0.4633174	0.0383403	0.4983423	0.479344	0.1538887	0.3667673
0.6453815	0.1208909	0.2337276	0.4941259	0.1740504	0.3318237
0.7155699	0.1473175	0.1371126	0.5238095	0.2142857	0.2619048
0.7390488	0.1559048	0.1050464	0.6043096	0.3666992	0.0289911
0.7624856	0.1646061	0.0729082	0.5976311	0.3907906	0.0115783
0.7857375	0.1737906	0.0404719	0.5837048	0.4115526	0.00474266
0.8082111	0.1847421	0.00704684	0.5673382	0.4304506	0.00221115
0.7946842	0.205306	9.80E-06	0.550202	0.4486536	0.00114434
0.7769985	0.2229915	1.00E-05	0.5327772	0.4665806	0.000642199
0.7593146	0.2406754	1.00E-05	0.5152289	0.4843867	0.000384468
0.7416322	0.2583578	1.00E-05	0.4976223	0.5021351	0.000242625
0.6355602	0.3644397	1.22E-07	0.479986	0.5198541	0.000159933
0.6178826	0.3821174	3.35E-08	0.4623336	0.537557	0.000109337
0.6002049	0.3997951	1.18E-08	0.3739881	0.6259881	2.38E-05
0.5825273	0.4174727	4.98E-09	0.356313	0.6436684	1.85E-05
0.5648496	0.4351504	2.38E-09	0.3386374	0.6613481	1.45E-05
0.4057506	0.5942494	4.82E-11	0.2856079	0.7143847	7.43E-06
0.3880729	0.6119271	3.65E-11	0.267931	0.732063	6.01E-06
0.3703952	0.6296048	2.80E-11	0.2502538	0.7497413	4.87E-06
0.3527176	0.6472824	2.18E-11	0.2325766	0.7674194	3.96E-06
0.3350399	0.6649601	1.72E-11	0.2148993	0.7850974	3.22E-06
0.3173622	0.6826378	1.37E-11	0.1265121	0.8734869	1.06E-06
0.0875525	0.9124475	7.14E-13	0.1088345	0.8911647	8.19E-07
0.0698748	0.9301251	5.08E-13	0.0558017	0.9441979	2.97E-07
0.0521971	0.9478028	3.35E-13	0.0381241	0.9618757	1.76E-07
0.0345195	0.9654805	1.91E-13	0.0204465	0.9795534	7.75E-08
0.0168418	0.9831582	7.43E-14	0.00276891	0.9972311	9.85E-10
9.99E-06	0.99998	9.99E-06	9.85E-06	0.9999803	9.85E-06

Cuadro 261. Composiciones molares de las curvas residuales obtenidas mediante Aspen Plus para la destilación del sistema agua- acetato de etilo -ácido láctico (4/5)

	Curva 9		Curva 10		
Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)	Agua (m/m)	Ácido láctico (m/m)	Acetato de etilo (m/m)
0.398919	6.10E-14	0.601081	0.3989566	1.13E-13	0.6010434
0.4146186	0.1017018	0.4836796	0.4740833	0.0803253	0.4455914
0.4243146	0.124745	0.4509405	0.4933413	0.0962666	0.410392
0.4344327	0.1476059	0.4179614	0.5129433	0.1117832	0.3752735
0.4448026	0.1703538	0.3848436	0.5328345	0.1269272	0.3402383
0.4552769	0.1930538	0.3516694	0.5529644	0.1417524	0.3052832
0.4657095	0.2157729	0.3185176	0.5732808	0.1563211	0.2703982
0.4759381	0.2385847	0.2854772	0.5937232	0.1707123	0.2355645
0.5142857	0.3571429	0.1285714	0.6748934	0.2291088	0.0959978
0.5203849	0.4066803	0.0729347	0.7146745	0.2853156	9.95E-06
0.5179952	0.4315658	0.0504389	0.6969942	0.3029958	1.00E-05
0.5110901	0.4555933	0.0333165	0.6793145	0.3206755	1.00E-05
0.5002095	0.4781014	0.0216891	0.6262865	0.3737135	1.98E-09
0.4866101	0.4990789	0.014311	0.6086088	0.3913912	6.27E-10
0.4713961	0.5189166	0.00968735	0.5909311	0.4090689	2.45E-10
0.4552534	0.5380062	0.0067404	0.5732535	0.4267465	1.11E-10
0.4385663	0.5566218	0.00481197	0.5555758	0.4444242	5.58E-11
0.2992751	0.7001262	0.000598696	0.4141544	0.5858456	1.84E-12
0.2816556	0.7178618	0.000482584	0.3434438	0.6565562	6.37E-13
0.2640239	0.7355854	0.000390705	0.3257661	0.6742339	5.04E-13
0.246383	0.7532998	0.000317237	0.3080884	0.6919116	4.02E-13
0.228735	0.771007	0.000257936	0.2904107	0.7095893	3.23E-13
0.2110815	0.7887088	0.000209661	0.2727331	0.7272669	2.61E-13
0.1934236	0.8064063	0.000170065	0.2550554	0.7449446	2.12E-13
0.1757623	0.8241003	0.000137369	0.2373777	0.7626223	1.72E-13
0.1580982	0.8417915	0.000110213	0.2197001	0.7802999	1.40E-13
0.1404319	0.8594805	8.75E-05	0.2020224	0.7979776	1.14E-13
0.1227637	0.8771677	6.86E-05	0.1843447	0.8156553	9.20E-14
0.0520781	0.9479035	1.84E-05	0.1136341	0.8863659	3.62E-14
0.0344044	0.9655851	1.05E-05	0.060601	0.939399	1.37E-14
0.0167299	0.983266	4.04E-06	0.0429233	0.9570766	8.50E-15
9.99E-06	0.99998	9.99E-06	0.0252457	0.9747543	4.20E-15
1.00E-05	0.99998	1.00E-05	9.90E-06	0.9999901	8.79E-16

