UNIVERSIDAD DEL VALLE DE GUATEMALA

Facultad de Ciencias y Humanidades

Transcriptómica comparativa de los canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) del Subfilo Hexapoda

> Trabajo de investigación presentado por Ana Isabel López Cacacho para optar al grado académico de Licenciada en Biología

> > Guatemala,

2021

UNIVERSIDAD DEL VALLE DE GUATEMALA

Facultad de Ciencias y Humanidades

Transcriptómica comparativa de los canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) del Subfilo Hexapoda

> Trabajo de investigación presentado por Ana Isabel López Cacacho para optar al grado académico de Licenciada en Biología

> > Guatemala,

2021

Vo. Bo.

Tribunal examinador:

(f)_

M.Sc. Gabriela Alfaro Marroquín

Fecha de aprobación de examen de graduación: Guatemala, 24 de junio de 2021

Agradecimientos

Agradezco a mis asesoras PhD Sandy Pineda y MSc Elizabeth Solórzano por su guía, apoyo y críticas constructivas durante la elaboración de mi proyecto de graduación. Las enseñanzas y lecciones de vida que aprendí durante este tiempo, las llevo grabadas en mí para el resto de mi vida profesional. Gracias por compartir sus conocimientos, experiencias y tiempo conmigo, especialmente por ayudarme a desarrollar un pensamiento crítico y por motivarme a explorar nuevos campos en la Biología. Espero que en futuro les pueda demostrar mi agradecimiento y devolverles todo el apoyo que me brindaron durante este tiempo.

A mis padres y hermanos quisiera hacerles saber que son mi principal fuente de inspiración. Todo esto es producto de su amor y del esfuerzo que han hecho por darme una buena educación. Les estoy completamente agradecida por su amor incondicional y por enseñarme a ser una persona trabajadora, perseverante y humilde.

Le doy las gracias a mi directora de departamento MSc Gabriela Alfaro y a la Universidad del Valle de Guatemala por brindarme un espacio para dialogar con expertos y para descubrirme a mí misma. Gracias por darme la oportunidad de conocer personas maravillosas, especialmente a todos mis amigos y a PhD Jiichiro Yoshimoto, PhD Alejandra Zamora, MSc Zabdi López y PhD Dalia Mei-Ling.

Por último, quisiera darle las gracias al PhD Jack Schuster por mantener viva mi pasión por los insectos. Gracias por enseñarme a explorar mi creatividad sin miedo, por demostrarme que la ciencia puede ser divertida y por alimentar a la niña curiosa que llevo dentro. Gracias.

Índice

Agradecimientos	V
Lista de cuadros	ix
Lista de figuras	X
Resumen	xii
Abstract	xiii
I. Introducción	1
II. Objetivos	3
A. Objetivo general	3
B. Objetivos específicos	3
III. Justificación	4
IV. Hipótesis	6
V. Marco Teórico	7
A. Filo Arthropoda	7
B. Subfilo Hexapoda	8
1. Origen y evolución de los hexápodos	9
C. Anatomofisiología del sistema nervioso en insectos	10
D. Insectos plaga e insecticidas	11
E. Superfamilia de canales iónicos dependientes de voltaje	13
1. Evolución de los canales iónicos dependientes de voltaje	15
F. Canales de potasio dependientes de voltaje en insectos	16
G. Canales de calcio dependientes de voltaje en insectos	17

H. Canales de sodio dependientes de voltaje en insectos	18				
I. Drosophila melanogaster como organismo modelo					
J. Análisis de expresión de genes	21				
1. Secuenciación de ARN (RNA-seq)	22				
K. Ensamblaje de transcriptomas	23				
1. Ensamblaje de transcriptomas de novo	25				
2. Repositorios de secuencias y transcriptomas	27				
V. Métodos	29				
A. Selección de transcriptomas y otras secuencias anotadas	30				
B. Marcos de lectura y traducción a aminoácidos	32				
C. Identificación de canales iónicos activados por voltaje	33				
D. Alineamiento y evaluación de las regiones conservadas	34				
F. Análisis filogenético	37				
VI. Resultados	38				
A. Comparación de secuencias recuperadas de los transcriptomas del proyecto 1KI de Uniprot	TE y 38				
B. Alineamiento múltiple de los canales iónicos dependientes de voltaje	40				
C. Regiones conservadas y variables de los canales iónicos dependientes de voltaje	41				
D. Comparación de regiones conservadas entre órdenes	43				
1. Canal dependiente de voltaje de calcio (<i>Dmca1A</i>)	44				
2. Canal dependiente de voltaje de sodio (<i>para</i>)	45				
3. Canal dependiente de voltaje de potasio (Shaker)	46				
E. Análisis filogenéticos de los canales iónicos dependientes de voltaje	47				
1. Canal de calcio dependiente de voltaje (DmcalA)	47				

2. Canal de potasio dependiente de voltaje (Shaker)				
3. Canal de sodio dependiente de voltaje (para)	51			
VII. Discusión	53			
VIII. Conclusiones	60			
IX. Recomendaciones				
X. Literatura citada				
XI. Apéndices				

Lista de cuadros

Cu	adro Página
1.	Características y requerimientos de los ensambladores de transcriptomas de novo26
2.	Especies representantes de órdenes analizados para evaluar regiones conservadas de los
	canales dependientes de voltaje de sodio, potasio y calcio
3.	Esquema de coloración Zappo según las propiedades fisicoquímicos de los
	aminoácidos
4.	Resumen del número y longitud de las secuencias analizadas para el análisis
	filogenético41
5.	Códigos de acceso utilizados de los transcriptomas ensamblados del proyecto
	1KITE70
6.	Metadatos de los transcriptomas y de las especies de hexápodos analizados en el
	proyecto 1KITE
7.	Encabezados de las secuencias de los canales iónicos dependientes de voltaje
	recuperados de los transcriptomas del proyecto 1KITE
8.	Secuencias utilizadas para el análisis filogenético del canal de calcio dependiente de
	voltaje (<i>Dmca1A</i>)92
9.	Secuencias utilizadas para el análisis filogenético del canal de potasio dependiente de
	voltaje (Shaker)109
10.	Secuencias utilizadas para el análisis filogenético del canal de sodio dependiente de
	voltaje (para)118

Lista de figuras

Figura

Página

1.	Resumen cronológico de los principales linajes del filo Arthropoda
2.	Esquema del Sistema Nervioso Central en insectos10
3.	Principales blancos moleculares de los insecticidas que generan resistencia en
	insectos
4.	Sinapsis en insectos, mostrando los principales blancos moleculares de los
	insecticidas13
5.	Ilustración esquemática de los loops extra e intracelulares de las subunidades
	αhelicoidales que forman los canales iónicos dependientes de voltaje14
6.	Esquema general de las subunidades del canal de potasio activado por voltaje16
7.	Estructura molecular y topología de la membrana de las subunidades del canal de calcio
	activado por voltaje
8.	Estructura y topología general de los canales de sodio dependientes de voltaje19
9.	Resumen general del proceso de secuenciación de ARN (RNA-seq)22
10.	Comparación de los métodos de ensamblaje de transcriptomas25
11.	Ruta bioinformática utilizada para llevar a cabo la investigación
12.	Árbol filogenético datado del proyecto 1KITE El árbol de máxima verosimilitud se
	infirió del análisis de 413,459 sitios de aminoácidos31
13.	Abundancia de las secuencias recuperadas de los canales iónicos dependientes de
	voltaje de sodio (para), potasio (Shaker) y calcio (Dmca1A) según los órdenes de
	subfilo Hexapoda

14.	Índices de	e conservación	n para el a	alineamien	to tot	al del canal	l dependiente	e de voltaj	e de
	calcio	(DmcalA),	sodio	(para)	у	potasio	(Shaker)	según	su
	posición.			•••••					42

15. Regiones conservadas de los canales dependientes de voltaje de calcio (*Dmca1A*) de los 7 órdenes más abundantes del subfilo Hexápoda......44

- 16. Regiones conservadas de los canales dependientes de voltaje de sodio (para) de los 7
 órdenes más abundantes del subfilo Hexápoda......45
- 17. Regiones conservadas de los canales dependientes de voltaje de potasio (Shaker) de los7 órdenes más abundantes del subfilo Hexápoda......46
- 19. Árbol filogenético consenso de máxima verosimilitud de las secuencias del canal de potasio dependiente de voltaje (*Shaker*) del subfilo Hexapoda, recuperadas de los transcriptomas ensamblados del proyecto 1KITE y de Uniprot......50

Resumen

El subfilo Hexapoda representa uno de los grupos más numerosos y diversos dentro del filo Arthropoda. Dentro de este subfilo, existen varias especies que proporcionan importantes servicios ecosistémicos, tales como polinización y reciclaje de nutrientes. No obstante, también existen especies capaces de causar daños significativos en industrias como agricultura, silvicultura y ganadería. Esto ha provocado el uso intensivo de insecticidas químicos para el control de plagas. A pesar de que la mayoría de los insecticidas actuales utilizan los mismos mecanismos de acción, aún existen diversas proteínas que podrían ser utilizadas como blancos moleculares, como los sensores de voltaje y los *loops* de inactivación de canales iónicos dependientes de voltaje de sodio, potasio y calcio, especialmente porque dichos canales, se encuentran involucrados en la señalización neuronal y la contracción muscular. El análisis de transcriptómica comparativa de estos canales podría ser útil para el desarrollo de insecticidas específicos para los insectos plaga. Por esta razón, el objetivo de este estudio es identificar las principales diferencias entre los transcritos de los canales de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) activados por voltaje dentro del Subfilo Hexapoda.

Abstract

The subplylum Hexapoda represents one of the most numerous and diverse group of the phylum Arthropoda. In this subphylum there are several species that provide important ecosystem services such as pollination and recycling of nutrients. However, some species are responsible of significative damages in industries like agriculture, silviculture, and livestock. This has provoked an intensive use of chemical insecticides for pest control. Even though most of the current insecticides have the same mechanism of action, there are numerous proteins that could be used as molecular targets like the voltage sensors and the inactivation loops of the voltage-gated sodium, potassium, and calcium channels. Especially because these channels are involved in the neuronal signaling and the muscular contraction. The comparative transcriptomics of these channels could be useful for the development of new specific insecticides for the pest insects. For that reason, the aim of the study is to identify the main differences between the transcripts of the voltage-gated sodium (*Dmca1A*) channels in the subphylum Hexapoda.

I. Introducción

Los hexápodos representan uno de los grupos más numerosos y diversos en la Tierra. Los roles ecológicos que cumplen son de suma importancia ya que son muy diversos. Algunos contribuyen al reciclaje de nutrientes, la descomposición de desechos, la polinización y el control biológico de especies exóticas. Sin embargo, también existen especies que se caracterizan por ser vectores de enfermedades importantes para el ser humano y para los cultivos más frecuentes en la agricultura. Esto ha provocado un aumento en los estudios sobre insectos plaga y el uso desmedido de insecticidas.

Dado que existe un amplio número de especies de hexápodos y un amplio desconocimiento sobre el resto de las especies que no tienen un efecto directo sobre los humanos, la mayoría de los insecticidas actuales carecen de diversidad en sus mecanismos de acción. La búsqueda de nuevos blancos moleculares se ha vuelto una necesidad para el desarrollo de insecticidas específicos. Uno de los blancos moleculares que podrían ser utilizados son los canales iónicos dependientes de voltaje, ya que son los responsables de generar los potenciales de acción y de liberar los neurotransmisores.

Por esta razón, en este estudio se identificaron las diferencias fundamentales de los canales iónicos dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) del Subfilo Hexapoda. Esto se realizó utilizando los transcriptomas ensamblados del proyecto 1KITE y las secuencias disponibles en Uniprot. Dichas secuencias se analizaron con herramientas bioinformáticas a través de alineamientos múltiples, índices de conservación y filogenias.

Para futuros estudios se recomienda volver a ensamblar los transcriptomas del proyecto 1KITE, aumentar el número de secuencias por orden y realizar una validación experimental de los resultados. Este estudio *in-silico* se espera que pueda utilizarse como punto de partida para el desarrollo de nuevos insecticidas específicos para los insectos plaga ya que esto podría proporcionar mayor estabilidad y resiliencia en los sistemas agrícolas actuales y garantizar la seguridad alimentaria en los países en vías de desarrollo.

II. Objetivos

A. Objetivo general

 Identificar las principales diferencias entre los transcritos de los canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) dentro del Subfilo Hexapoda.

B. Objetivos específicos

- Predecir las secuencias de los canales dependientes de voltaje de sodio (*para*),
 potasio (*Shaker*) y calcio (*Dmca1A*) a partir de los transcriptomas de las especies analizadas en el proyecto 1KITE.
- Identificar las regiones conservadas de las secuencias de los canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) del subfilo Hexapoda.
- Construir una filogenia de los transcritos y las secuencias recuperadas de Uniprot de los canales dependientes de voltaje sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) del Subfilo Hexapoda.

III. Justificación

Los insectos constituyen uno de los grupos más abundantes y diversos en la Tierra, representando más del 60% de las especies de animales descritas. Estos organismos proporcionan numerosos servicios como: polinización, control de plagas, descomposición de desechos y reciclaje de nutrientes (Chesters, 2020). Sin embargo, muchos pueden ser vectores de enfermedades importantes como: Dengue, Chagas, Malaria y Leishmaniasis. Además, existen abundantes especies de hexápodos que generan daños significativos en cultivos y que son considerados como plaga (Yin *et al.*, 2016).

Las medidas que frecuentemente se implementan para el control de plagas involucran el uso de pesticidas químicos, los cuales pueden causar serias consecuencias al medio ambiente y a la salud alimenticia. Esto ha provocado la búsqueda de nuevas estrategias para el control de plagas (Li *et al.*, 2013). Dichas estrategias no solo deben ser efectivas, sino seguras para todos los organismos benéficos. Por ello se ha incrementado el uso de tecnologías "amigables con el medio ambiente" (Alshukri *et al.*, 2019).

El avance en tecnología y biología molecular ha proporcionado nuevas oportunidades para desarrollar insecticidas específicos para los insectos plaga. Además, los estudios de secuenciación y la creación de repositorios de transcriptomas ensamblados de insectos, como el proyecto 1KITE, han proporcionado recursos invaluables para llevar a cabo estudios entomológicos asociados al control de plagas (Yin *et al.*, 2016).

A pesar de que la mayoría de los insecticidas actuales utilizan los mismos mecanismos de acción, aún existen numerosas proteínas que podrían ser utilizadas como blancos moleculares, tal como los canales iónicos dependientes de voltaje de sodio, potasio y calcio (Hardy, 2014). Estos canales representan uno de los grupos más abundantes de proteínas en organismos multicelulares ya que son responsables de la secreción de neurotransmisores y la propagación de potenciales de acción en las neuronas (Moran *et al.*, 2015).

Los cambios en la composición y estructura de las proteínas de los canales activados por voltaje pueden dar indicios sobre la evolución del sistema nervioso central de los insectos (Moran *et al.*, 2015). El análisis comparativo de los transcriptomas, y el desarrollo de análisis filogenéticos de estos canales será útil para comparar, evaluar y predecir las posibles interacciones de los insecticidas con los sensores de voltajes de los canales de los insectos. Los hallazgos de este estudio, podrían ser la base para el desarrollo de estudios que busquen generar insecticidas más específicos para los insectos plaga, lo cual evitaría el impacto negativo a las poblaciones de insectos benéficos para el ecosistema.

IV. Hipótesis

Hipótesis general

 Existen más regiones conservadas en los transcritos canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*), en los hexápodos más cercanos filogenéticamente.

Hipótesis nula

 Existen menos regiones conservadas en los transcritos de los canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*), en los hexápodos más cercanos filogenéticamente.

Hipótesis alterna

 Existen más regiones conservadas en los transcritos de los canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) entre los hexápodos plaga que en los hexápodos benéficos para el ecosistema.

V. Marco Teórico

El presente estudio tiene como objetivo general identificar las principales diferencias entre los transcritos de los canales de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) activados por voltaje dentro del Subfilo Hexapoda. A través de esta investigación se espera obtener un panorama general sobre sus canales y sus principales regiones conservadas.

A. Filo Arthropoda

El Filo Arthropoda está constituido por invertebrados protostomados que presentan similitudes embrionarias con el Filo Onychophora (gusanos aterciopelados) y el Filo Tardigrada (osos de agua). Aproximadamente, se estima que el 80% de las especies descritas, son artrópodos. El éxito de este filo se cree que está asociado con la presencia de apéndices articulados, el cuerpo metamérico (segmentado) y el exoesqueleto (Thorp & Rogers, 2015).

Todos los artrópodos extantes se dividen en dos grandes grupos monofiléticos: Chelicerata (arañas de mar, cangrejos herradura, algunos crustáceos, arañas, escorpiones y ácaros) y Mandibulata (miriápodos, insectos y varios linajes de crustáceos) (Figura 1). Los Chelicerata se caracterizan por presentar quelíceros o quelas y los Mandibulata, mandíbulas. El clado Mandibulata se divide a su vez en el subfilo Myriapoda y Pancrustácea que incluye crustáceos y hexápodos (Giribet & Edgecombe, 2019).

Estudios moleculares sugieren que la divergencia entre Mandibulata y Chelicerata ocurrió durante el período Precámbrico (Figura 1). Sin embargo, no existe evidencia fósil de los artrópodos antes del período Cámbrico (Giribet & Edgecombe, 2019).

FIGURA 1. Resumen cronológico de los principales linajes del filo Arthropoda: la topología de este árbol está basada en estudios filogenómicos, en donde se muestran los principales períodos de diversificación de los artrópodos. Los Chelicerados se encuentran resaltados en rojo, los Myriapodos en verde, los Crustáceos en celeste, azul y morado y los Hexápodos, en café. Figura obtenida de (Giribet & Edgecombe, 2019).

B. Subfilo Hexapoda

El Subfilo Hexapoda es el más numeroso y diverso del filo Artrópoda. Dicho subfilo se clasifica taxonómicamente en dos clases: Entognatha y Ectognatha (Insecta *sensu stricto*). Los entognatos incluyen tres órdenes de insectos ápteros: Protura, Collembola y Diplura. En cambio, los ectognatos están representados por dos órdenes de insectos ápteros (Archaeognatha y Zygentoma) y treinta órdenes de insectos con alas (Pterygota) (Sasaki *et al.*, 2013).

El origen filogenético del Subfilo Hexapoda aún se encuentra en debate; anteriormente se agrupaban los hexápodos junto con los miriápodos en un grupo monofilético llamado Tracheata; hoy se sabe, que los ancestros más recientes de los insectos son los crustáceos acuáticos. La posición exacta de los hexápodos en el clado Pancrustácea aún no se ha clarificado (Beutel *et al.*, 2017). No obstante, la evidencia molecular sugiere que los insectos son lo equivalente a los crustáceos terrestres y que dichos hábitos terrestres los desarrollaron de forma independiente durante el Ordovícico (Beutel *et al.*, 2017; Misof *et al.*, 2014).