Cuadro 262. Composiciones molares de las curvas residuales obtenidas mediante Aspen Plus para la destilación del sistema agua- acetato de etilo -ácido láctico (5/5)

Cuadro 263. Materia en fase líquida en el calderín al final de la operación de destilación para una destilación simple sin reflujo del sistema agua- acetato de etilo ácido láctico según Aspen Plus

Materia (kmol)				
Global	0.002387			
Acetato de etilo	0.000242			
Ácido láctico	0.002145			
Agua	3.34E-07			
Composición (m	/m)			
Acetato de etilo	0.101379			
Ácido láctico	0.898481			
Agua	1.40E-04			

Cuadro 264. Perfil de temperatura, calor añadido y flujo de vapor en el calderín en función del tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo -ácido láctico según Aspen Plus

Tiempo (h)	Temperatura (°C)	Calor (J/s)	Calor acumulado (kJ)	Flujo de vapor (kmol/h)
0.00	75.82	4048.91	0	0.335765
0.15	75.82	4048.91	2242.485564	0.434517
0.62	75.82	4048.91	8969.913105	0.434512
0.92	75.82	4048.91	13454.86966	0.434512
1.38	76.23	4048.91	20182.32635	0.430502
1.54	76.43	4048.91	22424.85564	0.431171
1.69	76.64	4048.91	24667.23918	0.43176
2.15	77.45	4048.91	31394.68129	0.433835
2.31	77.78	4048.91	33637.21059	0.433718
2.46	78.15	4048.91	35879.59412	0.434797
2.62	78.56	4048.91	38122.12341	0.436009
2.77	79.02	4048.91	40364.6527	0.43708
2.92	79.54	4048.91	42607.03623	0.435716
3.08	80.27	4048.91	44849.56553	0.434679
3.23	82.01	4048.91	47092.09482	4.03E-01
3.38	162.16	74.4577	47133.33128	2.97E-03
3.54	166.27	1.72E-01	47133.42661	6.21E-06
4.00	166.28	-1.46E-05	47133.42658	0.00E+00

Cuadro 265. Perfil de composiciones y retención del líquido en el calderín en función del tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo -

Acetato de etilo (m/m)	Ácido láctico (m/m)	Agua (m/m)	Retención del líquido (kmol)
0.8631	0.0022	0.1347	1
0.8631	0.0022	0.1347	0.999999
0.8631	0.0022	0.1347	0.999999
0.8631	0.0022	0.1347	0.999999
0.8631	0.0022	0.1347	0.999999
0.8631	0.0022	0.1347	0.999999
0.8631	0.0022	0.1347	0.999999
0.866505	0.002276	0.13122	0.966522
0.873462	0.002446	0.124094	0.899785
0.880628	0.00264	0.116733	0.833524
0.888146	0.002868	0.108987	0.767257
0.896046	0.00314	0.100818	0.700885
0.904313	0.003469	0.092223	0.634429
0.912937	0.003875	0.083192	0.567877
0.921888	0.004389	0.073727	0.501212
0.931058	0.005062	0.06388	0.434494
0.940364	0.00599	0.053646	0.367595
0.949516	0.007324	0.04316	0.300556
0.957955	0.009443	0.032602	0.233398
0.964381	0.013269	0.022351	0.166299
0.965387	0.022632	0.011981	0.098275
0.930445	0.065391	0.004164	0.034028
0.112745	0.887103	1.53E-04	0.002423
0.101404	0.898452	1.40E-04	0.002388
0.10138	0.89848	1.40E-04	0.002387
0.101379	0.898483	1.40E-04	0.002387
0.101378	0.898486	1.40E-04	0.002387