1. Origen y evolución de los hexápodos

Los insectos fueron de los primeros animales en colonizar y aprovechar los recursos de los ecosistemas terrestres y acuáticos. Evidencia fósil de *Rhyniella praecursor, Rhyniognatha hirsti* y *Leverhulmia mariae* se han encontrado en Escocia y datan de principios del Devónico, hace aproximadamente 412 millones de años; por esta razón, existe la hipótesis de que los insectos se originaron durante el Silúrico tardío (Engel & Grimaldi, 2004). Sin embargo, estudios moleculares sugieren que se originaron a principios del Ordovícico y que la mayoría de los insectos extantes aparecieron hace 345 millones de años (Misof *et al.*, 2014).

La mayor diversificación de insectos holometábolos se cree que ocurrió a principios del Cretácico y que gran parte de su diversificación está asociada con la evolución del vuelo y la exploración de nuevos nichos ecológicos (Misof *et al.*, 2014). Además, algunos autores consideran que el éxito de los insectos en la Tierra se debe a sus altas tasas de especiación y sus bajas tasas de extinción (Engel, 2015).

Actualmente, existen 1,214,294 especies descritas de insectos (Minelli *et al.*, 2013). Sin embargo, estimaciones realizadas por Stork *et al.* (2015) y Stork (2018), sugieren que el número de especies que podrían existir es de aproximadamente 5.5 millones de insectos y 7 millones de artrópodos terrestres. Cada especie presenta adaptaciones a su hábitat, pero todos los insectos presentan características en común, tal como: túbulos de Malpighi, sistema respiratorio traqueal, músculos estriados, hemocele y sistema nervioso ganglionar (Beutel *et al.*, 2017).

C. Anatomofisiología del sistema nervioso en insectos

El sistema nervioso de los insectos se clasifica en dos: Sistema Nervioso Central (SNC) y Sistema Nervioso Periférico (SNP). El SNC cumple la función de asimilar la información sensorial, procesar los estímulos y enviar una respuesta al resto del sistema nervioso. El SNC está compuesto por un cerebro, un ganglio subesofágico, uno torácico y uno abdominal (Figura 2) (Smarandache-Wellmann, 2016). El órgano principal es el cerebro, ya que es responsable de controlar e integrar la visión, la sensación química y táctil. Esto lo realiza a través de tres agrupaciones de ganglios: protocerebro, deutocerebro y tritocerebro (Smarandache-Wellmann, 2016). Por el contrario, el SNP consiste en una extensa red de neuronas distribuidas por todo el cuerpo que comunican los estímulos del exterior con el SNC (De la Cruz, 2005).

FIGURA 2. Esquema del Sistema Nervioso Central en insectos: el diagrama muestra las 4 subdivisiones del sistema nervioso central. Abreviaciones: b: cerebro (formado por tres ganglios), SOG: ganglio subesofágico, TG: ganglio torácico y AG: ganglio abdominal. Figura obtenida de (Smarandache-Wellmann, 2016).

Las células típicas que constituyen el sistema nervioso de los insectos son las neuronas y las células gliales. Las neuronas se caracterizan por presentar un alto grado de excitabilidad y por tener la capacidad de conducir impulsos eléctricos. El área en donde el axón de una neurona se comunica con las dendritas de otra neurona, se denomina sinapsis (De la Cruz, 2005). En esta región, la neurona presináptica libera vesículas con neurotransmisores que son captados por la neurona postsináptica a través de receptores específicos (Watson & Schürmann, 2002). La propagación y comunicación entre las neuronas está asociado con su capacidad de generar potenciales de acción (Spong *et al.*, 2016).

El potencial de acción se produce cuando las neuronas pasan de un potencial de membrana negativo a uno positivo. Dicho cambio ocurre por un aumento rápido en la permeabilidad de iones de sodio (Na⁺) llamado despolarización, seguido de un incremento lento y prolongado en la permeabilidad de iones de potasio (K⁺) denominado repolarización. Después de dicho proceso, la neurona restablece su potencial de membrana negativo y permanece en la fase de reposo. El aumento en la concentración de estos iones es regulado por múltiples proteínas transmembranales, incluyendo: la bomba de Na⁺ y K⁺, los canales iónicos y los canales iónicos dependientes del voltaje (Purves, 2004). Es por esta razón, los canales iónicos y los canales iónicos dependientes de voltaje podrían ser utilizados como blancos moleculares para el desarrollo de insecticidas (French-Constat *et al.*, 2006).

D. Insectos plaga e insecticidas

A pesar de que existen numerosas especies de insectos que proporcionan servicios ecosistémicos como polinización, control de plagas, descomposición de desechos y reciclaje de nutrientes (Chesters, 2020), muchos pueden ser vectores de enfermedades y otros, son responsables de más del 30% de los daños producidos en industrias como agricultura, ganadería y silvicultura (Yin *et al.*, 2016). Por esta razón, la mayoría de las industrias han optado por el uso de insecticidas (Cao *et al.*, 2019).

Sin embargo, el uso excesivo de insecticidas puede facilitar el desarrollo de mecanismos de resistencia y causar serias consecuencias sobre la salud humana y el medio ambiente (Cao *et al.*, 2019). Por otro lado, se ha comprobado que los mecanismos de resistencia están asociados a la falta de diversidad en los mecanismos de acción de los insecticidas. Por ejemplo, la mayoría de los insecticidas actuales únicamente cuentan con dos mecanismos de acción: la modulación de los canales de sodio a través de piretroides y organoclorados y la inhibición de la acetilcolinesterasa (organofosforados y carbamatos) (Hardy, 2014).

Según Hardy (2014), el uso intensivo de insecticidas, que presentan compuestos que inhiben la acetilcolinesterasa, los canales de cloro activados por GABA y los canales de sodio, genera el 90% de los casos de especies resistentes a insecticidas (Figura 3). Esto ha provocado la búsqueda de nuevas estrategias para el control de plagas y de nuevos compuestos, especialmente en países que dependen de la agricultura (Hardy, 2014).

FIGURA 3. Principales blancos moleculares de los insecticidas que generan resistencia en insectos: cada uno de los blancos moleculares está representado con recuadros de colores. El total de casos analizados en este estudio fue de 3,137 casos de insectos con resistencia a insecticidas.
Cada color en la gráfica es proporcional al número de casos de especies de insectos con resistencia a insecticidas con dicho blanco molecular. Figura adaptada de (Hardy, 2014)

Numerosos estudios han concluido que las estrategias para el control de plagas no solo deben ser efectivas, sino seguras para los organismos benéficos para el ambiente. Esto ha provocado la utilización de tecnologías "amigables con el medio ambiente", las cuales se caracterizan por presentar un alto grado de especificidad (Alshukri *et al.*, 2019). Además, el avance de la tecnología y la biología molecular, han proporcionado nuevas oportunidades para desarrollar insecticidas especieespecífico tomando como referencia otros blancos moleculares como los canales iónicos dependientes de voltaje (Christiaens *et al.*, 2020).

E. Superfamilia de canales iónicos dependientes de voltaje

Los canales iónicos dependientes de voltaje son proteínas transmembranales que regulan la entrada y salida de iones en la membrana celular. Por ello, usualmente son los blancos moleculares de insecticidas (King & Hardy, 2013) (Figura 4). Esta superfamilia incluye: canales de sodio dependientes de voltaje (Na_vs), canales de potasio dependientes de voltaje (K_vs), canales de calcio dependientes de voltaje (Ca_vs) y canales de cloro dependientes de voltaje (Cl_vs). Dichos canales están involucrados en procesos celulares como la señalización neuronal y la contracción muscular. Además, se cree que juegan un papel fundamental en la evolución de los animales ya que responden rápido a los cambios en el potencial de acción de la membrana celular (Moran *et al.*, 2015).

FIGURA 4. Sinapsis en insectos, mostrando los principales blancos moleculares de los insecticidas: abreviaciones: AChE: acetilcolinesterasa, nAChR: receptor nicotínico de acetilcolina y GluR: receptor ionotrópico de glutamato. Los principales blancos moleculares de los insecticidas se encuentran encerrados en un círculo rojo. Figura adapatada de (King & Hardy, 2013).

Todos estos canales se caracterizan por presentar cuatro dominios (I-IV). Cada dominio cuenta con seis segmentos transmembranales α -helicoidales (S1-S6) unidos por *loops* extra e intracelulares (Moignot *et al.*, 2009). Estos canales se activan gracias a la secuencia, altamente conservada, de aminoácidos de la tercera posición del segmento S4 de los cuatro dominios que forman el sensor del voltaje (Moran *et al.*, 2015). Los aminoácidos del segmento S4 están cargados positivamente y durante la fase de reposo, forman enlaces iónicos con los aminoácidos negativos de los segmentos S1, S2 y S3 para neutralizar su carga (Figura 5). Sin embargo, cuando inicia el potencial de acción, se produce un cambio conformacional que permite un movimiento rotacional en el segmento S4 que causa la activación del canal (Silva & Scott, 2020).

La selectividad de los iones en estos canales está regulada por un filtro de selectividad que está compuesto por aminoácidos altamente conservados en cada canal. Estos aminoácidos están situados en los *loops* que conectan los segmentos S5 y S6 de los cuatro dominios (Figura 5) (Moran *et al.*, 2015). El *loop* de inactivación, puede variar dependiendo del canal, ya que pueden presentar subunidades αauxiliares que modifican la eficiencia del plegamiento de las proteínas, los niveles de expresión y las propiedades funcionales de los canales (Yu *et al.*, 2005).

FIGURA 5. Ilustración esquemática de los loops extra e intracelulares de las subunidades ahelicoidales que forman los canales iónicos dependientes de voltaje: Los cilindros representan las 6 subunidades α-helicoidales que forman cada uno de los cuatro dominios de los canales iónicos dependientes de voltaje. La subunidad 4 (resaltada en color verde), de los cuatro dominios, tiene carga positiva. Dicha subunidad constituye el sensor de voltaje. El loop entre las subunidades 5 y 6 se encuentra resaltada en rojo, ya que son responsables de la inactivación del canal,

constituyendo el loop de selectividad. Figura adaptada de (Moran et al., 2015).

1. Evolución de los canales iónicos dependientes de voltaje

La superfamilia de los canales iónicos dependientes de voltaje representa una de las superfamilias más abundantes de proteínas de transducción de señales ya que cuenta con más de 140 diferentes canales (Frank *et al.*, 2005). Los canales más diversos, dentro de esta superfamilia, son los canales de potasio dependientes de voltaje. Estos canales se encuentran tanto en eucariotas como en procariotas y se cree que evolucionaron a partir de la adición de un sensor de voltaje (S1-S4) a la estructura básica de un canal iónico, la cual se ha demostrado que es homóloga al dominio formador de poro de los canales de potasio dependientes de voltaje (Moran *et al.*, 2015).

Los genes de los canales dependientes de voltaje de sodio y calcio se cree que evolucionaron por dos rondas de duplicación de los genes ancestrales de los canales dependientes de voltaje de potasio. Esta hipótesis se basa en el hecho de que los dominios I y III, de los canales de sodio dependientes de voltaje, son más similares entre ellos que los dominios II y IV. Además, cabe destacar que los canales de sodio y calcio dependientes de voltaje presentan mayor similitud en sus secuencias con las secuencias de los canales de potasio dependientes de voltaje (Moran *et al.*, 2015). Es más, algunos autores consideran que los de calcio, especialmente porque estos últimos cuentan con una distribución filogenética más amplia. Sin embargo, los mecanismos de diversificación de estos canales varían según el grupo taxonómico (Moran *et al.*, 2015).

En vertebrados, se han reportado múltiples genes que codifican para las proteínas de estos canales. Sin embargo, en insectos la mayor diversidad se produce por las modificaciones post transcripcionales (Silva & Scott, 2020). La edición de ARN y el empalme alternativo son los principales mecanismos para la producción de canales con características funcionales distintas (Olson *et al.*, 2008).

F. Canales de potasio dependientes de voltaje en insectos

Los canales de potasio dependientes de voltaje regulan la permeabilidad de iones de K⁺ en células excitables (Santacruz-Toloza *et al.*, 1994). Por esta razón, se encuentran en casi todas las especies, excepto en algunos parásitos (Kuang *et al.*, 2015). Estos canales son de suma importancia ya que intervienen en diversos procesos celulares, incluyendo el marcapaso cardíaco y la repolarización de la membrana durante la activación de potenciales de acción (Pongs *et al.*, 1988). En respuesta a la despolarización de membrana, los canales de potasio dependientes de voltaje se activan y permiten el flujo de iones de K⁺ al exterior de la célula para restaurar el potencial de membrana negativo (Higgins *et al.*, 2003).

A pesar de la relevancia de estos canales, el conocimiento que existe sobre su estructura es limitado (Higgins *et al.*, 2003). En general, se sabe que estos canales están formados por cuatro dominios- α . Cada dominio- α contiene seis subunidades transmembranales (TM) (Figura 6). Las primeras cuatro (TM1-TM4) forman el dominio de sensor de voltaje y las últimas dos subunidades (TM5-TM6), forman el dominio formador de poro. El dominio de sensor de voltaje es responsable de detectar alteraciones en el potencial de membrana, generando un cambio conformacional. Esto afecta al dominio formador de poro, ocasionando la entrada o salida de iones de K⁺ (Figura 6) (Kuang *et al.*, 2015). Algunos autores han reportado la presencia de subunidades auxiliares β , que afectan las propiedades de estos canales (Paeger *et al.*, 2017).

FIGURA 6. Esquema general de las subunidades del canal de potasio activado por voltaje: los cilindros representan las seis subunidades transmembranales del canal de potasio activado por voltaje. Las subunidades 1-4 constituyen el dominio de sensor de voltaje (color verde) y las subunidades 5 y 6 el dominio formador de poro en color gris. Figura adaptada de (Hibino *et al.*, 2010).

A diferencia de los canales de sodio y calcio dependientes de voltaje, los dominios de estos canales están compuestos por proteínas separadas y no por una sola proteína que incluye a los cuatro dominios. Algunos autores consideran que los canales de potasio dependientes de voltaje evolucionaron a partir de la adición de un sensor de voltaje a la estructura básica de los canales iónicos. Por esta razón, los canales de potasio dependientes de voltaje son los más diversos dentro de la superfamilia de canales iónicos dependientes de voltaje (Moran *et al.*, 2015).

G. Canales de calcio dependientes de voltaje en insectos

A diferencia de los canales de potasio dependientes de voltaje, los canales de sodio y calcio se cree que evolucionaron a partir de dos rondas de duplicación del gen que codifica los dominios ancestrales de los canales de potasio (Moran *et al.*, 2015).

Los canales de calcio dependientes de voltaje controlan diversos procesos bioquímicos en las células, tales como la contracción, la secreción, la expresión de genes y la transmisión sináptica (Catterall, 2000). El proceso más importante en el que está involucrado este canal, es la liberación de neurotransmisores en la sinapsis. En algunas neuronas, también se ha observado que estos canales actúan como segundos mensajeros ya que contribuyen a la producción de potenciales de acción (Purves, 2004).

Los canales de calcio activados por voltaje se clasifican en dos superfamilias: canales de bajo umbral de activación (LVA) y canales de alto umbral de activación (HVA). Los LVA se activan por pequeñas despolarizaciones de membrana y se inactivan rápido. Dentro de estos, se incluyen los canales con corriente de tipo T que se encuentran en neuronas, músculo cardíaco y músculo esquelético. En cambio, los HVA únicamente se activan por despolarizaciones grandes y su inactivación ocurre más despacio (King, 2007). Estos incluyen canales con corriente de tipo L, P/Q, N y R que son responsables de funciones como: secreción de hormonas, liberación de neurotransmisores, homeostasis de calcio y expresión de genes (Catterall, 2000).

FIGURA 7. *Estructura molecular y topología de la membrana de las subunidades del canal de calcio activado por voltaje:* en la Figura se muestran las subunidades α_1 en gris, excepto las subunidades 4 que se encuentran resaltadas en verde. Las subunidades auxiliares δ , α_2 y β están representadas por círculos de color rosado, celeste y morado respectivamente. Figura adaptada de (Dolphin, 2016).

Al igual que el resto de canales dependientes de voltaje, los canales de calcio están constituidos por cuatro dominios repetitivos (I al IV). Cada dominio está formado por seis subunidades- α_1 capaces de atravesar la membrana (S1 a S6) y por *loops* extra e inter-celulares (Catterall, 2000). Dichas subunidades- α usualmente interactúan con subunidades auxiliares γ , $\alpha_2\delta$ y β ya que contribuyen a la inactivación del canal y al incremento de flujo de calcio (Figura 7) (Dolphin, 2016).

H. Canales de sodio dependientes de voltaje en insectos

Los canales de sodio dependientes de voltaje son responsables de la producción y propagación de potenciales de acción en células excitables (Shen *et al.*, 2017). En respuesta a la despolarización de la membrana, estos canales se activan y permiten la entrada de iones de sodio al interior de la célula. Esto contribuye a incrementar la despolarización de la membrana y a iniciar la señalización eléctrica. Milisegundos después, los canales se inactivan e inicia el proceso de repolarización de membrana para luego regresar a la fase de reposo (Dong, 2007).

A nivel estructural, el filtro de selectividad de estos canales está compuesto por un anillo interno (DEKA) que juega un papel crítico en la selectividad de iones de Na⁺ y un anillo externo (EEQD) que se cree que regula la tasa de permeabilidad de la membrana (Lipkind & Fozzard, 2005). El *loop* de inactivación está localizado en la unión intracelular de los dominios III y IV. Dicho *loop*, se dobla hacia el poro para bloquear el flujo de iones de sodio durante la despolarización y se ha observado que los aminoácidos de metionina-fenilalanina-metionina (MFM) son críticos para la rápida inactivación de iones de sodio en insectos (Figura 8) (Silva & Scott, 2020). Sin embargo, es importante destacar que la mayoría de estos descubrimientos surgieron a raíz de los estudios de *D. melanogaster*.

FIGURA 8. Estructura y topología general de los canales de sodio dependientes de voltaje: el anillo interno (DEKA) y el anillo externo (EEQD) están representados de color rosado y azul, respectivamente. Los sensores de voltaje se encuentran de color verde y el loop de inactivación (MFM), en amarillo. Figura adaptada de (Silva & Scott, 2020).

I. Drosophila melanogaster como organismo modelo

Gran parte de los descubrimientos de la función y naturaleza molecular de los canales iónicos dependientes de voltaje se logró dilucidar gracias a la secuenciación del genoma y transcriptoma de especies de insectos modelo (Littleton & Ganetzky, 2000). Los insectos constituyen el 75% de las especies de animales en la tierra, pero únicamente 1,000 especies han sido secuenciadas. *Drosophila melanogaster* y *Anopheles gambiae* son de las pocas especies de insectos de las que se tiene anotaciones manuales de sus genes gracias al conocimiento de su genoma y transcriptoma (Brown & Pfrender, 2019).

Estimaciones del genoma de *D. melanogaster* sugieren que existen alrededor de 13,601 genes que codifican proteínas. Uno de los primeros genes que se logró asociar a las proteínas de los canales de potasio dependientes de voltaje fue *Shaker*. A este gen se le denominó *Shaker* debido a que se identificó en larvas mutantes que presentaban el fenotipo de temblor de patas sensible al éter, el cual estaba asociado con los defectos en los canales de potasio dependientes de voltaje (Littleton & Ganetzky, 2000).