ácido láctico según Aspen Plus

			-	
Tiempo (h)	Temperatura (°C)	Calor (J/s)	Calor acumulado (kJ)	Flujo de líquido (kmol/h)
0.00	71.54	-3128.76	-2242.507718	0.167883
0.15	71.54	-4048.95	-4484.978707	0.434517
0.31	71.54	-4048.91	-6727.464271	0.434512
0.46	71.54	-4048.91	-8969.935259	0.434512
0.62	71.54	-4048.91	-11212.42082	0.434512
0.77	71.54	-4048.91	-13454.89181	0.434512
0.92	71.54	-4048.91	-15716.15073	0.434512
1.08	71.58	-4082.7	-17954.3972	0
1.23	71.69	-4041.44	-20183.14645	0
1.38	71.79	-4024.03	-22412.47172	0
1.54	71.91	-4025.07	-24641.80162	0
1.69	72.06	-4025.34	-26870.99397	0
1.85	72.23	-4024.83	-29100.19649	0
2.00	72.45	-4025.11	-31330.25285	0
2.15	72.71	-4026.39	-33557.03037	0
2.31	73.04	-4020.47	-35784.51603	0
2.46	73.44	-4022.01	-38012.95513	0
2.62	73.92	-4023.47	-40240.79052	0
2.77	74.51	-4022.38	-42456.74003	0
2.92	75.20	-4001.18	-44657.53597	0
3.08	76.04	-3973.56	-46700.72551	0
3.23	76.78	-3689.00	-46722.41293	0
3.38	80.53	-39.1594	-46722.46021	0
3.54	81.29	-0.085366	-46722.46198	0
3.69	81.30	-0.003201	-46722.46198	0
3.85	81.30	-9.75E-18	-46722.46198	0
4.00	81.30	0	-2242.507718	0

Cuadro 266. Perfil de temperatura, calor removido y flujo de líquido en el condensador en función del tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo -ácido láctico según Aspen Plus
Cuadro 267. Perfil de composiciones y retención del líquido en el destilado en función del tiempo para una destilación simple sin reflujo del sistema agua- acetato de etilo -

Acetato de etilo (m/m)	Ácido láctico (m/m)	Agua (m/m)	Retención del líquido (kmol)
0	0.00E+00	0	0
0.762307	1.14E-06	0.237692	1.08E-06
0.762307	1.14E-06	0.237692	1.09E-06
0.762307	1.14E-06	0.237692	1.09E-06
0.762307	1.14E-06	0.237692	1.10E-06
0.762307	1.14E-06	0.237692	1.11E-06
0.762307	1.14E-06	0.237692	1.11E-06
0.764877	1.18E-06	0.235124	0.03348
0.77017	1.25E-06	0.229827	0.100217
0.775384	1.32E-06	0.224618	0.166479
0.780563	1.40E-06	0.219435	0.232748
0.78594	1.49E-06	0.214058	0.299117
0.791607	1.59E-06	0.208391	0.365573
0.797629	1.72E-06	0.202369	0.432126
0.804039	1.86E-06	0.195959	0.498788
0.810884	2.03E-06	0.189115	0.565507
0.818199	2.25E-06	0.1818	0.632405
0.825969	2.54E-06	0.174029	0.699444
0.834218	2.92E-06	0.16578	0.766601
0.842891	3.50E-06	0.15711	0.833702
0.851915	4.47E-06	0.148077	0.901724
0.860689	7.04E-06	0.1393	0.965974
0.864921	5.09E-05	0.135028	0.997579
0.864922	5.51E-05	0.135023	0.997615
0.864922	5.52E-05	0.135023	0.997618
0.864922	5.52E-05	0.135022	0.997622
0.864922	5.53E-05	0.135022	0.997625

ácido láctico según Aspen Plus

Cuadro 268. Sensibilidad de la composición de ácido láctico y la retención del líquido para el calderín y en condensador en una destilación simple en función de la relación

		Calder	·ín	Condensa	ador
Número de etapas	Tiempo (h)	Ácido láctico (kmol/kmol)	Retención (kmol)	Ácido láctico (kmol/kmol)	Retención (kmol)
1	3.42	0.897448	0.002391	0.864866	0.997609
2	3.42	0.898271	0.002388	0.863241	0.984874
3	3.35	0.897554	0.002389	0.860686	0.96661
8	3.10	0.895025	0.002396	0.845018	0.866143
12	2.85	0.897653	0.002636	0.829435	0.785801
20	2.53	0.891329	0.002407	0.785808	0.6276
30	2.12	0.897102	0.00239	0.683381	0.425413
50	1.22	0.898186	0.002391	0.598066	0.022219

de reflujo

* Referirse a los cuadros 242-249.