El gen *Shaker*, se expresa en una gran diversidad de células excitables, siendo más abundante en el sistema nervioso de los embriones maduros y los adultos (Pongs *et al.*, 1988). Según Kamb e Iverson (1987), los defectos en el canal *Shaker* provocan una gran variedad de alteraciones fisiológicas y conductuales, incluyendo: potenciales de acción ampliados en las fibras nerviosas, liberación prolongada de neurotransmisores en las uniones neuromusculares y apéndices temblores y espasmos violentos.

Los dos genes principales que codifican para las proteínas de los canales de sodio dependientes de voltaje son: *para* y *DSC1*. Ninguno de estos genes se expresa en los músculos, pero ambos se expresan ampliamente en el sistema nervioso (Littleton & Ganetzky, 2000). Sin embargo, *DSC1* se expresa poco durante las primeras etapas de desarrollo y se cree que complementa la función del gen *para* (Thackeray & Ganetzky, 1995).

Estudios recientes han comprobado que el gen *DSC1* también es permeable a iones de Calcio (Ca⁺) y Bario (Ba⁺) (Zhang *et al.*, 2011). En cambio, el gen *para* únicamente es permeable a iones de sodio y se expresa durante todas las etapas de desarrollo en el sistema nervioso central y periférico (Thackeray & Ganetzky, 1995). Además, las mutaciones en este gen se han asociado al bloqueo de potenciales de acción en los nervios y se consideran deletéreas (Littleton & Ganetzky, 2000).

En el caso de los canales de calcio dependientes de voltaje, *D. melanogaster* cuenta con cuatro genes que codifican para las subunidades α . El gen *Dmca1A* que codifica la subunidad α -1 tipo A, es el mejor caracterizado. Este gen, se expresa en el sistema nervioso y está involucrado en funciones como: la contracción de los músculos, la división celular, la muerte celular y la liberación de vesículas con neurotransmisores (Littleton & Ganetzky, 2000). Las mutaciones en este gen pueden llegar a ser deletéreas, ya que se producen deficiencias a nivel fisiológico y neurológico, tales como: convulsiones, disrupción en la transmisión sináptica y alteraciones en la visión y cópula (Littleton & Ganetzky, 2000; Smith *et al.*, 1996). Por esta razón, es indispensable comprender cómo se expresan los genes y sus repercusiones en el SNC.

J. Análisis de expresión de genes

El estudio de la regulación de la expresión de genes es indispensable para comprender la relación entre genotipos y fenotipos. La síntesis y maduración de ARNs, moldea redes complejas de expresión de genes que regulan diferentes procesos biológicos, tal como el desarrollo de adaptaciones a condiciones de estrés o cambios en el medio ambiente (Marguerat & Bähler, 2010). Las primeras técnicas que se crearon para estos análisis surgieron a principios de los noventa (1990), siendo las más destacadas: los marcadores de secuencias expresadas (EST), los análisis en serie de la expresión génica (SAGE) y los microarreglos (Hrdlickova *et al.*, 2016).

La mayoría de estas técnicas cuentan con limitaciones como: dependencia del conocimiento previo del genoma, restricciones en el rango de detección y baja disponibilidad de sondas de hibridación. Sin embargo, el avance en las tecnologías de la secuenciación favoreció el desarrollo de técnicas más sensibles y accesibles como la secuenciación de Ácido RiboNucleico (ARN-seq) (Wang *et al.*, 2009).

1. Secuenciación de ARN (RNA-seq)

La secuenciación de ARN se considera como un método eficaz y altamente sensible para la producción de perfiles transcriptómicos, los cuales contribuyen al estudio de la expresión de genes y la anotación de genes codificantes y no codificantes. El transcriptoma hace referencia al set completo de moléculas de ARN de una célula o una población de células que se obtienen de la secuenciación. En general, este método consiste en: extracción de ARN, captura de ARN mensajero (ARNm), transcripción del ARNm a ADN complementario (ADNc), amplificación y secuenciación (Figura 9)

FIGURA 9. Resumen general del proceso de secuenciación de ARN (RNA-seq): el proceso de secuenciación ARN consiste en la extracción del ARN, seguido de la transcripción a ADNc. A partir de esta copia de ADNc, se construyen las librerías y estas se someten al proceso de secuenciación. Finalmente, se procede a realizar los análisis bioinformáticos correspondientes. Figura adaptada de (Jabboure & Kaul, 2019).

En la mayoría de los estudios de expresión de genes se utiliza ARNm, microARNs y ARNs no codificantes (ARNnc), los cuales son aislados a través de la captura de ARN total, ARN-poliadenilado (polyA-capture) o la eliminación de ARN ribosomal (rRNA-depletion). El ARN usualmente es transcrito a ADNc y luego es fragmentado. A los fragmentos de ADNc se le adhieren adaptadores en uno (singleend) o en ambos (paired-end) extremos del ADNc para generar una librería. Los secuenciadores presentan un límite de detección y por ello las librerías de ADNc deben ser amplificadas antes de llevar a cabo la secuenciación (Hrdlickova *et al.*, 2016). Todas las moléculas de ADNc son luego secuenciadas para obtener secuencias de 30-400pb, dependiendo de la tecnología de secuenciación utilizada (Wang *et al.*, 2009).

Actualmente, existen numerosas plataformas y tecnologías para realizar secuenciación de nueva generación (NGS), por ejemplo: 454 Life Sciences, illumina, SOLiD y Ion Torrent. Estas plataformas son incapaces de leer los transcritos completos, por lo que se ven obligadas a generar millones de secuencias cortas, llamadas lecturas. Recientemente, la introducción de secuenciadores capaces de producir lecturas largas, por ejemplo, PacBio y Oxford Nanopore, han abierto la posibilidad de secuenciar fragmentos >10,000 pares de bases, dando lugar a un nuevo capítulo de innovación en la secuenciación y el estudio de ARNs (Kchouk *et al.*, 2017).

Todas las lecturas obtenidas de la secuenciación necesitan ser reconstruidas en transcritos de longitud completa, lo cual se realiza a través de un proceso llamado ensamblaje. Sin embargo, antes de realizar el ensamblaje es necesario remover las lecturas de baja calidad, los duplicados de PCR y las secuencias de los adaptadores utilizando herramientas como: FastQC, FASTX-Toolkit y Trimmomatic, etc, (Jabboure & Kaul, 2019).

K. Ensamblaje de transcriptomas

El ensamblaje del transcriptoma puede realizarse utilizando un genoma de referencia o *de novo*. En ambos métodos, las lecturas se cortan en pequeños fragmentos de nucleótidos llamados *k-mers* (Figura 10) (Jabboure & Kaul, 2019).

En general, el ensamblaje utilizando un genoma de referencia consta de tres fases. Primero las lecturas se alinean a un genoma de referencia utilizando alineadores de empalme como Blat (Kent, 2002), TopHat (Trapnell *et al.*, 2009), SpliceMap (Au *et al.*, 2010) o MapSplice (Wang *et al.*, 2010). Luego, las lecturas superpuestas de cada locus son agrupadas en gráficas que representan todas las posibles isoformas y; por último, se utiliza la superposición de las secuencias para generar, para cada locus, una secuencia contigua consenso llamada "contig" (Jabboure & Kaul, 2019).
Este método de ensamblaje requiere de menor capacidad computacional que los ensamblajes *de novo* ya que transforma un ensamblaje problema de millones de lecturas a varios ensamblajes problema de cientos o miles de lecturas. Esto permite que cada ensamblaje pueda ser resuelto utilizando computación paralela (Martin & Wang, 2011). Además, con este método es posible eliminar los artefactos y errores de la secuenciación ya que se descartan las lecturas que no se alinean adecuadamente al genoma/transcriptoma de referencia (Jabboure & Kaul, 2019).

Por el contrario, el ensamblaje *de novo* no utiliza un genoma de referencia, sino que aprovecha la redundancia de las lecturas cortas y sus superposiciones para ensamblar el transcriptoma (Figura 10) (Jabboure & Kaul, 2019). La ventaja de este método es que permite estudiar organismos que carecen de información molecular o de un genoma de referencia completo. Esta técnica, ha permitido aumentar la cantidad de especies para las cuales hay transcritos disponibles, y a la vez, ha facilitado los estudios de expresión diferencial de organismos no modelo (Wang & Gribskov, 2017).

En la Figura 10, se observa que a pesar de que ambos métodos de ensamblaje inician con millones de lecturas de ARN-seq que luego se dividen en secuencias de nucleótidos más pequeños (llamados *k*-mers), la principal diferencia es que el ensamblaje *de novo* se basa en la presencia de al menos una base superpuesta entre los *k*-mers adyacentes, lo cual se logra, en la mayoría de los casos, a través de las gráficas de Bruijn en donde también se evalúan todas las posibles combinaciones de isoformas que pueden dar origen a una secuencia contigua consenso (Figura 10.B). En contraste con el ensamblaje utilizando un genoma de referencia, en donde los *k*mers se alinean a un genoma de referencia para generar la secuencia contigua consenso (Figura 10.A) (Jabboure & Kaul, 2019).

FIGURA 10. Comparación de los métodos de ensamblaje de transcriptomas: en la Figura A se muestra el proceso general del ensamblaje de transcriptomas utilizando un genoma de referencia y en la Figura B el ensamblaje de transcriptomas *de novo*, en donde se utilizan gráficas de Brujin para evaluar todas las posibles combinaciones de isoformas que pueden dar origen a una secuencia contigua consenso, en la que cada posible ruta está representada por burbujas de diferentes colores. Figura adaptada de (Jabboure & Kaul, 2019).

1. Ensamblaje de transcriptomas de novo

Tal como se mencionó anteriormente, los ensamblajes *de novo* utilizan una estrategia diferente a los ensamblajes utilizando un genoma de referencia. Varios de los métodos actuales para ensamblar transcriptomas *de novo*, como: TransABySS (Robertson *et al.*, 2010), Multiple-K (Surget-Groba & Montoya-Burgos, 2010), Rnnotator (Martin *et al.*, 2010), Oases (Schulz *et al.*, 2012), SOAPdenovoTrans (Haas *et al.*, 2013) y Trinity (Grabherr *et al.*, 2011), utilizan gráficas de *Bruijn* en sus algoritmos para ejecutar el ensamblaje (Xie *et al.*, 2014).

En las gráficas de *Brujin*, cada nodo se define como una secuencia de nucleótidos de longitud-k (k-mer) y cada ramificación, como un posible transcrito. Dichos nodos se conectan únicamente si existe un traslape perfecto de k-1 nucleótidos. Este método permite generar todas las posibles representaciones en las que las secuencias pueden ser reconstruidas y cada una de ellas se estima para descartar los transcritos menos factibles (Grabherr *et al.*, 2011).

A pesar de que la mayoría de los ensambladores actuales utilizan gráficas de *Brujin*, se ha demostrado que difieren ampliamente en su consumo de memoria, tiempo de corrida y resultados (Hölzer & Marz, 2019). Esto se ha evidenciado en múltiples investigaciones, tal como en el estudio de Hölzer & Marz (2019), en donde se utilizaron diferentes sets de secuencias de ARN-seq de 5 especies (*Escherichia coli, Candida albicans, Arabidopsis thaliana, Mus musculus y Homo sapiens*) que contaban con anotaciones y un genoma de referencia.

Estos 5 sets de secuencias fueron utilizados para evaluar el tiempo de corrida y el uso de memoria de ensambladores como: Trans-AbySS, Trinity, Oases y SOAPdenovo-Trans. Cada uno de los sets de secuencias se ensambló, utilizando los parámetros por defecto del ensamblador para evaluar sus requerimientos máximos y mínimos y tal como se observa en el Cuadro 1, existe una gran variabilidad entre los ensambladores. Por ejemplo, de los cuatro ensambladores, se observa que Trinity es el ensamblador que requiere la mayor cantidad de memoria en gigabytes (Gb). En cambio, SOAPdenovo-Trans utiliza menos de la mitad de la memoria que utiliza Trinity y además corre más rápido (Hölzer & Marz, 2019).

Ensamblador	Versión	Tiempo de corrida		Memoria (Gb)		4.50
		Mínimo	Máximo	Mínimo	Máximo	Ano
Trans-ABySS	2.0.1	16m	2d 6h 23m	0.6	49.2	2010
Trinity	2.8.4	28m	1d 20h 10m	7.2	243.9	2011
Oases	0.2.08	25m	8d 15h 45m	3.1	110.2	2012
SOAPdenovo- Trans	1.03	1m	1h 48m	2.1	45.6	2014

CUADRO 1. Características y requerimientos de los ensambladores de transcriptomas de novo

El tiempo de corrida y la memoria utilizada se estimó para el ensamblaje de cinco especies: *Escherichia coli, Candida albicans, Arabidopsis thaliana, Mus musculus* y *Homo sapiens*. Fuente: (Hölzer & Marz, 2019)

Gracias a todas las diferentes opciones y algoritmos de los ensambladores *de novo*, se ha podido acelerar la comprensión de organismos no modelo. No obstante, es indispensable que toda esta información sea depositada en repositorios públicos para que sea accesible a nivel mundial.

2. Repositorios de secuencias y transcriptomas

El avance en las tecnologías de secuenciación y la enorme cantidad de datos que se produce a partir de ellas ha provocado la necesidad de crear nuevos repositorios para almacenar, anotar y mantener los datos de investigaciones de genomas, proteomas y transcriptomas (Hebels *et al.*, 2017). Dichos repositorios son indispensables para anotar genes, comparar transcriptomas, hacer validaciones taxonómicas y facilitar el acceso y divulgación de datos masivos (O'Leary *et al.*, 2016; Yin *et al.*, 2016).

Uno de los repositorios más grandes de transcriptomas de insectos es la base de datos del Centro Nacional para la Información Biotecnológica (NCBI) (Cheng *et al.*, 2021). Actualmente, este repositorio contiene los transcriptomas del proyecto internacional 1KITE que cuenta con más de 1,000 transcriptomas de insectos (Shelomi *et al.*, 2020). Además, existen numerosos repositorios que han facilitado la comprensión de la funcionalidad de las proteínas de organismos no modelo, siendo Uniprot uno de los más grandes (Dimer *et al.*, 2011).

Uniprot es un repositorio de múltiples bases de datos que cuenta con numerosas anotaciones sobre la funcionalidad de las proteínas (Dimer *et al.*, 2011). En el 2019, se reportaron más de 120 millones de anotaciones de proteínas, incluyendo todos los clados del árbol de la vida (UniProt Consortium, 2019). Muchas de estas anotaciones provienen de artículos revisados por pares que son revisados manual y electrónicamente por los curadores (Dimer *et al.*, 2011).

Gracias a estas anotaciones, se ha comprendido la funcionalidad de una amplia gama de proteínas, incluidas las de organismos escasamente caracterizados y organismos no modelo, como los insectos (Dimer *et al.*, 2011). Por esta razón, estas plataformas han abierto nuevas oportunidades para estudios bioinformáticos asociados a la evolución de proteínas, la comparación en la expresión de genes y la caracterización de las proteínas involucradas en los mecanismos de resistencia en insectos (Pauli *et al.*, 2016).

V. Métodos

Con el objetivo de identificar las principales diferencias en las regiones conservadas y en el origen evolutivo de los canales iónicos dependientes de voltaje del subfilo Hexapoda, se utilizó la ruta bioinformática de la Figura 11. En general, dicha ruta se compone de cuatro fases: 1) la construcción de modelos utilizando las secuencias disponibles en Uniprot (lila), 2) la identificación de las secuencias de los canales iónicos dependientes de voltaje en los transcriptomas ensamblados del proyecto 1KITE (azul), 3) el análisis filogenético y la identificación de las regiones conservadas de las secuencias recuperadas en Uniprot y en los transcriptomas ensamblados (verde) y 4) la comparación de las regiones conservadas de los canales iónicos dependientes de voltaje entre diferentes órdenes del subfilo Hexapoda (anaranjado).

FIGURA 11. Ruta bioinformática utilizada para llevar a cabo la investigación: la primera fase (lila) inicia con la recuperación de las secuencias disponibles en Uniprot para la construcción de modelos de referencia; la segunda fase (azul) consiste en la identificación de las secuencias homólogas de los canales iónicos dependientes de voltaje en los transcriptomas ensamblados del proyecto 1KITE; la tercera (verde) en el análisis filogenético y en las regiones conservadas de las secuencias recuperadas en Uniprot y en los transcriptomas: y la cuarta (anaranjado), en la comparación de las regiones conservadas entre órdenes. Fuente: elaboración propia

Para ejecutar dicha ruta bioinformática, se realizaron los siguientes pasos:

A. Selección de transcriptomas y otras secuencias anotadas

Los transcriptomas que se utilizaron en esta investigación se obtuvieron del proyecto 1KITE, los cuales fueron ensamblados utilizando el paquete SOAPdenovo-Trans v3 1.01 (Xie *et al.* 2014). Todos los transcriptomas previamente ensamblados se descargaron de la base datos pública CNGB, que por sus siglas se denomina: "China National GeneBank" (http://ftp.cngb.org/pub/SciRAID/1KITE/), en enero de 2021. Únicamente 102 de las 105 especies del proyecto 1KITE cuentan con transcriptomas ensamblados aprobados por NCBI. Por esta razón, las 102 especies de hexápodos que se analizaron corresponden a: 1 Protura, 5 Collembola, 2 Diplura, 2 Archeognatha, 3 Zygentoma, 3 Odonata, 4 Ephemeroptera, 1 Zoraptera, 2 Dermaptera, 3 Plecoptera, 5 Orthoptera, 1 Mantophasmatodea, 2 Grylloblattodea, 2 Embioptera, 3 Phasmatodea, 3 Mantodea, 3 Blattodea, 2 Isoptera, 3 Thysanoptera, 12 Hemiptera, 3 Psocodea, 5 Hymenoptera, 2 Raphidioptera, 1 Megaloptera, 4 Neuroptera, 1 Strepsiptera, 4 Coleoptera, 3 Trichoptera, 7 Lepidoptera, 2 Siphonaptera, 3 Mecoptera y 5 Diptera.

Los códigos de acceso y el tamaño de los transcriptomas ensamblados pueden encontrarse en el Cuadro 5 de la sección de Apéndices. La información adicional sobre el porcentaje de GC (Guanina-Citosina) y el porcentaje de contaminación de los transcriptomas, puede consultarse en el Cuadro 6. En esta misma sección, se encuentran registrados los metadatos de los hexápodos analizados, incluyendo: la etapa de desarrollo, el número de individuos analizados, el sexo, el país y año de colecta del proyecto 1KITE. Cabe destacar que la filogenia que se utilizó como referencia para evaluar las relaciones filogenéticas de los hexápodos, fue la filogenia de máxima verosimilitud propuesta por Misof *et al.* (2014) (Figura 12). Dicha filogenia está basada en el análisis de 413,459 sitios de aminoácidos divididos en 479 metaparticiones del proyecto 1KITE y los géneros de las especies analizadas en este estudio se encuentran resaltadas en celeste en la Figura 12.

FIGURA 12. *Árbol filogenético datado del proyecto 1KITE El árbol de máxima verosimilitud se infirió del análisis de 413,459 sitios de aminoácidos:* los nodos de cada uno de los órdenes estudiados están marcados con números en círculos grises. El color de los círculos indica el soporte de Bootstrap.

Todos los Artrópodos se encuentran encerrados en el cuadro celeste, los Hexápodos en el cuadro rosado y los Insectos, en el cuadro morado. En el árbol se muestran los 32 órdenes del Subfilo Hexápoda en letras mayúsculas y dentro de cada orden, los géneros de las especies que se analizaron en el proyecto 1KITE. Únicamente los géneros resaltados en celeste cuentan con transcriptomas ensamblados aprobados por NCBI, los cuales fueron los que se utilizaron para el trabajo de graduación. Figura adaptada de (Misof *et al.*, 2014). Además de utilizar los transcriptomas ensamblados del proyecto 1KITE para predecir las secuencias de los canales iónicos dependientes de voltaje, se descargaron todas las secuencias de los canales iónicos dependientes de voltaje disponibles en Uniprot del Subfilo Hexapoda. Para ello se utilizaron las siguientes palabras clave: "Potassium voltage-gated channel protein Shaker", "Sodium channel protein para" y "Voltagedependent calcium channel type A subunit alpha-1". Únicamente se descargaron las secuencias que tuvieran una longitud mínima de 460 aminoácidos. En total, se descargaron 790 secuencias, las cuales corresponden a 433 para el canal de calcio dependiente de voltaje (*Dmca1A*), 218 para el canal de potasio (*Shaker*) y 139 para el canal de sodio (*para*). Los códigos de acceso de todas las especies analizadas de Uniprot se encuentran en el Cuadro 8.

Como grupo externo, se utilizó el crustáceo *Lepeophtheirus salmonis*. Las secuencias de sus canales iónicos se predijeron a partir de su transcriptoma ensamblado, utilizando la misma metodología que se utilizó para los transcriptomas ensamblados del proyecto 1KITE. El transcriptoma de esta especie se obtuvo de la base de datos "TSA" Transcriptome Shotgun Assembly de NCBI con el siguiente código de acceso: HACA01.

B. Marcos de lectura y traducción a aminoácidos

Las posibles regiones codificantes, dentro de los transcritos de los transcriptomas ensamblados, se identificaron utilizando el paquete TransDecoder (http://transdecoder.github.io). Esto se realizó a través de una identificación de los marcos de lectura, los cuales corresponden a los transcritos que presentan un codón de inicio y uno de terminación. Únicamente se analizaron los marcos de lectura con una longitud mínima de 460pb ya que existe mayor probabilidad de anotar incorrectamente secuencias cortas.

Durante esta etapa, se recuperaron tanto secuencias con marcos de lectura completos como incompletos ya que el algoritmo de TransDecoder, está basado en supuestos generados a partir de la longitud mínima de los marcos de lectura y sus puntajes de similitud, los cuales pueden causar errores en su anotación (Entizne *et al.*, 2020). Además, también se utilizó TransDecoder para traducir todos los posibles marcos de lectura, a secuencias de aminoácidos.

C. Identificación de canales iónicos activados por voltaje

La identificación de los canales iónicos se realizó utilizando un modelo construido con el paquete HMMER v 3.1b2 (Eddy, 2011). Cada modelo se construyó utilizando las secuencias previamente recuperadas de Uniprot. Dichas secuencias fueron alineadas utilizando MAFFT v.7 (Katoh & Standley, 2013) con los parámetros por defecto. Además, el alineamiento se revisó manualmente para evitar que isoformas inusuales alterarán el modelo.

El modelo de cada canal se construyó utilizando hmmbuild, el cual se basa en los modelos ocultos de Markov. Seguidamente, los modelos se utilizaron para identificar con hmmsearch los dominios homólogos de los canales iónicos activados por voltaje en las secuencias de aminoácidos predichas con TransDecoder. Las líneas de comando utilizadas para la construcción del modelo y la identificación de los dominios homólogos se encuentran en la sección "comandos utilizados" del apartado de Apéndices. En esta última fase, solamente las secuencias con un valor de $E \le 0.00001$ fueron analizadas. En total, se recuperaron 268 transcritos para el canal de sodio (*para*), 142 para el de potasio (*Shaker*) y 282 para el canal calcio.

Con el objetivo de identificar si los transcritos recuperados realmente corresponden a los canales iónicos dependientes de voltaje, se realizó un alineamiento local utilizando como referencia las secuencias disponibles en la base de datos de NCBI. Para ello se utilizó la herramienta "BLAST" Basic Local Alignment Search Tool. Solo las secuencias con un valor de $E \le 0.00001$ fueron utilizadas para los análisis posteriores (Cuadro 7). Por esta razón, únicamente se recuperaron 71 secuencias, las cuales corresponden a 19 para el canal de calcio, 22 para el de potasio y 30 para el de sodio.

D. Alineamiento y evaluación de las regiones conservadas

Con el objetivo de evaluar las regiones conservadas de los canales, se utilizaron las 71 secuencias recuperadas de los transcriptomas ensamblados del proyecto 1KITE y las 790 secuencias recuperadas de Uniprot. Dichas secuencias se alinearon y se evaluaron sus índices de conservación. No obstante, antes de alinear las secuencias recuperadas de 1KITE y Uniprot, se modificaron sus encabezados para los análisis filogenéticos y para evitar confusiones con las diferentes isoformas de las especies.

En las secuencias de Uniprot, los encabezados están formados por el código de acceso de la secuencia, seguido de la primera letra/número del código de entrada, la primera letra del género de la especie y las primeras dos letras del epíteto específico. Por ejemplo, en el encabezado "A0A6J0RHU8_B_Bdo", A0A6J0RHU8 es el código de acceso, B es la primera letra del código de entrada BACDO, B es la primera letra del género de la especie *Batrocera* y do, las primeras dos letras del epíteto específico *dorsalis*.

En cambio, en las secuencias recuperadas por los transcriptomas, se utilizó la primera letra del género de la especie y las primeras dos letras del epíteto específico, seguido del número de la isoforma. Por ejemplo, para la especie *Stylops melittae*, el encabezado de su primera isoforma sería: "Sme.1". El nombre de todas las especies, los códigos de acceso y los encabezados de las secuencias se pueden consultar en los Cuadros 7 y 8 de la sección de apéndices.

Después de modificar los encabezados, se alinearon las secuencias de cada canal con el paquete MAFFT v7 (Katoh & Standley, 2013) utilizando los parámetros por defecto. Los alineamientos de los canales se visualizaron en Jaliview v 2.11.14 (Waterhouse *et al.*, 2009) para identificar las regiones más conservadas y las más variables antes de realizar el análisis filogenético. En Jaliview, estos valores de conservación se miden como un índice numérico que refleja la conservación de las propiedades fisicoquímicas del alineamiento total. Los índices con un valor de 10-11 indican que todas las propiedades de los aminoácidos, en dicha posición, están conservados. Por esta razón, los índices de conservación obtenidos del alineamiento total de los tres canales se exportaron y se graficaron en RStudio (RStudio Team 2020) v1.4.1106.

E. Comparación de regiones conservadas entre órdenes del subfilo Hexapoda

Dado que en el análisis anterior no se pudieron identificar a detalle las diferencias entre los diferentes órdenes del Subfilo Hexapoda, se analizó el alineamiento de únicamente un representante de los siguientes órdenes: Díptera, Lepidoptera, Hymenoptera, Hemiptera, Coleoptera, Thysanoptera y Collembola (Cuadro 2). En caso de que no estuviera presente la misma especie para los tres canales, se utilizó una especie del mismo género u orden. También se incluyó a *D. melanogaster* en el análisis ya que sus secuencias se utilizaron como referencia para identificar a qué dominios o subunidades corresponden las regiones más conservadas.

Orden	Canal				
	Calcio (Dmca1A)	Potasio (Shaker)	Sodio (para)		
Díptera	Zeugodacus cucurbitae	Z. cucurbitae	-		
Lepidoptera	Bombyx mandarina	B. mandarina	B. mori		
Hymenoptera	Apis cerana	A. mellifera	A. mellifera		
Hemiptera	Lygus hesperus	Sipha flava	L. hesperus		
Coleoptera	Tribolium castaneum	T. castaneum	T. castaneum		
Thysanoptera	Thrips palmi	T. palmi	T. palmi		
Collembola	Orchesella cincta	O. cincta	O. cincta		

CUADRO 2. Especies representantes de órdenes analizados para evaluar regiones conservadas de los canales dependientes de voltaje de sodio, potasio y calcio

Dentro de las secuencias del canal de sodio, sí estaba presente la especie *Z. cucurbitae*, pero su secuencia solo contaba con 506 aminoácidos. Por esta razón, su secuencia no fue utilizada para este análisis. Fuente: elaboración propia.

Todos los alineamientos de las especies analizadas se visualizaron en Jaliview y las regiones más conservadas se resaltaron utilizando el esquema de coloración Zappo (Cuadro 3). Seguidamente, se utilizaron las anotaciones disponibles en Uniprot de *D. melanogaster* del canal de sodio (P35500), potasio (P08510) y calcio (P91645) para identificar a qué región del canal corresponde la región más conservada.

Propiedad	Aminoácido		
Topicuau	Ammoachdo		
Alifático/Hidrofóbico	ILVAM		
Aromático	FWY		
Positivo	KRH		
Negativo	DE		
Hidrofílico	STNQ		
Conformación especial	PG		
Cisteína	С		

CUADRO 3. Esquema de coloración Zappo según las propiedades fisicoquímicos de los aminoácidos

En Jaliview se utilizó el esquema de coloración para reconocer las propiedades de los aminoácidos. Fuente: (Waterhouse et al., 2009)

F. Análisis filogenético

Previo al análisis filogenético, se realizó una búsqueda del modelo óptimo de evolución molecular para las secuencias analizadas. Para ello se utilizó ModelTest-NG v0.1.6 (Darriba *et al.*, 2020) con el criterio de información de Akaike corregido (AICc). En dicho análisis, se estableció que el modelo óptimo de evolución para los canales de potasio y sodio era VT+I y para de calcio, VT+I+F.

Los árboles filogenéticos se construyeron utilizando un análisis de máxima verosimilitud en IQTREE v1.6.12 (Trifinopoulos *et al.*, 2016). Las filogenias de máxima verosimilitud se construyeron utilizando 1,000 réplicas de bootstrap, un coeficiente mínimo de correlación de 0.99, una perturbación de 0.5 y los modelos de evolución previamente mencionados. Todos los árboles consenso fueron visualizados en FigTree v1.4.4 (Rambaut, 2018) y, para facilitar su interpretación, se agruparon las especies del mismo orden en clados según la filogenia de Misof *et al.* (2014).

VI. Resultados

En comparación con los estudios previos (Bao & Sonoda, 2012; Huang *et al.*, 2017; Liu *et al.*, 2017; Shen *et al.*, 2018), en donde únicamente se analizaron los canales iónicos de organismos modelo o insectos plaga, los hexápodos analizados en este estudio incluyen especies polinizadoras, especies relevantes para el reciclaje de nutrientes, especies vectores de enfermedades y especies plagas (Cuadros 8, 9 y 10). Por esta razón, la comparación de los canales iónicos dependientes de voltaje de los hexápodos puede dar indicios sobre la complejidad de su sistema nervioso y evolución.

A. Comparación de secuencias recuperadas de los transcriptomas del proyecto 1KITE y de Uniprot

Las secuencias de los canales iónicos dependientes de voltaje de este estudio provienen de los transcriptomas ensamblados del proyecto 1KITE y del repositorio de Uniprot (ver Cuadros 8, 9 y 10 en el Apéndice). En Uniprot se recuperó el mayor número de secuencias, con un total de 790 secuencias. En cambio, en las secuencias predichas a partir de los transcriptomas ensamblados del proyecto 1KITE, únicamente se recuperaron 71 secuencias. A pesar de ello, se observa que se analizó un mayor número de órdenes diferentes en las secuencias provenientes del proyecto 1KITE (20 órdenes), que en las de Uniprot (9 órdenes).

Sin embargo, en ambos casos, se observa que los órdenes analizados varían entre los canales de sodio, potasio y calcio. Por ejemplo, en el orden Mecoptera solo se recuperaron secuencias para los canales de calcio y sodio, pero no para el de potasio (Figura 13A). Además, en la Figura 13A y 13B se observa que se recuperaron más secuencias del canal de sodio del proyecto 1KITE (Figura 13A) y en el de Uniprot, de calcio (Figura 13B).

FIGURA 13. Abundancia de las secuencias recuperadas de los canales iónicos dependientes de voltaje de sodio (para), potasio (Shaker) y calcio (Dmca1A) según los órdenes de subfilo Hexapoda: A: secuencias recuperadas de los transcriptomas ensamblados del proyecto 1KITE; B: secuencias las secuencias recuperadas de Uniprot. Fuente: elaboración propia

En las Figuras 13A y 13B se observa que la abundancia de los canales iónicos dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) también varía según su origen ya que no se analizaron los mismos órdenes en las secuencias recuperadas del proyecto 1KITE y las recuperadas en Uniprot. A pesar de estas diferencias se recuperaron secuencias para más de 20 órdenes diferentes.

B. Alineamiento múltiple de los canales iónicos dependientes de voltaje

En las secuencias recuperadas de los canales, se observan amplias diferencias entre la longitud máxima y mínima de los canales (Cuadro 4). Según las anotaciones de Uniprot de *D. melanogaster* la longitud del canal de sodio (*para*) es de 2131 aminoácidos, el de calcio (*Dmca1A*) 1851 aminoácidos y el de potasio (*Shaker*), 655 aminoácidos. Sin embargo, para los tres canales se recuperaron secuencias con longitudes mayores y menores a las reportadas en *D. melanogaster*.

Además, a pesar de que se utilizaron los mismos parámetros y criterios para recuperar las secuencias de los canales, se recuperó diferente número de secuencias por canal, siendo el canal de calcio el canal con el mayor número (450) de secuencias analizadas (Cuadro 4). Dicha diferencia está asociada, principalmente, al número de secuencias recuperadas en la base de datos de Uniprot, lo cual sugiere que el canal de calcio (*Dmca1A*) ha sido más estudiado que el de sodio (*para*) y el de potasio (*Shaker*).

mogenetico					
	Canal iónico dependiente de voltaje				
	Sodio (para)	Potasio (Shaker)	Calcio (Dmca1A)		
Número de					
secuencias	170	234	450		
analizadas					
Longitud	125	460	405		
mínima	423	400	403		
Longitud	2147	1001	2205		
máxima	2147	1091	2303		
Longitud	1225	610	1835		
promedio	1525				

CUADRO 4. Resumen del número y longitud de las secuencias analizadas para análisis filogenético

El resumen del número y longitud de las secuencias analizadas se obtuvo de Jaliview en la sección de propiedades del alineamiento de cada canal. Fuente: elaboración propia.

No obstante, el número de secuencias y especies analizadas por canal es superior al de la mayoría de los estudios con hexápodos, lo cual podría brindar una aproximación más certera sobre las regiones más variables y conservadas en estos organismos.

C. Regiones conservadas y variables de los canales iónicos dependientes de voltaje

Con relación a las regiones conservadas y variables, se observa que los índices de conservación de los alineamientos varían ampliamente entre los canales y sus posiciones. En este análisis, se tenía como objetivo definir, de forma general, las regiones más conservadas y variables del alineamiento de cada canal.

FIGURA 14. *Índices de conservación para el alineamiento total del canal dependiente de voltaje de calcio (Dmca1A), sodio (para) y potasio (Shaker) según su posición:* la gráfica A corresponde al canal de calcio, la B al canal de sodio y C al canal de potasio. El eje *x* representa la posición de los aminoácidos en el alineamiento y el eje *y*, su índice de conservación. Fuente: elaboración propia.

En la Figura 14, se observa que las regiones conservadas difieren en cuanto a posición y longitud en los tres canales iónicos dependientes de voltaje. El canal con el mayor número de aminoácidos conservados fue el canal de calcio con más de 2,000 aminoácidos (410-2,500), seguido del canal de sodio con 907 aminoácidos (5931500) y; por último, el canal de potasio con 534 (966-1500). Dichas regiones conservadas se compararon con las anotaciones disponibles en Uniprot de *D. melanogaster* y se encontró que las regiones conservadas varían según el canal iónico dependiente de voltaje al que pertenece.

La región más conservada para el canal de calcio (Figura 14A) correspondía a los cuatro dominios (I-IV) del canal. En cambio, para el canal de sodio las regiones más conservadas (Figura 14B) correspondían al *loop* de inactividad del dominio I y las seis subunidades del dominio II y para el canal de potasio (Figura 14C), las seis subunidades que conforman el canal. Sin embargo, el único canal con índices superiores a 10, fue el canal de potasio ya que los índices del canal de calcio y sodio se encuentran entre 0-5.

Esto podría sugerir que, de las secuencias analizadas en este estudio, las únicas regiones que conservan las propiedades de los aminoácidos son las del canal de potasio. Además, los resultados de la Figura 14 muestran que las regiones conservadas del canal de calcio y sodio no se encuentran tan conservadas como las del canal de potasio.

D. Comparación de regiones conservadas entre órdenes

Dado que en el análisis anterior no se logró identificar con certeza las regiones conservadas de los canales de calcio y sodio, se realizó un segundo análisis. Dicho análisis tenía como objetivo identificar las principales diferencias dentro del subfilo Hexapoda. Esto se realizó comparando las regiones más conservadas dentro de los 7 órdenes más abundantes de este subfilo. Asimismo, se utilizaron las anotaciones de los canales de *D. melanogaster* para establecer a qué regiones corresponden las regiones más conservadas.

1. Canal dependiente de voltaje de calcio (Dmca1A)

Según las anotaciones de Uniprot de *D. melanogaster*, la región más conservada para el canal de calcio (Figura 15), corresponde a la S6 del IV dominio (subunidad amarilla) y al dominio topológico citoplasmático del extremo -COOH (extremo azul). A pesar de que los aminoácidos de la S6 se encuentran conservadas en la mayoría de los órdenes, la única especie que presentó una deleción en dicha región fue el coleóptero *T. castaneum*. En cambio, en el dominio del extremo terminal, el tisanóptero *T. palmi* y el colémbolo *O. cincta* fueron las especies con el mayor número de sustituciones.

FIGURA 15. Regiones conservadas de los canales dependientes de voltaje de calcio (Dmca1A) de los 7 órdenes más abundantes del subfilo Hexápoda: la Figura A muestra el alineamiento parcial de la región más conservada. El rectángulo amarillo corresponde a la S6 y el azul, al dominio topológico citoplasmático terminal. Ambas regiones se encuentran resaltadas en la Figura B según el color de la región a la que pertenece. Dichas regiones se identificaron utilizando las anotaciones de Uniprot de D. melanogaster. En el alineamiento parcial, los aminoácidos se encuentran resaltados según el esquema de coloración Zappo y la región inferior del alineamiento muestra un histograma en amarillo con los índices de conservación de cada posición. Fuente: elaboración propia.

2. Canal dependiente de voltaje de sodio (*para*)

En el canal de sodio, la región más conservada inicia en el sensor de voltaje (S4) del dominio II y continúa hasta la S6 del dominio II. En la Figura 16A se observan las regiones conservadas resaltas en recuadros de color amarillo, azul, rosado, verde y morado, las cuales corresponden a las regiones resaltadas en la Figura 16B. A pesar de que en todas las regiones se obtuvieron índices de conservación altos, el *loop* de selectividad es la región con los índices de conservación más bajos y la especie con el mayor número de sustituciones es el colémbolo *O. cincta*.