Cuadro 269. Sensibilidad de la composición de ácido láctico y la retención del líquido para el calderín y en condensador para una destilación sin reflujo en función del número de etapas

Dologión		Calder	rín	Condens	ador
de reflujo	Tiempo (h)	Ácido láctico (kmol/kmol)	Retención (kmol)	Ácido láctico (kmol/kmol)	Retención (kmol)
0	3.42	0.897448	0.002391	0.864866	0.997609
2	8.14	0.89849	0.002336	0.862222	0.977667
4	12.43	0.897759	0.002266	0.86223	0.977737
8	21.51	0.895211	0.002106	0.862245	0.977907
10	26.57	0.898478	0.001963	0.862271	0.978048

* Referirse a los cuadros 250-253.

Cuadro 270. Balance de materia centrifugación de un lote de caldo fermentado

Sustancia	Entrada (kg)	Salida (kg)
Caldo fermentado con biomasa	16.042	
Caldo fermentado		14.947
Biomasa		1.095

proveniente del biorreactor

Cuadro 271. Balance de materia extracción líquido-líquido a contracorriente para el sistema agua- acetato de etilo – ácido láctico de 3 etapas con F/S de 1:6

Etapa		Entr	ada	Salida		
Fase	Componente	Acuosa (kg)	Oleosa (kg)	Acuosa (kg)	Oleosa (kg)	
	Ácido láctico	0.22680	0.20741	0.12233	0.10294	
1	Agua	13.22586	2.54729	13.18773	2.51190	
	Acetato de etilo	0.00000	79.80256	1.11924	80.91904	
	Ácido láctico	0.12233	0.04083	0.06022	0.20741	
2	Agua	13.18773	2.48706	13.15751	2.54729	
	Acetato de etilo	1.11924	80.92046	1.12603	79.80256	
	Ácido láctico	0.06022	0.00000	0.01939	0.04083	
3	Agua	13.15751	0.00000	10.67857	2.48706	
	Acetato de etilo	1.12603	80.71596	0.91340	80.92046	

Cuadro 272. Balance de materia en la destilación simple abierta del extracto obtenido al inicio y al final de la operación

Sección	Componente	Inicio (kg)	Final (kg)
	Ácido láctico	0.20741161	0.20234377
Calderín	Agua	2.5472879	0.000006
	Acetato de etilo	79.8025638	0.0223319
	Ácido láctico	0.000000	0.005211
Destilado	Agua	0.000000	2.547138
	Acetato de etilo	0.000000	79.780232

Cuadro 273. Características geométricas y de transferencia de calor en el condensador para el proceso de destilación simple del sistema agua- acetato de etilo ácido láctico a la temperatura media de las corrientes

Transferencia de calor por el exterior del serpentín (vapor destilado)				
Paso (m)	0.054			
Diámetro interior hélice (m)	0.356			
Diámetro exterior hélice (m)	0.428			
Longitud serpentín (m)	1.0648 N			
Volumen serpentín (m ³)	0.0001084 N			
Volumen del ánulo (m ³)	0.002443 N			
Volumen disponible para el flujo en el ánulo (m ³)	0.001359 N			
Diámetro equivalente coraza (m)	0.04514			
Velocidad másica vapor (kg/m ² s)	9.73191			
Número de Reynolds	1004.68			
Número de Prandtl	3.5415			
Coeficiente de convección (W/m ² °C)	119.5419			
Transferencia de calor por el interior del serpentín (agua	de enfriamiento)			
Área sección transversal serpentín (m ²)	0.0006158			
Caudal volumétrico (m ³ /s)	0.0000361			
Velocidad (m/s)	0.05862			
Número de Reynolds	2223.65			
Número de Prandtl	4.8446			
Coeficiente de convección del agua tubo recto en función del diámetro interior (W/m ² °C)	416.6415			
Coeficiente de convección del agua tubo enroscado en función del diámetro interior (W/m ² °C)	530.0606			
Coeficiente de convección del agua tubo enroscado en función del diámetro exterior (W/m ² °C)	412.2694			
Transferencia de calor global				
Espesor del tubo serpentín (m)	0.004			
Coeficiente global (W/m ² °C)	85.9043			
Diferencia de temperatura corregida (°C)	27.6118			
Área de transferencia de calor requerida (m ²)	1.7070			
Número teórico de vueltas del serpentín	14.1741			
Número de vueltas real del serpentín	14			
Altura del intercambiador de calor requerida (m)	0.7920			