FIGURA 16. Regiones conservadas de los canales dependientes de voltaje de sodio (para) de los 7 órdenes más abundantes del subfilo Hexápoda: A; alineamiento parcial de la región más conservada del canal de sodio. Las regiones conservadas se encuentran resaltadas en recuadros de color amarillo, azul, rosado, verde y morado según la región a la que pertenece.
B; estructura del canal de sodio con regiones conservadas resaltadas con el color de la región a la que pertenece. Esto de acuerdo con las anotaciones de Uniprot de *D. melanogaster*. En el alineamiento parcial, los aminoácidos se encuentran resaltados según el esquema de coloración Zappo y en la región inferior del alineamiento, se muestra un histograma en amarillo con los índices de conservación según su posición. Fuente: elaboración propia

3. Canal dependiente de voltaje de potasio (Shaker)

Al igual que en el canal de sodio, una de las regiones más conservadas para el canal de potasio es el sensor de voltaje (S4), el *loop* que conecta la S4 con la S5 y la S5. La única especie que presentó una posible deleción en la S5 fue el hemíptero S. flava (Figura 17A). Cabe destacar que tanto en el sensor de voltaje del canal de sodio como en el de potasio, se observa la presencia de residuos positivos, siendo la Arginina (R) es el residuo positivo más abundante para ambos casos.

FIGURA 17. Regiones conservadas de los canales dependientes de voltaje de potasio (Shaker) de los 7 órdenes más abundantes del subfilo Hexápoda: A; alineamiento parcial de la región más conservada del canal de potasio. Las regiones conservadas, según las anotaciones de D. melanogaster en Uniprot, se encuentran resaltadas en recuadros de color amarillo, azul y rojo. B; estructura y topología del canal de potasio con las regiones conservadas resaltadas según los colores utilizados en los recuadros del alineamiento. En el alineamiento parcial, los aminoácidos se encuentran resaltados según el esquema de coloración Zappo y en la región inferior se muestra un histograma en amarillo con los índices de conservación según su posición. Fuente: elaboración propia.

46

En las Figuras 15, 16 y 17 se observa que las regiones conservadas de los tres alineamientos varían significativamente en cuanto a posición, longitud y región a la que pertenecen según las anotaciones de *D. melanogaster*. A pesar de ello, en los tres canales iónicos dependientes de voltaje, el colémbolo presenta la mayor variabilidad en su secuencia, incluso en las regiones más conservadas. Sin embargo, no es posible realizar inferencias sobre su evolución sin antes analizar un mayor número de especies y realizar un análisis filogenético.

E. Análisis filogenéticos de los canales iónicos dependientes de voltaje

El análisis filogenético de este estudio evidencia que existe una estrecha relación filogenética entre los canales los canales iónicos dependientes de voltaje de sodio, potasio y calcio de las especies que pertenecen al mismo orden. Para más información sobre las abreviaturas y los órdenes de las especies analizadas, se pueden consultar los Cuadros 8, 9 y 10 en la sección de Apéndices.

1. Canal de calcio dependiente de voltaje (*Dmca1A*)

En la figura 18 se observa que en el canal de calcio dependiente de voltaje (*Dmca1A*), los valores de los nodos varían ampliamente a lo largo del árbol consenso. Todas las especies, exceptuando las que tienen menos de 6 representantes por orden, como *Frankliniella occidentalis* (A0A6J1SXP4_F_Foc) y *Stylops melittae* (Sme.1), se agrupan en los mismos clados de la filogenia propuesta por Misof *et al* (2014).

Un aspecto importante para tomar en cuenta es que la mayoría de los clados están constituidos por diferentes isoformas de una misma especie. Esto se evidencia en las 23 isoformas del lepidóptero *Galleria mellonella*, las 12 del díptero *Drosophila obscura* y las 26 del himenóptero *Bombus vosnesenskii*.

FIGURA 18. Árbol filogenético consenso de máxima verosimilitud de las secuencias del canal de calcio dependiente de voltaje (Dmca1A) del subfilo Hexapoda, recuperadas de los transcriptomas ensamblados del proyecto 1KITE y de Uniprot: el soporte de los nodos representa los valores de Bootstrap de 1,000 repeticiones. Las ramas están coloreadas según el orden al que pertenecen y el tamaño del círculo de los nodos es proporcional a su valor de Bootstrap. Las abreviaturas y el orden de las especies analizadas para realizar la filogenia se encuentran en el Cuadro 8 de la sección de Apéndices. Fuente: elaboración propia.

2. Canal de potasio dependiente de voltaje (Shaker)

A diferencia del árbol del canal de calcio, el árbol consenso del canal de potasio presenta soportes más robustos en los nodos, especialmente porque la mayoría de ellos oscilan entre 80-100. Sin embargo, es más frecuente encontrar especies de diferentes órdenes agrupados en un mismo clado. Un ejemplo de ello es el efemeróptero *Eurylophella* sp. (Eur.1) que se encuentra agrupado en el mismo clado que los tysanópteros como *Thrips palmi*.

En la Figura 19 se observa que existen algunas especies que no se agrupan según las relaciones filogenéticas propuestas por Misof *et al.* (2014). No obstante, la mayoría de dichas especies, solo tienen un representante por orden, tal como *Thermobia domestica* (Tdo.1), *Euroleon nostras* (Eno.1), *Eurylophella* sp. (Eur.1) y *Sipha flava* (A0A2S2QSN2_9_Sfl). Además, la mayoría de estas especies fueron las que se recuperaron de los transcriptomas ensamblados del proyecto 1KITE.

En general, las relaciones filogenéticas del canal de potasio dependiente de voltaje (*Shaker*) no concuerdan del todo con las relaciones filogenéticas propuestas por Misof *et al.* (2014). Los clados más basales en la filogenia de Misof *et al* (2014) son los colémbolos, los pescaditos de plata, las cucarachas, las termitas y los trips. En cambio, los más derivados son las moscas, las mariposas, los escarabajos y las abejas. Sin embargo, en el árbol filogenético consenso del canal de potasio, se observa que las cucarachas, termitas y trips están más cercanas filogenéticamente a los escarabajos que a los colémbolos.

FIGURA 19. Árbol filogenético consenso de máxima verosimilitud de las secuencias del canal de potasio dependiente de voltaje (Shaker) del subfilo Hexapoda, recuperadas de los transcriptomas ensamblados del proyecto 1KITE y de Uniprot: el soporte de los nodos representa los valores de Bootstrap de 1,000 repeticiones. Las ramas están coloreadas según el orden al que pertenecen y el tamaño del círculo de los nodos es proporcional a su valor de Bootstrap. Las abreviaturas y el orden de las especies analizadas para realizar la filogenia se encuentran en el Cuadro 9 de la sección de Apéndices. Fuente: elaboración propia.

3. Canal de sodio dependiente de voltaje (*para*)

Al igual que en el canal de calcio, el árbol consenso del canal de sodio cuenta con soportes que varían de 14 hasta 100, siendo los más frecuentes arriba de 80. La mayoría de las especies del mismo orden, según Misof *et al.* (2014), fueron agrupadas en el mismo clado (Figura 20). Las únicas excepciones, se observaron en las diferentes isoformas de los colémbolos de la especie *Anurida marítima* ya que la primera isoforma (Ama.1) comparte un ancestro más cercano con *Tetrodontophora bielanensis* (Tbi.1) y la segunda (Ama.2) con el dermáptero *Forficula auricularia* (Fau.1).

Por otro lado, se observa en la Figura 20 que todas las 47 diferentes isoformas *Drosophila bipectinata* que se analizaron se agruparon en un mismo clado junto con *D. melanogaster*. Este no fue el mismo caso para los mecópteros *Trichocera saltator* y *Panorpa vulgaris* ya que una de sus isoformas (Tsa.1) se encuentra estrechamente relacionada con *D. melanogaster*, otra isoforma (Tsa.2) con el lepidóptero *Nemophora pilella* y la última (Tsa.3) con el colémbolo *L. bostrychophila*.

Estos patrones también se observan en otras especies como en el colémbolo *A*. *maritima*. Sin embargo, dicho patrón únicamente se encuentra en las secuencias de los canales sodio recuperados de los transcriptomas ensamblados del proyecto 1KITE (Ver Figura 20).

FIGURA 20. Árbol filogenético consenso de máxima verosimilitud de las secuencias del canal de sodio dependiente de voltaje (para) del subfilo Hexapoda, recuperadas de los transcriptomas ensamblados del proyecto 1KITE y de Uniprot: el soporte de los nodos representa los valores de Bootstrap de 1,000 repeticiones. Las ramas están coloreadas según el orden al que pertenecen y el tamaño del círculo de los nodos es proporcional a su valor de Bootstrap. Las abreviaturas y el orden de las especies analizadas para realizar la filogenia, se encuentran en el Cuadro 10 de la sección de Apéndices. Fuente: elaboración propia.

A pesar de que en el canal de sodio dependiente de voltaje se analizaron un menor número de secuencias, sí es posible evaluar las relaciones filogenéticas de los principales órdenes del subfilo Hexápoda. Asimismo, se observa que, en la mayoría de los casos, las especies que pertenecen al mismo orden tienen un mismo origen evolutivo en sus tres canales iónicos dependientes de voltaje.

VII. Discusión

El objetivo de este estudio era identificar las principales diferencias de los canales iónicos dependientes de voltaje de sodio, potasio y calcio a través de una caracterización filogenética y la identificación de sus regiones conservadas. Dichos canales juegan un rol fundamental en la señalización neuronal ya que están involucrados en la generación de potenciales de acción y la liberación de neurotransmisores. Por esta razón, los canales iónicos dependientes de voltaje podrían ser candidatos óptimos para el desarrollo de nuevos insecticidas (Soderlund, 2017). La búsqueda de nuevos candidatos podría reducir los efectos adversos que se producen por el uso desmedido de los insecticidas actuales, tal como la reducción de las poblaciones de insectos benéficos para el medio ambiente, especialmente porque dichos efectos han sido escasamente estudiados en todos los órdenes del subfilo Hexapoda.

La escasez de información se evidencia en este estudio en las 790 secuencias disponibles en Uniprot, en donde únicamente se recuperaron 9 de los 32 órdenes del subfilo Hexapoda, lo cual representa menos de un tercio de la diversidad de este subfilo (Misof *et al.*, 2014). En cambio, en las secuencias recuperadas de los transcriptomas del proyecto 1KITE se recuperaron 20 órdenes. Sin embargo, en muchos de estos órdenes solo se recuperó una secuencia por orden y por canal. Probablemente, esto sea producto de un artefacto generado durante el ensamblaje ya que se utilizó SOAPdenovo-Trans. Dicho ensamblador es incapaz ensamblar regiones codificantes largas; y, dado que se descartaron todas las secuencias con un marco de lectura mínimo de 460 aminoácidos, se pudo haber perdido información valiosa.

Sin embargo, se cree que esto también pudo ser consecuencia de los niveles de expresión de los canales. A pesar de que todos los canales analizados se expresan en el SNC, no todos se expresan en los mismos tejidos, etapas de desarrollo y sexos (Ademuwagun *et al.*, 2021). En el Cuadro 6, se observa que el número, el país de colecta, el sexo y la etapa de desarrollo de los hexápodos analizados en el proyecto 1KITE varía ampliamente. Esto pudo haber afectado el número de secuencias recuperadas por canal ya que en el estudio de Wang *et al.* (2019) se encontró que la expresión del gen *para* era 5.2 veces mayor en la cabeza que en el tórax del saltamontes *Schistocerca americana* y que su expresión también depende de su etapa de desarrollo.

En este estudio, canal en el que se recuperó el mayor número de secuencias y órdenes diferentes del proyecto 1KITE, fue el canal de sodio. Estos resultados sugieren que el nivel de expresión del canal de sodio dependiente de voltaje es mayor al de potasio y calcio. Sin embargo, se carece de suficiente información sobre los tejidos, etapas de desarrollo y sexo de todas las especies analizadas en el proyecto 1KITE. Por ejemplo, se desconoce el sexo de más del 70% de las especies y la etapa de desarrollo del 27% de las especies. Esto impide determinar si dichos resultados son producto de una expresión diferencial de los canales o de un artefacto generado por la falta de estandarización de la toma de muestras del proyecto 1KITE.

En las secuencias recuperadas en Uniprot, el orden con el mayor número de especies y secuencias analizadas fue Diptera. Probablemente debido a que muchas de sus especies, como *Anopheles gambiae*, son vectores de enfermedades peligrosas para el ser humano, incluyendo Malaria, Dengue y Zika (Karunaratne *et al.*, 2018). Además, el organismo modelo más estudiado dentro del subfilo Hexápoda es el díptero: *D. melanogaster*, del cual se ha logrado caracterizar y comprender el funcionamiento de los canales iónicos dependientes de voltaje (Olson *et al.*, 2008). No obstante, los resultados de este estudio muestran numerosas diferencias en las longitudes máximas y mínimas de los canales iónicos dependientes voltaje entre las especies analizadas y *D. melanogaster*.

Según Moran *et al.* (2015), la mayor diversidad en los canales iónicos dependientes de voltaje se genera por empalmes alternativos y edición de ARN, lo cual genera isoformas de longitud variable. Esto podría explicar por qué se encontraron diferencias en las longitudes de las secuencias analizadas. En *D. melanogaster*, se han reportado hasta sesenta diferentes isoformas para el canal de sodio dependiente de voltaje, las cuales difieren en sus longitudes y sus propiedades funcionales (Moran *et al.*, 2015). En esta investigación se analizaron todas las diferentes isoformas de los canales para corroborar que pertenecen al mismo clado.

Al comparar todas las diferentes isoformas de los canales se observó que los índices de conservación varían entre los canales de calcio (*Dmca1A*), potasio (*Shaker*) y sodio (*para*), siendo el canal de potasio (*Shaker*) el más conservado. La diferencia en las regiones conservadas entre los tres canales podría estar asociada al origen y evolución de los canales. Según Morán *et al.* (2015), los canales de potasio dependientes de voltaje evolucionaron antes que los de calcio y sodio (Moran *et al.*, 2015). Probablemente esto explique por qué el canal de potasio (*Shaker*) se encuentra más conservado y por qué presenta la filogenia con los valores más altos de Bootstrap. Además, en estudios previos se han reportado regiones altamente conservadas en el canal de potasio dependiente de voltaje tanto en eucariotas como procariotas (Heginbotham *et al.*, 1994).

Al analizar las secuencias de solo 7 especies, se encontró que una de las regiones más conservadas para el canal de sodio y potasio correspondía al sensor de voltaje. Dicha región es de suma importancia ya que contiene los aminoácidos positivos que generan el movimiento rotacional que activa el canal cuando existe un incremento en el flujo de cationes. Sin estos aminoácidos los canales serían incapaces de neutralizar la carga negativa del resto de subunidades y no se podría activar apropiadamente el canal (Silva & Scott, 2020).

Es probable que en el canal de calcio dependiente de voltaje no se haya identificado al sensor de voltaje como una de las regiones más conservadas ya que dicho canal cumple con otras funciones fundamentales como: la contracción muscular y hormonal, la liberación de neurotransmisores y la integración sináptica. Además, en estudios previos también se ha encontrado que algunas isoformas del canal de calcio dependiente de voltaje presentan conservada la región proximal al carboxilo terminal, lo cual coincide con los resultados de esta investigación (Cmarko & Weiss, 2020).

Según Silva & Scott (2020), las regiones asociadas al sensor de voltaje, el filtro de selectividad y la apertura de los canales iónicos dependientes de voltaje, se encuentran más conservadas ya que de ellas depende el funcionamiento apropiado del canal. La identificación de las regiones conservadas es esencial ya que sus alteraciones pueden ser deletéreas (Démares *et al.*, 2018) y pueden ser utilizadas como blancos moleculares de insecticidas debido a que son relativamente estables (King, 2019). Sin embargo, antes de ello es necesario comprender las relaciones evolutivas de estos organismos para evitar daños colaterales sobre otros insectos (French-Constat *et al.*, 2006).

En este estudio se encontró que, a pesar de las diferencias en complejidad, comportamiento y hábitos entre las especies del mismo orden, las relaciones filogenéticas juegan un rol fundamental. Esto se evidencia en el hecho de que, en las filogenias, la mayoría de las especies que pertenecen al mismo orden, se encuentran agrupadas en los mismos clados. Por ejemplo, todas las especies de lepidópteros, de los tres canales analizados, forman un clado constituido únicamente por lepidópteros o por especies cercanas filogenéticamente como Díptera y Mecóptera.

No obstante, es complicado llegar a una conclusión sobre la evolución de los canales iónicos dependientes de voltaje del subfilo Hexapoda ya que una de las principales limitaciones de este estudio fue el acceso a los recursos computacionales y el número y calidad de las secuencias recuperadas. Además de la ausencia de representantes de órdenes como: Protura, Diplura, Archeognatha, Odonata, Zoraptera, Orthoptera, Mantophasmatodea, Embioptera, Phasmatodea, Mantodea y Megaloptera. La estandarización de las especies y órdenes estudiados en cada canal también hubiera facilitado la interpretación y comparación entre las filogenias de los canales, pero la información disponible en Uniprot era diferente para cada canal iónico dependiente de voltaje.

Dichas limitaciones se ven reflejadas en la filogenia del canal de sodio ya que, en algunos casos, únicamente se analizó un representante por orden. Por esta razón, puede que la posición de dichas especies en la filogenia no refleje la verdadera historia evolutiva de sus canales. Además, debe tomarse en cuenta que el subfilo Hexapoda está constituido por millones de especies que aún no han sido estudiadas en su totalidad. A pesar de los numerosos estudios filogenéticos, cladísticos y taxonómicos de los hexápodos, aún existen linajes, como algunos del orden Blattodea, que aún no se han dilucidado (Wang *et al.*, 2017). Por esta razón, es importante tomar en cuenta que las relaciones filogenéticas de los hexápodos continúan siendo resultas y aún existen varios vacíos de información.

A pesar de estas limitaciones, las filogenias muestran un patrón que indica que las especies más cercanas filogenéticamente, presentan canales iónicos dependientes de voltaje homólogos. Estos resultados sugieren que el uso desmedido de insecticidas podría afectar de igual manera a todas las especies de un mismo orden, inclusive si estas proporcionan importantes servicios ecosistémicos como: polinización, descomposición de desechos, control biológico de plagas y reciclaje de nutrientes. Esto tendría grandes repercusiones sobre las poblaciones de insectos benéficos para el medio ambiente ya que según Jankielsohn (2018), menos del 0.5% de las especies de insectos son plaga.

Las únicas especies en las que no se observó este mismo patrón fueron las que se recuperaron de los transcriptomas ensamblados del proyecto 1KTE. Es probable que sea consecuencia de un artefacto experimental producido durante la generación del transcriptoma ensamblado ya que los análisis transcriptómicos actúan bajo ciertos supuestos que frecuentemente no se cumplen, tales como: que el transcriptoma ensamblado representa la totalidad o una aproximación de la verdadera expresión de los genes y que la expresión del ensamblaje del transcriptoma es aceptable (Freedman *et al.*, 2020). De hecho, en la investigación de Freedman *et al.* (2020), se observó que, durante el ensamblaje de los transcriptomas, la diversidad y heterocigosidad usualmente se subestiman porque no se cumplen dichos supuestos.

Esto demuestra la complejidad de la transcriptómica *de novo* y la importancia de evaluar si se cumplen todos los supuestos de las herramientas bioinformáticas que se utilizan. En esta investigación, es probable que la herramienta (SOAPdenovo-Trans) que se utilizó para ensamblar los transcriptomas *de novo* del proyecto 1KITE, haya afectado los resultados. La desventaja de SOAPdenovo-Trans es incapaz de ensamblar regiones codificantes completas, lo cual explica, en parte, por qué durante la identificación de los marcos de lectura, se encontraron varias secuencias con marcos de lectura incompletos.

Otros factores que deben tomarse en cuenta, para desarrollar investigaciones de secuenciación con hallazgos sólidos, son la cobertura de la secuenciación y la redundancia de las secuencias ya que una baja cobertura y una alta redundancia pueden tener efectos sobre la interpretación biológica de los resultados y sobre los análisis posteriores que se realicen (Sims *et al.*, 2014). Por ello es indispensable descartar las secuencias de baja calidad o las secuencias que no se alinean adecuadamente. Sin embargo, en este estudio no se tuvo control y se desconocen todos los parámetros y criterios que se utilizaron durante la secuenciación de los transcriptomas del proyecto 1KITE.

En general, los resultados de este estudio evidencian la necesidad de continuar con los estudios asociados a los canales iónicos dependientes de voltaje, principalmente por la abundancia, diversidad y amplio espectro de hábitats de los hexápodos. Los patrones filogenéticos y las regiones conservadas que se identificaron en este estudio se espera que puedan ser utilizados como punto de partida para el desarrollo de insecticidas específicos para los insectos plaga ya que esto proporcionará mayor estabilidad y resiliencia en los sistemas agrícolas actuales y permitirá garantizar la seguridad alimentaria en el futuro.
VIII. Conclusiones

Las secuencias de canales iónicos dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) de las especies analizadas del subfilo Hexapoda, difieren en cuanto a longitud, índices de conservación, regiones más conservadas y número de secuencias disponibles en Uniprot.

La información actual sobre los canales iónicos dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) disponibles en Uniprot, representa menos de un tercio de la diversidad del subfilo Hexapoda.

El canal dependiente de voltaje con los índices de conservación más altos, de las especies analizadas del subfilo Hexapoda, fue el canal de potasio (*Shaker*); siendo el sensor de voltaje la región más conservada para el canal de sodio (*para*) y potasio (*Shaker*) y el extremo proximal al carboxilo terminal para el canal de calcio (*Dmca1A*).

A pesar de las limitaciones del estudio, se identificó, preliminarmente, un patrón en las filogenias que sugiere que las especies más cercanas filogenéticamente han desarrollado canales iónicos dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) homólogos.

IX. Recomendaciones

La principal limitación de este estudio fue la calidad y el número de secuencias recuperadas de los transcriptomas. Por esta razón, para futuros estudios se recomienda utilizar recursos computacionales más poderosos y volver a ensamblar los transcriptomas de la iniciativa 1KITE, y otros transcriptomas disponibles en NCBI utilizando Trinity. De esta manera, se puede tener más control sobre los parámetros utilizados y mejorar la reconstrucción de transcritos completos.

Las especies de los hexápodos analizados en este estudio no fueron suficientes para dilucidar completamente la evolución de los canales iónicos dependientes de voltaje. Un aumento en el número de especies de todos los órdenes, incluyendo Diplura, Mantodea, Embioptera, Odonata y Orthoptera podría mejorar la robustez de las filogenias y facilitar su interpretación.

En este estudio, únicamente se analizaron las secuencias de los canales iónicos dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*) del subfilo Hexapoda. Sin embargo, es recomendable analizar las variaciones de estos canales en otros grupos de animales que se podrían ver afectados por el uso desmedido de insecticidas, tales como: Aves, Mamíferos, Reptiles y Anfibios.

La validación experimental de los resultados de este estudio podría ser utilizado para evaluar el potencial de nuevas toxinas para el desarrollo de insecticidas específicos para insectos plaga. Por ello, se recomienda llevar a cabo un estudio en donde se evalúe la interacción de los aminoácidos de toxinas, que presentan potencial insecticida, con los sensores de voltaje y *loops* de inactivación de los canales dependientes de voltaje de sodio (*para*), potasio (*Shaker*) y calcio (*Dmca1A*).

X. Literatura citada

- Ademuwagun, I. et al. (2021). Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies and Treatment Dimensions. Frontiers in Neurology 12: 1-19.
- Alshukri, B. et al. (2019). Targeting the potassium ion channel genes SK and SH as a novel approach for control of insect pests: efficacy and biosafety. Pest Management Science 75: 2505-2516.
- Au, K. et al. (2010). Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Research 38: 4570–4578.
- Bao, W. & S. Sonoda. (2012). Resistance to cypermethrin in melon thrips, Thrips palmi (Thysanoptera: Thripidae), is conferred by reduced sensitivity of the sodium channel and CYP450-mediated detoxification. Applied entomology and zoology 47(4): 443-448.
- Beutel, R. et al. (2017). The phylogeny of Hexapoda (Arthropoda) and the evolution of megadiversity. Arthropodan Embryological Society of Japan 51: 1-15.
- Brown, S. & M. Pfrender. (2019). *Insect genomics: methods and protocols*. Springer, New York. 231 pp.
- Cao, Y. et al. (2019). Role of modified atmosphere in pest control and mechanism of its effect on insects. Frontiers in Physiology 10: 1-8.
- Cmarko, L., & N. Weiss. (2020). Selective inhibition of neuronal Ca v 3.3 T-type calcium channels by TAT-based channel peptide. Molecular brain 13(1): 1-3.
- Catterall, W. (2000). *Structure and regulation of voltage-gated Ca*²⁺ *channels*. Annual Review of Cell and Developmental Biology 16: 521-55.

- Cheng, X. et al. (2021). eVITTA: a web-based visualization and inference toolbox for transcriptome analysis. Nucleic Acids Research 1-9.
- Chesters, D. (2020). *The phylogeny of insects in the data-driven era*. Systematic Entomology 45(3): 540-551.
- Christiaens, O.; J. Niu & C. Nji. (2020). *RNAi in insects: a revolution in fundamental research and pest control applications*. Insects 11(7): 1-6.
- Darriba, D. et al. (2020). ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37(1): 291294.
- De la Cruz, J. (2005). *Entomología morfología y fisiología de insectos*. Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, 220 pp.
- Démares, F. et al. (2018). Fatty acid and related potassium Kv2 channel blockers: toxicity and physiological actions on mosquitoes. Insects 9(4): 155.
- Dimmer, E. *et al.* (2012). *The UniProt-GO annotation database in 2011*. Nucleic acids research 40(D1): D565-D570.
- Dolphin, A. (2016). Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. Physiology 19: 5369-5390.
- Dong, K. (2007). *Insect sodium channels and insecticide resistance*. Invertebrate Neuroscience 7(1): 17-30.
- Engel, M. (2015). Insect evolution. Current Biology 25(19): R868-R872.
- Engel, M. & D. Grimaldi. (2004). *New light shed on the oldest insect*. Nature 427(6975): 627-630.
- Entizne, J. et al. (2020). TranSuite: a software suite for accurate translation and characterization of transcripts. bioRxiv 1-35.
- Ffrench-Constant, R. et al. (2016). Ion channels as insecticide targets. Journal of Neurogenetics 30(3-4): 163-177.
- Freedman, A.; M. Clamp; T. Sackton. (2021). *Error, noise, and bias in de novo transcriptome assemblies*. Molecular ecology resources 21(1): 18-29.

- Grabherr, M. et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7): 644-652.
- Haas, B. et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8(8): 1494-1512.
- Haas, B. & M. Zody. (2010). Advancing RNA-Seq analysis. Nature Biotechnology 28(5): 421-423.
- Hardy, M. (2014). *Resistance is not futile: It shapes insecticide discovery*. Insects 5(1) 227-242.
- Hebels, D. et al. (2017). cBiT: a transcriptomics database for innovative biomaterial engineering. Biomaterials (149): 88-97.
- Higgins, M.; M. Demir & C. Tate. (2003). Calnexin co-expression and the use of weaker promoters increase the expression of correctly assembled Shaker potassium channel in insect cells. Biochimica et Biophysica Acta 1610(1): 124-132.
- Heginbotham, L. *et al.* (1994). *Mutations in the K+ channel signature sequence*. Journal of Biophys 66: 1061-1067.
- Hibino, H. et al. (2010). Inwardly rectifying potassium channels: their structure, function, and physiological roles. American Physiological Society 90: 291-366.
- Hölzer, M., & M. Marz. (2019). *De novo transcriptome assembly: A comprehensive crossspecies comparison of short-read RNA-Seq assemblers*. GigaScience 8(5): giz039.
- Hrdlickova, R.; M. Toloue & B. Tian. (2016). RNA-Seq methods for transcriptome analysis. Wiley Periodicals 1-17.
- Huang, Y. et al. (2017). Peptide-rich venom from the spider Heteropoda venatoria potently inhibits insect voltage-gated sodium channels. Toxicon 125: 44-49.
- Jabboure, G. & K. Kaul. (2019). *Genomic applications in pathology*. Springer, Birmingham 821 pp.

- Jankielsohn, A. (2018). *The importance of insects in agricultural ecosystems*. Advances in Entomology 6(2): 62-73.
- Kamb, A. & L. Iverson. (1987). Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell Press 50: 406-413.
- Karunaratne, S. et al. (2018). Insecticide resistance in mosquitoes: development, mechanisms and monitoring. Ceylon Journal of Science 47(4): 299-309.
- Kent, W. (2002). BLAT-the BLAST-like alignment tool. Genome Research 12: 656–664.
- King, G. (2007). *Modulation of insect Cav channels by peptidic spider toxins*. Toxicon 49: 513-530.
- King, G. (2019). *Tying pest insects in knots: the deployment of spider-venom-derived knottins as bioinsecticides*. Pest management science 75(9): 2437-2445.
- Li, H. et al. (2013). Transcriptome analysis and screening for potential target genes for RNAi-mediated pest control of the beet armyworm, Spodoptera exigua. PLoS ONE 8(6): e65931.
- Lipkind, G. & H. Fozzard. (2005). *Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels*. Molecular Pharmacology 68(6): 1611-1622.
- Littleton, T. & B. Ganetzky. (2000). *Ion channels and synaptic organization: analysis of the Drosophila genome*. Neuron 26: 35-43.
- Liu, B. et al. (2017). Characterization of the voltage-gated sodium channel of the Asian citrus psyllid, Diaphorina citri. Insect science 24(1): 47-59.
- Marguerat, S. & J. Bähler. (2010). *RNA-seq: from technology to biology*. Cellular and Molecular Life Sciences 67: 569-579.
- McGettigan, P. (2013). *Transcriptomics in the RNA-seq era*. Current Opinion in Chemical Biology 17(1): 4-11.
- Minelli, A.; G. Boxshall & G. Fusco. (2013). *Arthropod biology and evolution*. Springer, Berlin Heidelberg 532 pp.

- Misof, B. *et al.* (2014). *Phylogenomics resolves the timing and pattern of insect evolution*. Science 346(6210): 763-767.
- Moignot, B. et al. (2009). The discovery of a novel sodium channel in the cockroach Periplaneta americana: evidence for an early duplication of the para-like gene. Insect Biochemistry and Molecular Biology 39(11): 814-823.
- Moran, Y. et al. (2015). Evolution of voltage-gated ion channels at the emergence of *Metazoa*. Journal of Experimental Biology, 218(4): 515-525.
- O'Leary, N. et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44(D1): D733-D745.
- Olson, R. et al. (2008). Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster. Insect Biochemistry and Molecular Biology 38(5): 604-610.
- Paeger, L.; V. Bardos & P. Kloppenburg. (2017). Transient voltage-activated K⁺ currents in central antennal lobe neurons: cell type-specific functional properties. Journal of Neurophysiology 117(5): 2053-2064.
- Pauli, T. et al. (2016). Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects: insect insulator proteins. BMC Genomics 17(1): 861.
- Pérez, N. *et al.* (2017). *Canalopatías, un novedoso enfoque en la fisiopatología del dolor*.Revista Cubana de Pediatría 89(3): 381-394.
- Pongs, O. et al. (1988). Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. The EMBO Journal 7(4):1087-1096.
- Purves, D. (2004). Neuroscience. 3rd Ed, Sinauer Associates, Massachusetts, 773 pp.
- Rambaut A, et al. (2020). A dynamic nomenclature for SARS-CoV-2 to assist genomic epidemiology. Nature microbiology 5(11): 1403-1407.
- RStudio Team (2020). *RStudio: Integrated Development for R. RStudio*. PBC, Boston, MA URL http://www.rstudio.com/.

- Santacruz-Toloza, L. et al. (1994). Glycosylation of Shaker potassium channel protein in insect cell culture and in Xenopus oocytes. Biochemistry 33(18): 5607-5613.
- Sasaki, G. et al. (2013). Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha. BMC Evolutionary Biology 13(1): 236.
- Shelomi, *et al.* (2020). *Multifunctional cellulase enzymes are ancestral in Polyneoptera*. Insect Molecular Biology 29(1): 124-135.
- Shen, H. et al. (2017). Structure of a eukaryotic voltage-gated sodium channel at nearatomic resolution. Science 355(6328): 1-12.
- Shen, H. et al. (2018). Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362: 6412.
- Silva, J. & J. Scott. (2020). *Conservation of the voltage-sensitive sodium channel protein within the Insecta*. Insect Molecular Biology 29(1): 9-18.
- Sims, D. et al. (2014). Sequencing depth and coverage: key considerations in genomic analyses. Nature Reviews Genetics 15(2): 121-132.
- Smith, L. et al. (1996). A Drosophila calcium channel subunit gene maps to a genetic locus associated with behavioral and visual defects. The Journal of Neuroscience (16): 7868-7879.
- Soderlund, D. (2017). *Targeting Voltage-Gated Sodium Channels for Insect Control: Past, Present, and Future.* American Chemical Society 1:37-51.
- Spong, K.; R. Andrew & R. Robertson. (2016). Mechanisms of spreading depolarization in vertebrate and insect central nervous systems. Journal of Neurophysiology 116(3): 1117-1127.
- Stork, N. (2018). *How many species of insects and other terrestrial arthropods are there on Earth?* Annual review of entomology 63: 31-45.
- Stork, N. et al. (2015). New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National Academy of Sciences 112(24): 7519-7523.

- Thackeray, J. & B. Ganetzky. (1995). *Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para*. Genetics (141): 203-214.
- Trapnell, C. *et al.* (200). *TopHat: discovering splice junctions with RNA-seq.* Bioinformatics 25: 1105–1111.
- Trifinopoulos, J. et al. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research 44(W1): W232-W235.
- UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic acids research 47(D1): D506-D515.
- Wang, Z.; M. Gerstein & M. Snyder. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1): 57-63.
- Wang, K. et al. (2010). MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Resarch 38: e178.
- Wang, H. et al. (2020). Molecular characterization and distribution of the voltage-gated sodium channel, para, in the brain of the grasshopper and vinegar fly. Journal of Comparative Physiology 206(2): 289-307.
- Wang, Z. et al. (2017). Reconstructing the phylogeny of Blattodea: robust support for interfamilial relationships and major clades. Scientific Reports 7(1): 1-8.
- Waterhouse, A.M., Procter, J.B., Martin, D.M.A, Clamp, M., Barton, G.J (2009).
 Jalview version 2: A Multiple Sequence Alignment and Analysis Workbench.
 Bioinformatics 25 (9): 1189-1191.
- Watson, A. & F. Schürmann. (2002). Synaptic structure, distribution, and circuitry in the central nervous system of the locust and related insects: synapses in the CNS of Orthopteran Insects. Microscopy Research and Technique 56(3): 210-226.
- Yin, C. et al. (2016). InsectBase: a resource for insect genomes and transcriptomes. Nucleic Acids Research 44(D1): D801-D807.
- Yu, F. et al. (2005). Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacological Reviews 57(4): 387-395.

- Zhang, T. *et al.* (2011). *Molecular characterization and functional expression of the DSC1 channel.* Insect Biochemistry and Molecular Biology 41(7): 451-4V.
- Zhang, G., & W. Zhang (2019). Protein-protein interaction network analysis of insecticide resistance molecular mechanism in Drosophila melanogaster. Archives of insect biochemistry and physiology 100(1): e21523.