Cuadro 274. Características del balance de energía en el condensador para el proceso de destilación simple del sistema agua- acetato de etilo - ácido láctico a la temperatura media de las corrientes

Temperatura media del vapor destilado (°C)	71.54
Temperatura media del agua de enfriamiento (°C)	41.5
Flujo de agua de enfriamiento (kg/s)	0.03589
Flujo de vapor destilado (kg/s)	0.00881

Cuadro 275. Propiedades fisicoquímicas de los fluidos en el condensador para el proceso de destilación simple del sistema agua- acetato de etilo - ácido láctico a la temperatura media de las corrientes

Propiedad	Agua de enfriamiento @ 41 °C	Vapor destilado @ 72 °C
Calor específico (J/kg °C)	4178	2093.26
Densidad (kg/m ³)	994.43	902.67
Viscosidad (kg/m s)	0.000734	0.000437
Conductividad térmica (W/m ² K)	0.633	0.258

Cuadro 276. Propiedades fisicoquímicas del extracto a la temperatura media en el rehervidor para el proceso de destilación simple del sistema agua- acetato de etilo -

ácido láctico

Propiedad	Extracto @ 50 °C
Calor específico (J/kg °C)	2023.55
Densidad (kg/m ³)	1139.76
Viscosidad (kg/m s)	0.000437
Conductividad térmica (W/m ² °C)	0.2455

Cuadro 277. Características del balance de energía y de la transferencia de calor en el rehervidor proceso de destilación simple del sistema agua- acetato de etilo - ácido láctico

Balance de energía del sistema	
Temperatura media del vapor de agua (°C)	166.28
Temperatura media del extracto (°C)	50.4103
Flujo de agua de vapor de agua (kg/h)	7
Geometría	
Área de la chaqueta (m^2)	0.98175
Transferencia de calor en la chaqueta	
Coeficiente de convección interno (W/m ² °C)	90.3583
Coeficiente de convección externo (W/m ² °C)	82.1439
Coeficiente global de transferencia de calor (W/m ² °C)	40.5831
Área de transferencia de calor (m^2)	0.8752

Figura 61. Notación de los esquemas de flujo del proceso

D. DIAGRAMAS

Figura 62. Esquema de flujo del proceso de extracción y purificación de ácido láctico considerando como base de cálculo un lote de caldo fermentado proveniente del biorreactor

E. SISTEMA EXPERIMENTAL

Figura 63. Sistema experimental titulación turbidimétrica para la determinación del equilibrio líquido-líquido

Figura 64. Separación de fases líquidas en equilibrio en embudo de decantación

Figura 65. Sistema experimental de destilación simple de acetato de etilo

F. FICHAS TÉCNICAS

Figura 66. Ficha técnica centrífuga de canasta

EXTRACTOR LÍOUIDO I	LÍOUIDO A CONTRA	CORRIENT	FE Universidad de	Acido Láctico Hoja l Valle de Guatemala	1 de	
ERO 2020		001000	Departamento d	le Ingeniería Química		
Nombre del equipo	Extractor C	entrífugo				
Código	CE-01	0	CE-02	CE-03		
DATOS DEL PROCESO						
						_
Número de etapas				3		
Relación alimentación-disolvente				1:0	6	
Sección del proceso de extracción	1	20		Entrada	Salida	_
Condiciones	Temperatuera	°C		26	26	
	Presion	atm		0.974	0.974	
Alimentación	Agua Á sida lástica	kg		14.70		
Solvento	Acido iacuco	kg		0.23		_
Solvenie	Acetato de etito	kg		80.72	10.68	_
Pefinado	Agua A cototo do otilo	kg			10.08	
Kermado	Á cido léctico	kg			0.91	
	Acido iacuco	kg			0.02	_
Extracto	Agua	kg			2.33	
Extracto	Á cida lástica	kg			/9.80	
	Acido lacuco	кg			0.21	
CONSTRUCCIÓN Y MATER	IALES					
CONSTRUCCION I MATLER						
		E	xtractor			
Material				PTI	FE	_
Largo		m		0.1	8	_
Ancho		m		0.1	2	
Alto		m		0.2	24	
Diámetro interno		m		0.1	2	
Fspesor		m		0.0	2	
Valocidad da giro		rpm		27(00	
Cámara de mezclado		mI		270	50	
Cámara de sepración		mI		22	2	
Eluio total		L/b			2	
Paso		L/II ka		24	5	
1 eso		кg	Motor	5	5	
Potencia nominal		kW	Motor	0.40	00	-
Fficiencia		K W		0.9	20	
REPRESENTACIÓN GRÁFICA				0.7		
			ſ	1		Τ
			T			
	SOLVEX		- 4			
	CMS-03F			71884488 FEFERE		
	STATES AND ADDRESS					
	Mana Canada Da					
				℠ℳℋ⅃⅍ϟℎ───	1	
	and the second se		XXX			
	and the second					
	States .					
					-	
			Organic phase f	low Water phase		
			Water phase fil	Organic phase		
			Water phase flo	Organic phase		