XI. Apéndices

A. Metadatos de los transcriptomas ensamblados del proyecto 1KITE

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
Protura	Acerentomidae	Acerentomon so.	INSjdsTAHRAAPEI-34	65684354
	Neanuridae	Anurida maritima	INSnfrTAIRAAPEI-21	43241879
-	Onychiuridaa	Tetrodontophora	INSIDETAKDAADEL 27	72525620
	Onychiundae	bielanensis	INSJUSTAKKAAI EI-S7	12525027
- Collembola	Tomoceridae	Pogonognathellus	INShauT Δ IR Δ Δ PFI-89	6/6/3903
Concinooia	Tomoceridae	INShauTAJRAAPEI-89 longicornis Sminthurus INShauTAJRAAPEI-89 INShauTAJRAAPEI-89	0+0+3703	
-	Sminthuridae	Sminthurus	INShauTAFRAAPFI-9	60235809
		viridis		00233003
-	Isotomidae	Folsomia candida	INSbttTIRAAPEI-18	51948729
	Campodidae	Campodea	INStmbTABRAAPEI-87	52146656
Diplura	Cumpourdue	augens		52110050
Dipiuiu -	Janygidae	Occasjapyx	INSidsTANRAAPEI-43	58498825
	Jupygidde	japonicus		50170025
	Meinertellidae	Meinertellus	INSnfrTAFRAAPEI-18	97797910
Archeognatha		cundinamarcensis		
-	1000000000000000000000000000000000000	INSnfrTAJRAAPEI-22	77885791	

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
OrdenFamiliaEspecieCódigo de accesoTaZygentomaLepidotrichidaeTricholepidion gertschiINSbttTJRAAPEI-19ZygentomaAteluridaeAtelura formicariaINSjdsTAVRAAPEI-37LepismatidaeThermobia domesticaINSbttTSRAAPEI-29LepismatidaeCalopteryx splendensINSbttTSRAAPEI-29OdonataCordulegastridaeCordulegaster boltoniiINSfgTAHRAAPEI-84EpiophlebiidaeEpiophlebia superstesINSfrgTAHRAAPEI-18EphemeropteraBaetidaeBaetis pumilusINShauTAKRAAPEI-90IsonychiidaeIsonychia bicolorINSjdsTAGRAAPEI-33EphemerellidaeEurylophella sp.INSytvTCERAAPEI-30ZorapteraZorotypidaeZorotypus caudelliINSjdsTAWRAAPEI-39DermapteraForficulidaeForficula auriculariaINSjdsTBNRAAPEI-89	Lepidotrichidae	Tricholepidion gertschi	INSbttTJRAAPEI-19	101701664
	116075310			
-	Lepismatidae	Thermobia domestica	Código de acceso INSbttTJRAAPEI-19 INSjdsTAVRAAPEI-37 INSbttTSRAAPEI-29 INStmbTAARAAPEI-84 INSjdsTBHRAAPEI-74 INSfrgTAHRAAPEI-18 INShauTAKRAAPEI-18 INSjdsTAGRAAPEI-33 INSytvTCERAAPEI-36 INSnfrTAKRAAPEI-30 INSjdsTAWRAAPEI-39 INSjdsTAWRAAPEI-39	150072647
Odonata	Calopterygidae	Calopteryx splendens	INStmbTAARAAPEI-84	39162505
	Cordulegastridae	Cordulegaster boltonii	INSjdsTBHRAAPEI-74	59125445
	Epiophlebiidae	Epiophlebia superstes	idion INSbttTJRAAPEI-19 i INSjdsTAVRAAPEI-37 ria bia INSbttTSRAAPEI-29 ca ryx INStmbTAARAAPEI-84 ns ster INSjdsTBHRAAPEI-74 ii Pbia INSfrgTAHRAAPEI-74 ii INSfrgTAHRAAPEI-18 es nilus INShauTAKRAAPEI-90 vicolor INSjdsTAGRAAPEI-33 lla sp. INSytvTCERAAPEI-36 danica INSnfrTAKRAAPEI-30 vis INSjdsTAWRAAPEI-39 li INSjdsTBNRAAPEI-89 via INSjdsTBNRAAPEI-89	60894521
	Baetidae	Baetis pumilus	INShauTAKRAAPEI-90	41960987
	Isonychiidae	Isonychia bicolor	INSjdsTAGRAAPEI-33	53798020
Ephemeroptera	Ephemerellidae	Eurylophella sp.	INSytvTCERAAPEI-36	54471195
-	Ephemeridae	Ephemera danica	INSnfrTAKRAAPEI-30	54472357
Zoraptera	Zorotypidae	Zorotypus caudelli	INSjdsTAWRAAPEI-39	129941111
Dermaptera	Forficulidae	Forficula auricularia	INSjdsTBNRAAPEI-89	73777520

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
	Apachyidae	Apachyus charteceus	INSfrgTALRAAPEI-22	46863692
	Leuctridae	EspecieCódigo de accesoTamaApachyus charteceusINSfrgTALRAAPEI-22INSfrgTALRAAPEI-22Leuctra sp.INSnfrTALRAAPEI-31INSnfrTALRAAPEI-31Perla marginataINShauTALRAAPEI-93INStmbTBFRAAPEI-31Cosmioperla kunaINStmbTBFRAAPEI-31INStmbTBFRAAPEI-31Gryllotalpa sp.INSfrgTAXRABPEI-44INSnfrTBIRAAPEI-95Tetrix subulataINSnfrTBIRAAPEI-95INStmbTBCRBAPEI-33IneatusINStmbTBCRBAPEI-33INSnfrTAMRAAPEI-33IneatusINSnfrTAMRAAPEI-33INSfrgTBBRAAPEI-56Sp.Galloisiana yuasaiINSfrgTAKRAAPEI-21yuasaiINSnfrTBKRAAPEI-9INSnfrTBKRAAPEI-9bifratrilectaINSnfrTBKRAAPEI-9INSnfrTBKRAAPEI-9Haploembia 	53350653	
Diacontora	Perlidae	Perla marginata	INShauTALRAAPEI-93	60950333
Flecoptera	Eustheniidae	Cosmioperla kuna	Código de acceso INSfrgTALRAAPEI-22 INSnfrTALRAAPEI-31 INShauTALRAAPEI-93 INStmbTBFRAAPEI-31 INSfrgTAXRABPEI-44 INSnfrTBIRAAPEI-95 INShauTANRAAPEI-95 INStmbTBCRBAPEI-33 INSnfrTAMRAAPEI-33 INSfrgTBBRAAPEI-36 INSfrgTAKRAAPEI-21 INSfrgTAKRAAPEI-21 INSnfrTBKRAAPEI-9	50156495
	Gryllotalpidae	Gryllotalpa sp.	INSfrgTAXRABPEI-44	73008592
ApachyidaeInputityisis charteceusINSfrgTALRA charteceusPlecopteraLeuctridaeLeuctra sp.INSfrfTALRA Perla marginataPlecopteraPerlidaePerla marginataINShauTALRA LeustheniidaeEustheniidaeCosmioperla INStmbTBFRA kunaGryllotalpidaeGryllotalpidaeGryllotalpa sp.INSfrgTAXRA 	Rhaphidophoridae	Ceuthophilus sp.	INSnfrTBIRAAPEI-95	108899720
	INShauTANRAAPEI-95	56856043		
	Proscopiidae	Prosarthria teretrirostris	INStmbTBCRBAPEI-33	65970495
	Acrididae	Stenobothrus lineatus	INSfrgTALRAAPEI-22 INSfrgTALRAAPEI-31 INSnfrTALRAAPEI-31 INShauTALRAAPEI-93 INStmbTBFRAAPEI-31 INSfrgTAXRABPEI-44 Sp. INSfrgTAXRABPEI-44 INShauTANRAAPEI-95 INStmbTBCRBAPEI-33 INSfrgTBBRAAPEI-33 INSfrgTBBRAAPEI-33 INSfrgTAKRAAPEI-56 INSfrgTAKRAAPEI-21 InSfrgTAKRAAPEI-17 INSytvTAHRAAPEI-17	137719092
Mantophasmatodea	Tanzaniophasmatidae	Tanzaniophasma sp.	INSfrgTBBRAAPEI-56	71590850
Carillabletta dag		Galloisiana yuasai	INSfrgTAKRAAPEI-21	85306936
		Grylloblatta bifratrilecta	INSnfrTBKRAAPEI-9	76044505
Embioptera	Oligotomidae	Haploembia palaui	INSytvTAHRAAPEI-17	76738477

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
		Aposthonia japonica	INSfrgTAZRAAPEI-46	96993605
Phasmatodea	Phasmatidae	Peruphasma schultei	INSfrgTAORAAPEI-33	97061100
Phasmatodea	Heteropterygidae	Aretaon asperrimus	Código de accesoTamaINSfrgTAZRAAPEI-46aINSfrgTAORAAPEI-33aINSfrgTAORAAPEI-33sINStmbTBERAAPEI-30maeINSnfrTBPRAAPEI-15sINShauTAMRAAPEI-94osaINShauTAMRAAPEI-90ataINSfrgTASRAAPEI-36posINSfrgTAVRAAPEIaINSfrgTAVRAAPEIaINSfrgTAARAAPEI-19asINSfrgTAARAAPEI-19asINStrbTBPRAAPEI-20asINStmbTBPRAAPEI-20asINSbusTBMRAAPEI-78	90995324
	Timematidae	Timema cristinae		60328114
TimematidaeTimema cristinaeINSnfrTBPRAAPEMatallyticidaeMetallyticus splendidusINShauTAMRAAPMantidaeMantidaeMantis religiosaINShauTAARAAPIEpusidaeEmpusa pennataINSfrgTASRAAPEBlaberidaeBlaberidaeBlaberus atroposINSfrgTAVRAAIBlattidaePeriplaneta americanaINSfrgTAARAAPE	Metallyticidae	Metallyticus splendidus	INShauTAMRAAPEI-94	125171901
	Mantidae	Mantis religiosa	INShauTAARAAPEI-90	84654583
	INSfrgTASRAAPEI-36	125690890		
	Blaberidae	Blaberus atropos	INSfrgTAVRAAPEI	123531022
Blattodea	Blattidae	Periplaneta americana	INSfrgTAARAAPEI-19	102158515
	Cryptocercidae	Cryptocercus wrighti	schulteiInstruction and ErsoAretaon asperrimusINStmbTBERAAPEI-30Fimema cristinaeINSnfrTBPRAAPEI-15Metallyticus splendidusINShauTAMRAAPEI-94Mantis religiosaINShauTAMRAAPEI-90Empusa pennataINSfrgTASRAAPEI-36Blaberus atroposINSfrgTAVRAAPEIPeriplaneta americanaINSfrgTAARAAPEI-19Cryptocercus wrightiINSytvTCDRAAPEI-35Mastotermes darwiniensisINStmbTBPRAAPEI-20Prorhinotermes simplexINSbusTBMRAAPEI-78	93761739
Isontera	Mastotermitidae	Mastotermes darwiniensis	INStmbTBPRAAPEI-20	207806785
Isoptoru	Rhinotermitidae	Prorhinotermes simplex	INSfrgTAZRAAPEI-46 INSfrgTAORAAPEI-33 INStmbTBERAAPEI-30 INSnfrTBPRAAPEI-15 INShauTAMRAAPEI-94 INShauTAARAAPEI-90 INSfrgTASRAAPEI-36 INSfrgTAVRAAPEI INSfrgTAARAAPEI-19 INSfrgTAARAAPEI-19 INSfrgTAARAAPEI-19 INSytvTCDRAAPEI-35 INStmbTBPRAAPEI-20	112342122

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
T il	Thripidae	Frankliniella cephalica	INSjdsTABRAAPEI-20	49896125
Thysanoptera		Thrips palmi	INSjdsTACRAAPEI-21	41562834
	Phlaeothripidae	EspecieCódigo de accesoTamFrankliniella cephalicaINSjdsTABRAAPEI-20Thrips palmiINSjdsTACRAAPEI-21Gynaikothrips ficorumINSjdsTADRAAPEI-22ficorumINSjdsTADRAAPEI-22ficorumINSfrgTAPRAAPEI-33vaporariorumINSfrgTAPRAAPEI-35Acanthocasuarina muellerianaeINSfrgTBCRAAPEI-57lugensINSfrgTBCRAAPEI-57Planococcus citriINSjdsTAIRAAPEI-35Essigella 	105996672	
	Aleyrodidae Trialeur Aleyrodidae vaporari Acanthoca	Trialeurodes vaporariorum	INSfrgTAPRAAPEI-33	84279737
-	Triozidae	Acanthocasuarina muellerianae	INSytvTALRAAPEI-35	62236283
	Delphacidae	Nilaparvata lugens	INSfrgTBCRAAPEI-57	68691878
	Pseudococcidae	Planococcus citri	INSjdsTAIRAAPEI-35	60049442
Hemiptera	Lachnidae	Essigella californica	INSytvTBHRAAPEI-14	82054932
	Acanthosomatidae	Acanthosoma haemorrhoidale	INSnfrTAPRAAPEI-36	50514452
-	Miridae	Notostira elongata	INShauTAPRAAPEI-9	51485708
	Nepidae	Ranatra linearis	INSytvTANRAAPEI-37	53926986
	Veliidae	Velia caprai	INSnfrTAORAAPEI-35	38942648

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
	Peloridiidae	Xenophysella greensladeae	INSjdsTARRAAPEI-47	114091208
-	Cercopidae	Cercopis vulnerata	INSnfrTANRAAPEI-34	56203966
	Cicadidae	Okanagana villosa	Cercopis vulnerataINSnfrTANRAAPEI-3456203966Okanagana villosaINSnfrTBLRAAPEI-1188426883VillosaINSnfrTBLRAAPEI-1188426883Ectopsocus briggsiINSytvTCFRAAPEI-3743173496Liposcelis bostrychophilaINStmbTBGRAAPEI-3354513870Menopon gallinaeINSfrgTAFRAAPEI-3151721077Tenthredo koehleriINSfrgTATRAAPEI-3754524212Cotesia vestalisINSnfrTAQRAAPEI-3740674472	88426883
Psocodea	Ectopsocidae	Ectopsocus briggsi	INSytvTCFRAAPEI-37	43173496
	Liposcelididae	Liposcelis bostrychophila	INStmbTBGRAAPEI-33	54513870
-	Menoponidae	Menopon gallinae	INSjdsTARRAAPEI-47 illa INSnfrTANRAAPEI-34 a INSnfrTANRAAPEI-34 a INSnfrTANRAAPEI-34 a INSnfrTBLRAAPEI-34 a INSnfrTBLRAAPEI-11 us INSytvTCFRAAPEI-37 is INStmbTBGRAAPEI-33 hila Illinae INSfrgTAFRAAPEI-31 io INSfrgTATRAAPEI-37 talis INSnfrTAQRAAPEI-37 talis INSnfrTAQRAAPEI-13 na INSjdsTAURAAPEI-62 dula INShauTAQRABPEI-11 a INSytvTCFRAAPEI-43	51721077
	Tenthredinidae	Tenthredo koehleri	INSfrgTATRAAPEI-37	54524212
-	Braconidae	Cotesia vestalis	INSnfrTAQRAAPEI-37	40674472
Hymenoptera	FamiliaEspecieCódigo de accesoTamaño de loPeloridiidaeXenophysella greensladeaeINSjdsTARRAAPEI-47CercopidaeCercopis vulnerataINSnfrTANRAAPEI-34CicadidaeOkanagana villosaINSnfrTBLRAAPEI-11CicadidaeOkanagana villosaINSnfrTBLRAAPEI-11EctopsocidaeEctopsocus briggsiINSytvTCFRAAPEI-37EctopsocidaeLiposcelis bostrychophilaINStmbTBGRAAPEI-33MenoponidaeMenopon gallinaeINSfrgTAFRAAPEI-31TenthredinidaeTenthredo koehleriINSfrgTATRAAPEI-37BraconidaeCotesia vestalisINSnfrTAQRAAPEI-37BraconidaeCotesia vestalisINSnfrTAQRAAPEI-13FigitidaeLeptopilina clavipesINSfrgTATRAAPEI-62ChrysididaeChrysis viridulaINShauTAQRABPEI-61teraInocelliidaeInocellia crassicornis	62867128		
$ \begin{array}{c} \begin{array}{c} Cercopidae & Cercopis \\ vulnerata & INSnfrTANRAAPEI-34 \\ \end{array} \\ \hline \\ \begin{array}{c} Cicadidae & Okanagana \\ villosa & INSnfrTBLRAAPEI-11 \\ \end{array} \\ \begin{array}{c} \\ Psocodea & Ectopsocidae & Ectopsocus \\ briggsi & INSytvTCFRAAPEI-37 \\ \end{array} \\ \hline \\ \begin{array}{c} Ectopsocidae & Liposcelis \\ bostrychophila & INSfrgTAFRAAPEI-33 \\ \end{array} \\ \hline \\ \begin{array}{c} Menoponidae & Menopon gallinae & INSfrgTAFRAAPEI-31 \\ \end{array} \\ \hline \\ \begin{array}{c} Psocodea & INSfrgTAFRAAPEI-31 \\ \end{array} \\ \hline \\ \begin{array}{c} Psocodea & INSfrgTAFRAAPEI-31 \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} Psocodea & INSfrgTAFRAAPEI-31 \\ \end{array} \\ \hline \\ \begin{array}{c} Psocodea & INSfrgTAFRAAPEI-31 \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} Psocodea & INSfrgTAFRAAPEI-31 \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} Psocodea & INSfrgTAFRAAPEI-31 \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-31 \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} Psocodea & INSfrgTAFRAAPEI-31 \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-31 \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Psocodea & INSfrgTAFRAAPEI-37 \\ \hline \\ $	Figitidae	Leptopilina clavipes	INSjdsTAURAAPEI-62	36441661
	50631093			
Raphidioptera	Inocelliidae	Inocellia crassicornis	INSytvTCFRAAPEI-43	47518015

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
	Raphidiidae	Xanthostigma xanthostigma	INSnfrTAGRAAPEI-19	55791070
Megaloptera	Corydalidae	Corydalus cornutus	INSbttTKRAAPEI-18	28614962
_	Coniopterygidae	Conwentzia psociformis	INSjdsTBQRAAPEI-94	53524681
Neuroptera	Osmylidae	Osmylus fulvicephalus	Codigo de accesoTamINSnfrTAGRAAPEI-19INSbttTKRAAPEI-18INSjdsTBQRAAPEI-94INSjdsTBQRAAPEI-94INSjdsTBJRAAPEI-79INSnfrTARRAAPEI-39INSjdsTATRAAPEI-39INSytvTBKRAAPEI-43INShauTBERAAPEI-33INShauTAYRAAPEI-19INSytvTAJRAAPEI-19INSnfrTBERAAPEI-19INSjdsTBSRAAPEI-9INSjdsTBSRAAPEI-8	46839112
-	Crysopidae	Dichochrysa prasina	INSnfrTARRAAPEI-39	84208063
	Myrmeleontidae	Euroleon nostras	INSjdsTATRAAPEI-57	39433569
Strepsiptera	Stylopidae	Stylops melittae	INSytvTBKRAAPEI-43	37416459
	Staphylinidae	Aleochara curtula	INShauTBERAAPEI-33	36701745
Coleontera	Meloidae	Meloe violaceus	INShauTAYRAAPEI-19	31258013
Coleoptera	Lepiceridae	Lepicerus sp.	INSnfrTAGRAAPEI-19 INSbttTKRAAPEI-18 INSjdsTBQRAAPEI-94 INSjdsTBJRAAPEI-79 INSnfrTARRAAPEI-39 as INSjdsTATRAAPEI-39 INSytvTBKRAAPEI-43 ula INShauTBERAAPEI-43 ula INShauTAYRAAPEI-19 INSytvTAJRAAPEI-19 INSytvTAJRAAPEI-19 INSnfrTBERAAPEI-19 INSnfrTBERAAPEI-9 INSjdsTBSRAAPEI-8	77665562
	Gyrinidae	Gyrinus sp.	INSnfrTBERAAPEI-19	40143106
	Rhyacophilidae	Rhyacophila fasciata	INSjdsTBSRAAPEI-9	30099655
Trichoptera	Hydropsychidae	Hydroptila actia/agrosa	INSnfrTBJRAAPEI-8	42318761

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
	Limnephilidae	Platycentropus radiatus	INSbttTARAAPEI-9	41256049
-	Eriocraniidae	Dyseriocrania subpurpurella	INSbusTBDRAAPEI-79	51113112
	Hepialidae	Triodia sylvina	INSnfrTAVRAAPEI-9	76682709
	Adelidae	EspecieCódigo de accesoPlatycentropus radiatusINSbttTARAAPEI-9Platycentropus radiatusINSbttTARAAPEI-9Dyseriocrania subpurpurellaINSbusTBDRAAPEI-79Triodia sylvinaINSnfrTAVRAAPEI-9Nemophora pilellaINShauTABRAAPEI-93Yponomeuta evonymellaINShauTBFRAAPEI-34Zygaena faustaINSjdsTAWRAAPEI-39Polyommatus icarusINShauTBGRAAPEI-35Ceratophyllus 	51403290	
_ Lepidoptera _	Yponomeutidae	Yponomeuta evonymella	INShauTBFRAAPEI-34	57792893
	Zygaenidae	Zygaena fausta	INSjdsTAWRAAPEI-39	46823159
	Lycaenidae	Polyommatus icarus	INShauTBGRAAPEI-35	43299678
	Papilionidae	Parides eurimedes	INSbusTBDRAAPEI-9 INSbusTBDRAAPEI-9 INSnfrTAVRAAPEI-9 INShauTABRAAPEI-93 INShauTBFRAAPEI-34 INSjdsTAWRAAPEI-34 INShauTBGRAAPEI-35 INSjdsTAJRAAPEI-35 INSjdsTAJRAAPEI-36 INSnfrTBARAAPEI-15 SINStmbTAYRAAPEI-17 INStmbTAYRAAPEI-13 INSbttTARAAPEI-83	52055715
Siphonaptera	Ceratophyllidae	Ceratophyllus gallinae	iena fausta INSjdsTAWRAAPEI-39 yommatus INShauTBGRAAPEI-35 icarus INSjdsTAJRAAPEI-36 urimedes INSjdsTAJRAAPEI-36 atophyllus INSnfrTBARAAPEI-15 gallinae	34595854
Siphonaptera _	Pulicidae	Ctenocephalides felis	INStmbTAYRAAPEI-17	34394194
Mecoptera	Boreidae	Boreus hyemalis	INStmbTAWRAAPEI-13	56514256
	Bittacidae	Bittacus pilicornis	INSbttTARAAPEI-83	21703701