Figura 67. Ficha técnica extractores centrífugos

D	ESTILACIÓN SIMPLE		Purificación de Ác Universidad del V	ido Láctico Hoja alle de Guatemala	1 de	1		
ENERO 2020			Departamento de I	ngeniería Química				
Nombre del equipo	Destilación	n por lotes						
Código	C-01	J	R-01		_			
DATOS DEL PROCESO								
						7		
Número de etapas					1	_		
Tiempo de operación		h		3	3.43	_		
Condición inicial	reflujo total	h		Tutata	0.5			
Etapa de la operación	T	00		75.9206	Fihal			
	Dereción	·C		/5.8200	0			
Calderín	Agua	aun kα		2.55	6.31E.06			
Calderin	A cetato de etilo	kg		2.55	0.02			
	Á cido láctico	kg		0.21	0.02			
	Eluio de vapor	kg/h		0.50	0.20			
	Temperatuera	°C		71 5356	81.30			
	Presión	atm		0.97/	0.974			
Condensador	Agua	ko		0	2.55			
	A cetato de etilo	kø		0	79.78			
	Ácido láctico	kø		õ	0.01			
		~~g		•	0.01	_		
CONSTRUCCIÓN Y MAT	ERIALES							
		Reherv	idor					
Material				AIS	SI 304			
Tipo				Encha	aquetado			
Posición				Ve	ertical			
Diámetro		m			0.5			
Altura		m			0.5			
Volumen		m^3		0.393				
Àrea de transferencia de calor		m^2		0.982				
Coeficiente global de transfere	encia de calor	W/m^2 °C	_	40).583			
		Conden	sador					
Material				Als	\$1304	-		
1 ipo				Ser	pentin			
Longitud		m		1	15.1			
A numero de vueitas				1	1.7			
Area de transferencia de calor	maia da calor	m^2 W/m^2 °C		c	1./			
REPRESENTACIÓN GRÁFICA	encia de calor	w/m²2 °C		c	55.9			
REFRESENTACIÓN GRAFICA						1		
4		5	1. 2. 3. 4. 5. 6.	Calderín Mirillas Condensaor Carga calderín Salida destilado Reflujo				
L						_		

Figura 68. Ficha técnica destilación simple

G. INFORMACIÓN ADICIONAL

Cuadro 278. Datos curva de calibración de ácido láctico para HPLC

RetTim [min]	Siq	Lvl	Amount [%]	Area	Amt/Area	Ref Grp Name
13.81	.6 1	4	2.00000 4.00000 6.00000 8.00000 10.00000	4.03268e6 7.39067e6 1.12068e7 1.47139e7 1.74450e7	4.95949e-7 5.41223e-7 5.35389e-7 5.43704e-7 5.73232e-7	Acido Lactico
	Area :				Acido Lao RIDI A, I	ctico at exp. RT: 13.816 Refractive Index Signal
	167		2	4	Correlat: Residual Formula:	lon: 0.99945 Std. Dev.: 444643.26172 y = mx
	5E6		1		m: x:	1.80468e6 Amount[%]
	0-		5 Amount	1	0 Y:	Area

Figura 69. Curva de calibración de ácido láctico para HPLC

Figura 70. Ejemplo de cromatograma de ácido láctico en HPLC

🐼 i 🔚 ウィ (* * N> 🔤 🕨 🕅 🗉 i		Simulation 1 - Aspen Plus	/10 - aspenONE
File Home View Customize Resources			
🐰 Cut METCHEM 👻 📝 Setup Na ⁺ Chemistry	Methods Assistant 🖉 NIST 🕼 Analysis	N N Pure	Solubility A Ternary Diag
🗈 Copy 🍄 Unit Sets 🛛 🔈 Components 🔏 Customize	Clean Parameters G DECHEMA G Estimation	Next Run Reset Control	D PT Envelope 🔉 Residue Curves
🖎 Paste 🕹 Methods 💮 Prop Sets	Structure 🍕 Retrieve Parameters 🖉 Regression	Panel 🛄 Report 🦏 Mixture	Ternary Diag. 📼
Clipboard Units Navigate	Tools Data Source Run Mode	Run 🗟 Summary	Analysis Plot
Properties < TERDI-1 (TERDIAGRAM	I) - Input × (TERDI-1 Ternary Diag × +		
All Items	nostics Phase Envelope Equilibrium Composition Azeotrope	Comments Status	
UNIFAC Groups			
Polymers	WATER		
4 2 Methods	LACTI-01		
Specifications Component 2			
Selected Methods Component 3	EIHTL-OI		
Property options			
Binary Interaction Property method	NRTL -		
@ ANDKU-1			
ANDMIJ-1 Valid phases	Pressure		
HENRY-1 Liquid-Liquid	• 0.987 atm •		
MLQKU-1 Number of tis lines	Temperature		
MUKU-1			
MULU-1			
Ø NRTL-1			
Electrolyte Pair			
Electrolyte Ternary Run Analysis			
UNIFAC Groups			
UNIFAC Groups Bin			
h 🔁 Dassallar			

Figura 71. Procedimiento en Aspen Plus para construir diagramas ternarios

🐼 i 🔒 🕫 * 🛯 🕨 🕨 🖡	(-							Simulation 1	- Aspen Plus V1
File Home View Cust	tomize Resources								
¿ Cut METCHEM • ? Setup Copy • Unit Sets • Comp B Paste	o Na ⁺ Chemistry ponents Z Customize ods A Prop Sets Navigate	 Methods Assist Clean Parameter Retrieve Param Tools 	ers 🛞 DE eters Data	ST GHEMA CHEMA CHEMA CHEMA Source Ru	Analysis Estimation Regression un Mode	Run Reset	Control Panel	Input History Report Summary	Pure Binary G Mixture
Properties <	ELL-AE × TERDI-1 Ternary Dia	g × +							
All Items	Setup Parameters Re	port Algorithm	Diagnostics	Generic Prope	erty Comments]			
	Property options Method NRTL Henry components Chemistry ID I Use true components		Calcu Re	lation type — gression @) Evaluation				
O HENRY-1									
MLQKU-1	Data set	weight	Lonsistency	Keject data	lest method	Area to	lerance %	Point	tolerance
MULU-1	ELL-AE	1			Area tests		10)	
Ø NRTL-1 Ø RKTKU-1 Electrolyte Pair Electrolyte Ternary UNIFAC Groups UNIFAC Groups Bin P @ Results Routes Ø NC Props Tabpoly Chemistry ELL-AE Estimation Ø Regression	*								

Figura 72. Procedimiento para la regresión de datos en Aspen Plus

🕅 i 🖥 🤊 i	• • • N• I		(∓)											Simulation 1	- Aspen Plus \
File Hor	me View	/ Cus	tomize Reso	urces											
	TCHEM 🝷 Jnit Sets	Com 🔏 Meth	p _{Na} t Che ponents <u>Z</u> Cust nods D Prop	nistry omize Sets Stru	America Americ	ods Assistant Parameters ve Parameters	DECHEMA	An Carlor An Car	alysis timation gression	Next	Run	Reset	Control Panel	input Histor	Binary
Clipboard	Units		Navigate		Tools		Data Source	Run	Mode		Ru	In	Gi.	Summary	
Properties		< ۲	/BINRY-1 (BINA	RY) - Input $ imes$	TERDI-1 Terna	ry Diag 🗙 🕂									
All Items		-	🕜 Binary Anal	/sis Tabula	te 🛛 🥑 Calculati	on Options	Diagnostics R	esults	Commen	ts St	atus				
 Selecte Sparam Param Pur Sin Sin Sin 	ed Methods neters re Componer ary Interactic ANDKIJ-1 ANDMIJ-1 DRUSR2-1 HENRY-1	nts on	Analysis type Components Component 1 Component 2	WATER ETHYL-0	• • n •		Pseudo-Binar Pseudo-b Entrainer Entrainer frac	y inary sys tion	tem	Ŧ					
0	MLQKIJ-1		Compositions				Pressure								
	MUKIJ-1		Basis	Mole fractio	n	-	Units	atm		-					
	NRTL -1		Vary	WATER		-	🔘 Equidistan	t 💿	List of valu	es					
0	RKTKU-1		Equidistant	🔘 Logar	ithmic 💿 List	of values	Enter Values								
Elec	ctrolyte Pair		Start point		0			•	0.	987					
📜 Elec	ctrolyte Terna	ary	End point	-	1			× .							
🗀 UN	IIFAC Groups			· · · · ·											
	IIFAC Groups	Bin	Number of the second	t intervais	50 💌										
Res	sults		Increment		0.02										
NC Pro	ops				_										
📜 Tabpol	ly	=				Run Analysis									
📗 🚞 Chemistry	y														

Figura 73. Procedimiento equilibrios binarios Aspen Plus

🐼 i 🖶 o - e - N 🔤 🕨	I		Simulation 1 - Aspen Plus V10 - aspenONE
File Home View Co	ustomize Resources		
	up Na [*] Chemistry mponents [*] / ₂ Customize thods [*] / ₄ Prop Sets Navigate [*] / ₂ Customize Draw Structure Tools	ant The NIST Analysis Sector Analysis Estimation Regression Data Source Run Mode	Run Rest Control Run Run Gummary Control Run G
Properties <	RESID-1 (RESIDUE) - Input × TERDI-1 Ternary Diag	x +	
All Items	Residue Curve Diagnostics Results Comme	nts Status	
Components C	Ternary system WATER Component 1 WATER Component 2 ETHYL-01 Component 3 LACTI-01	Valid phases Vapor-Liquid +	
DRUSR2-1 HENRY-1 MLQKU-1 MULU-1 MULU-1 MULU-1	Number of curves 3 - 5 curves 10 - 15 curves 15 - 20 curves Property method Henry components Chemistry ID	RTL -	

Figura 74. Procedimiento curva residual Aspen Plus

Figura 75. Procedimiento simulación extracción líquido-líquido Aspen Plus

Dest20.bspf - Aspen Batch Modeler V10 - aspenONE	
File View Tools Run Window Help	
Species	
Simulation Main Image: Species Reacton Models Reacton Models Property calculation option Image: Species Property calculation option Image: Species Reacton Models Image: Species Property calculation option Image: Species Reacton Models Image: Species Configuration Image: Species Component rame Image: Species Import Aspen Properties Image: Species Import Aspen Properties Image: Species Component ame Image: Species Component name Image: Species Component name Image: Species Component ame Image: Species Component name Image: Species Component name Image: Species Component ame Image: Species Coperating Step Results <t< td=""><td>rties to specify components and calculate properties) eEdit Using Aspen Properties Properties Property method: NRTL If you want to exclude one or more component Lists and edit the Default Component List.</td></t<>	rties to specify components and calculate properties) eEdit Using Aspen Properties Properties Property method: NRTL If you want to exclude one or more component Lists and edit the Default Component List.

Figura 76. Procedimiento simulación destilación en Aspen Batch Modeler

H. MODELOS 3D

Figura 77. Modelo 3D centrífuga de canasta. *Medidas en metros (m)

Figura 78. Modelo 3D de los extractores centrífugos en serie a contracorriente. *Medidas en metros (m)

Figura 79. Modelo 3D de la destilación simple abierta. *Medidas en metros (m)

I. COTIZACIONES

"INNOVATIVE CHEMICAL ENGINEERING" LLC

Room 11, fl. 8, XIV, 44, Altufievskoye highway, Moscow, 127566, Russia

QUOTATION № 0119-03 dated 19.0	QUOTATION № 0119-03 dated 19.01.2021								
SUPPLIER									
Company Name: «Innovative Chemical Engineering» LLC ("ICE" LLC)									
Bank details									
Currency account number: 40702810122000027754									
Intermediary Bank: KBC BANK NV SWIFT	code: KREDBEBI	В							
Beneficiary's Bank: ABSOLUT BANK SWIF	T code: ABSLRU	JMM							
Name/Department: E.Gerasimchuk / CEO									
Address: Room 11, fl. 8, XIV, 44, Altufievsko	ye highway								
City/Postal Code: Moscow / 127566									
Country: Russia									
Tel/Fax No.: +/ 495 928-08-52									
PURCHASER									
Company Name: UNIVERSIDAD DEL VALLE DE GUATEMALA									
Name/Department: Mr. Gamaliel Zambrano									
Address: -									
City/Postal Code: Puerto de San José									
Country: Guatemala									
Tel/Fax No.: + 50232878389	Ouentitu	Unit Value, LICD	Subtatal value USD						
Contribugal mixer-settler unit PTEF	Quantity	9 500 00	28 500 00						
throughput up to 10 l/h	3	9 500.00	28 500.00						
throughput up to to bu									
Peristaltic nump BT-100M with Norprene	2	885.00	1 770 00						
and PE tubinos									
and to taoingo									
Freight and insurance cost Moscow-	Freight and insurance cost Moscow- 1 830.00 1 830.00								
Puerto de San José									
Total value, USD			32 100.00						

Lead time: 35 working days from the date of PO.

Term of transportation (INCOTERMS 2010): CIP Puerto de San José.

Payment terms: the total amount 32 100.00 USD shall be paid in advance.

I, the undersigned exporter of the goods covered by this document, declare that the information above is true and correct and that except otherwise indicated, the goods meet the conditions to obtain originating status in preferential trade with Guatemala.

hou

Signature: ______ Name: E. Gerasimchuk Date: 19.01.2021

Figura 80. Cotización de 3 extractores centrífugos en serio con bombeo de 2 fases