Orden	Familia	Especie	Código de acceso	Tamaño del ensamblaje publicado (pb)
	Panorpidae	Panorpa vulgaris	INShauTACRAAPEI-94	35426605
	Trichoceridae	Trichocera saltator	INSjdsTBERAAPEI-56	71458809
	Bibionidae	Bibio marci	INSbusTBCRABPEI-135	25755820
Diptera	Bombyliidae	Bombylius major	INSbusTBKRAAPEI-76	33729087
	Chloropidae	Lipara lucens	INSytvTBWRAAPEI-20	57468713
	Tachinidae	Triarthria setipennis	INSnfrTBFRAAPEI-90	45907230

F	% de contaminación		No.	Etapa de	C	País		
Especie	del ensamblaje	GU%	Individuos	desarrollo	Sexo		Ano de colecta	
Acerentomon sp.	0.211	40.9	399	na	na	Australia	2011	
Anurida maritima	0.229	41.5	100	adulto	na	Holanda	2011	
Tetrodontophora	0.079	37.5	30	no	na	Alemania	2011	
bielanensis	0.079	57.5	30	IId	Па	Alemania	2011	
Pogonognathellus	0.01	37.1	30	adulto	na	Alemania	2011	
longicornis	0.91	57.1	30	aduno	Па	Alemania	2011	
Sminthurus viridis	0.08	41.7	53	adulto	na	Alemania	2011	
Folsomia candida	0.663	44.7	320	na	na	na	2011	
Campodea augens	0.383	36.9	43	adulto	na	Austria	2012	
Occasjapyx japonicus	0.052	46.7	4	adulto	hembra	Japón	2011	
Meinertellus	0.071	38.1	5	adulto	na	Dorú	2011	
cundinamarcensis	0.071	36.1	5	adulto	na	I Clu	2011	
Machilis hrabei	0.174	39	8	adulto	na	Austria	2011	
Tricholepidion gertschi	0.074	39.4	7	na	na	USA	2011	
Atelura formicaria	0.021	41.2	10	adulto	na	Austria	2011	
Thermobia domestica	0.023	39.3	50	na	na	Alemania	2011	
Calopteryx splendens	0.342	40.2	7	adulto	na	Suiza	2011	
Sympetrum vicinum	no	no	no	no	no	no	no	
Cordulegaster boltonii	0.055	40.2	1	adulto	macho	Alemania	2011	

CUADRO 6. Metadatos de los transcriptom	as y de las especi	les de Hexápodos anal	izados en el proyecto 1KITE
--	--------------------	-----------------------	-----------------------------

Especie	% de contaminación	GC%	No.	Etapa de	Sexo	País	Año de colecta
	dei ensamblaje		individuos	desarrollo			
Epiophlebia superstes	0.086	39.3	5	adulto	macho	Japón	2011
Baetis pumilus	0.172	46.3	26	adulto	na	Alemania	2011
Isonychia bicolor	0.078	39.2	na	na	na	USA	2011
Eurylophella sp.	0.093	36.8	na	na	na	USA	2012
Ephemera danica	0.132	38.1	2	adulto	mixto	Alemania	2011
Zorotypus caudelli	0.68	35	65	na	na	Malasia	2011
Forficula auricularia	0.17	36.3	4	adulto	mixto	Alemania	2011
Apachyus charteceus	0.403	33.6	1	adulto	hembra	Malasia	2011
Leuctra sp.	0.092	43.3	8	adulto	na	Alemania	2011
Perla marginata	0.055	40.5	1	adulto	hembra	Alemania	2011
Cosmioperla kuna	0.139	39.7	1	larva	na	Australia	2011
Gryllotalpa sp.	0.282	42.2	1	na	na	Italia	2011
Ceuthophilus sp.	0.084	38.6	9	na	na	USA	2011
Tetrix subulata	0.068	40.9	2	adulto	na	Alemania	2011
Prosarthria	0 133	30.3	1	ninfa	no	Neotrópicos	2005
teretrirostris	0.135	59.5	1	IIIIIa	Па	Reotropicos	2003
Conocephalus dorsalis	no	no	no	no	no	no	no
Stenobothrus lineatus	0.049	40.7	2	adulto	mixto	Alemania	2011
Tanzaniophasma sp.	0.122	41.5	1	adulto	macho	Mali?	2011

Fspacia	% de contaminación		No.	Etapa de	Corre	Doic	Año do colocto	
Especie	del ensamblaje	GC %	individuos	desarrollo	Sexo	Pais	And ut colecta	
Galloisiana yuasai	0.093	38.7	2	mixto	hembra	Japón	2011	
Grylloblatta	0.143	38.0	C	20	n 0	IIS A	2011	
bifratrilecta	0.143	30.9	Z	lla	lla	USA	2011	
Haploembia palaui	1.263	36	18	na	na	España	2011	
Aposthonia japonica	0.106	34.5	10	na	na	Japón	2011	
Peruphasma schultei	0.103	41.2	1	adulto	na	Alemania	2011	
Aretaon asperrimus	0.047	41	1	ninfa	na	Alemania	2012	
Timema cristinae	0.187	37.2	1	na	na	USA	2011	
Metallyticus splendidus	0.036	37.7	1	ninfa	hembra	Malasia	2011	
Mantis religiosa	0.047	38	1	adulto	na	Alemania	2011	
Empusa pennata	0.064	36.1	1	ninfa	na	Italia	2011	
Blaberus atropos	0.102	35.2	1	adulto	macho	Alemania	2011	
Periplaneta americana	0.486	38.4	1	adulto	na	Alemania	2011	
Cryptocercus wrighti	0.364	38.8	3	na	na	USA	2012	
Mastotermes	03	42.6	na	trabajador	na	Alemania	2011	
darwiniensis	0.5	72.0	na	uabajador	na	7 Hemaina	2011	
Prorhinotermes simplex	0.053	42.4	40	trabajador	na	Alemania	2011	
Frankliniella cephalica	0.115	45.4	15	adulto	hembra	China	2011	
Thrips palmi	0.167	47.4	20	adulto	hembra	China	2011	
Gynaikothrips ficorum	0.282	41.2	5	adulto	hembra	China	2011	

E	% de contaminación		No.	Etapa de	C	Data	A ~ . 1 1	
Especie	del ensamblaje	GC%	individuos	desarrollo	Sexo	Pals	And ut colteta	
Trialeurodes vaporariorum	0.248	38.9	200	adulto	na	Alemania	2011	
Acanthocasuarina muellerianae	0.211	40.5	1	adulto	na	Alemania	2011	
Nilaparvata lugens	0.073	40.5	30	na	na	Suiza	2011	
Planococcus citri	0.893	37	150	na	na	Alemania	2011	
Essigella californica	0.07	34.7	165	mixto	na	Australia	2012	
Acanthosoma haemorrhoidale	0.182	36.5	1	adulto	na	Alemania	2011	
Notostira elongata	0.306	42.2	4	adulto	na	Alemania	2011	
Ranatra linearis	0.296	39.3	1	adulto	na	Alemania	2011	
Velia caprai	0.133	38.2	20	adulto	na	Alemania	2011	
Xenophysella greensladeae	0.174	41.7	15	adulto	na	Nueva Zelanda	2011	
Cercopis vulnerata	0.408	35.6	4	adulto	mixto	Alemania	2011	
Okanagana villosa	0.102	36.2	1	na	na	USA	2011	
Ectopsocus briggsi	0.096	43	na	na	na	Japón	2012	
Liposcelis bostrychophila	1.853	36.4	200	na	na	Inglaterra	2012	
Menopon gallinae	0.24	43.4	150	na	na	Alemania	2011	

	% de contaminación	CC %	No.	Etapa de	C.	Daía	A ~ . 1 1
Especie	del ensamblaje	GC%	individuos	desarrollo	Sexo	Pais	Ano de colecta
Tenthredo koehleri	0.085	39.8	4	adulto	mixto	Alemania	2011
Cotesia vestalis	0.174	37.9	40	mixto	mixto	Holanda	na
Orussus abietinus	0.145	45.2	3	adulto	mixto	Alemania	2011
Leptopilina clavipes	0.668	36.8	194	mixto	mixto	Holanda	2005
Chrysis viridula	0.073	41.3	7	adulto	mixto	Alemania	2011
Inocellia crassicornis	0.279	37.1	6	larva	na	Austria	2012
Xanthostigma	0 345	36.2	1	adulto	hembra	Austria	2011
xanthostigma	0.515	50.2	1	uduito	nemora	1145414	2011
Corydalus cornutus	0.442	37	1	na	na	USA	2011
Conwentzia psociformis	0.292	42.2	8	adulto	na	Alemania	2011
Osmylus fulvicephalus	0.279	40.6	2	adulto	na	Italia	2009
Dichochrysa prasina	0.431	33.7	3	adulto	na	Austria	2011
Euroleon nostras	0.44	34.2	1	adulto	na	Grecia	2011
Stylops melittae	1.659	36	8	adulto	macho	Alemania	2012
Aleochara curtula	0.288	43	10	adulto	mixto	Alemania	2011
Meloe violaceus	0.103	33.4	2	adulto	na	Alemania	2011
Lepicerus sp.	0.392	39	16	adulto	na	México	2012
Gyrinus sp.	0.245	40.7	12	na	na	Alemania	2011
Rhyacophila fasciata	0.462	36.8	3	larva	Na	Alemania	2011

Fspacia	% de contaminación		No.	Etapa de	Corro	Daía	Año do colocto	
Especie	del ensamblaje	GU%	individuos	desarrollo	Sexo	Pais	Ano de colecta	
Hydroptila actia/agrosa	0.196	38.9	30	na	Na	USA	2011	
Platycentropus radiatus	0.256	38.1	1	adulto	na	USA	2011	
Dyseriocrania subpurpurella	0.712	39.6	7	adulto	na	Alemania	2011	
Triodia sylvina	0.562	37.4	2	adulto	na	Alemania	2011	
Nemophora pilella	0.056	43.8	5	adulto	na	Austria	2011	
Yponomeuta evonymella	0.368	42.3	10	adulto	na	Alemania	2011	
Zygaena fausta	0.029	40.3	2	adulto	mixto	Alemania	2011	
Polyommatus icarus	0.163	42	4	adulto	mixto	Alemania	2011	
Parides eurimedes	0.045	39.9	1	adulto	na	Inglaterra	2011	
Ceratophyllus gallinae	0.067	39.8	na	adulto	na	Alemania	2011	
Ctenocephalides felis	0.077	35.9	50	adulto	na	USA	2011	
Boreus hyemalis	0.13	38.6	4	na	na	Alemania	2010	
Bittacus pilicornis	0.079	37.4	2	adulto	na	USA	2011	
Panorpa vulgaris	0.094	36.8	2	adulto	mixto	Alemania	2011	
Trichocera saltator	0.14	35.3	40	na	na	Alemania	2011	
Bibio marci	0.397	30.1	1	adulto	macho	Alemania	2011	

Especie	% de contaminación		No.	Etapa de	Corro	Doáz	Año do colocio
	del ensamblaje	UC /0	individuos	desarrollo	Sexo	1 815	Ano de colecta
Bombylius major	0.306	31.5	3	adulto	na	Alemania	2011
Lipara lucens	0.165	35	4	adulto	na	Alemania	2011
Triarthria setipennis	0.297	35.1	1	adulto	na	Alemania	2011

Fuente: Misof et al., (2014)

B. Comandos utilizados

1. Transdecoder

a. Marcos de lectura for filename in *.tsa.fas do
 TransDecoder.LongOrfs -m 460 -t \$filename done

b. Traducción aminoácidos for filename in *.tsa.fas do TransDecoder.Predict -t \$filename done

2. Preparación de archivos

cat *.pep > todas_hexapoda_sodio.fasta cat *.pep >
todas_hexapoda_potasio.fasta cat *.pep >
todas_hexapoda_calcio.fasta

3. HMMER

- a. Construcción de modelos hmmbuild modelo_sodio.hmm sodio_alineado.fasta hmmbuild modelo_potasio.hmm potasio_alineado.fasta hmmbuild modelo_calcio.hmm calcio_alineado.fasta
- b. Construcción de índices esl-sfetch --index todas_hexapoda_sodio.fasta esl-sfetch --index todas_hexapoda_potasio.fasta esl-sfetch --index todas_hexapoda_calcio.fasta
- c. Búsqueda de dominios homólogos hmmsearch --tblout hitssodio.tbl -E 0.00001 sodio_modelo.hmm todas_hexapoda_sodio.fasta hmmsearch --tblout hitspotasio.tbl -E 0.00001 potasio_modelo.hmm todas_hexapoda_potasio.fasta hmmsearch --tblout hitscalcio.tbl -E 0.00001 calcio_modelo.hmm todas_hexapoda_calcio.fasta

d. Transformación de formato tbl a formato fasta

grep -v "^#" hitssodio.tbl | awk '{print \$1}' | esl-sfetch -f todas_hexapoda_sodio.fasta - > hitssodio.fa grep -v "^#" hitspotasio.tbl | awk '{print \$1}' | esl-sfetch -f todas_hexapoda_potasio.fasta - > hitspotasio.fa grep -v "^#" hitscalcio.tbl | awk '{print \$1}' | esl-sfetch -f todas_hexapoda_calcio.fasta - > hitscalcio.fa

Canal	Encabezado	Especie	Tipo	E (hmm)	E (BLAST)
	Sme.1	Stylops melittae	с	0	0
	Sme.2	Stylops melittae	с	0	0
	Lsa.1	Lepeophtheirus salmonis	с	0	0
	Cga.1	Ceratophyllus gallinae	inc	0	0
	Oab.1	Orussus abietinus	inc	0	0
	Tsa.1	Trichocera saltator	inc	0	0
	Tsa.2	Trichocera saltator	inc	0	0
	Cfe.1	Ctenocephalides felis	с	0	0
	Cfe.2	Ctenocephalides felis	с	0	0
Calcio	Mvi.1	Meloe violaceus	inc	2.30E-295	0
	Cga.2	Ceratophyllus gallinae	inc	1.00E-280	0
	Oab.2	Orussus abietinus	с	8.50E-248	0
	Npi.1	Nemophora pilella	inc	6.90E-243	0
	Gyu.1	Galloisiana yuasai	inc	1.70E-238	0
	Eca.1	Essigella californica	с	3.60E-205	0
	Bhy.1	Boreus hyemalis	с	2.10E-188	0
	Lcl.1	Leptopilina clavipes	с	1.70E-176	0
	Eca.2	Essigella californica	с	3.50E-167	0
	Lcl.2	Leptopilina clavipes	с	5.00E-161	0

C. Secuencias recuperadas de los transcritos y de Uniprot

Canal	Encabezado	Especie	Tipo	E (hmm)	E (BLAST)
Calcio	Ama.1	Anurida maritima	inc	6.10E-154	0
	Bma.1	Bombylius major	inc	0	0
	Eno.1	Euroleon nostras	с	0	0
	Mda.1	Mastotermes darwiniensis	с	0	0
	Bmar.1	Bibio marci	с	0	0
-	Tse.1	Triarthria setipennis	с	0	0
	Mga.1	Menopon gallinae	inc	0	0
	Tdo.1	Thermobia domestica	с	0	0
	Eur.1	Eurylophella sp	inc	0	0
	Pic.1	Polyommatus icarus	inc	2.60E-306	0
Potasio	Cku.1	Cosmioperla kuna	inc	1.70E-287	0
1 otasio	Lsa.1	Lepeophtheirus salmonis	inc	1.60E-284	0
	Ama.1	Anurida maritima	с	3.30E-283	0
	Ama.2	Anurida maritima	С	3.30E-283	0
	Plo.1	Pogonognathellus longicornis	с	1.40E-195	4x10-166
	Ama.3	Anurida maritima	с	2.00E-182	4x10-166
	Ama.4	Anurida maritima	с	8.80E-174	7x10-152
	Ama.5	Anurida maritima	с	1.50E-173	1x10-150
	Plo.2	Pogonognathellus longicornis	c	9.50E-166	2x10-140

Canal	Encabezado	Especie	Tipo	E (hmm)	E (BLAST)
	Plo.3	Pogonognathellus longicornis	с	1.10E-165	8x10-140
	Plo.4	Pogonognathellus longicornis	inc	1.30E-164	7x10-141
Potasio	Plo.5	Pogonognathellus longicornis	С	2.30E-164	4x10-140
	Plo.6	Pogonognathellus longicornis	inc	2.50E-164	7x10-140
	Ama.6	Anurida maritima	с	1.70E-140	2x10-121
	Cfe.1	Ctenocephalides felis	inc	0	0
	Lsa.1	Lepeophtheirus salmoni	с	0	0
	Cwr.1	Cryptocercus wrighti	с	0	0
	Ibi.1	Isonychia bicolor	с	0	0
Calia	Xxa.1	Xanthostigma xanthostigma	с	0	0
50010	Tko.1	Tenthredo koehleri	inc	0	0
	Icr.1	Inocellia crassicornis	inc	0	0
	Eca.1	Essigella californica	с	0	0
	Cve.1	Cotesia vestalis	inc	0	0
	Tse.1	Triarthria setipennis	inc	0	0
	Eca.2	Essigella californica	с	0	0

Canal	Encabezado	Especie	Tipo	E (hmm)	E (BLAST)
	Eur.1	Eurylophella sp.	с	0	0
	Xgr.1	Xenophysella greensladeae	с	0	0
	Ama.1	Anurida maritima	inc	0	0
	Tse.2	Triarthria setipennis	inc	0	0
	Tbi.1	Tetrodontophora bielanensis	inc	0	0
	Pvu.1	Panorpa vulgaris	inc	2.50E-294	0
	Tsa.1	Trichocera saltator	inc	4.80E-288	0
Sodio	Npi.1	Nemophora pilella	inc	8.00E-286	0
	Cga.1	Ceratophyllus gallinae	inc	8.00E-264	0
	Tsa.2	Trichocera saltator	inc	7.80E-255	0
	Mda.1	Mastotermes darwiniensis	inc	7.30E-252	0
	Npi.2	Nemophora pilella	inc	2.70E-247	0
	Tsa.3	Trichocera saltator	inc	5.00E-246	0
	Lbo.1	Liposcelis bostrychophila	inc	1.30E-235	0
	Ama.2	Anurida maritima	с	4.40E-235	0
	Fau.1	Forficula auricularia	с	5.70E-231	0
	Npi.3	Nemophora pilella	inc	9.00E-220	0

Pvu.2	Panorpa vulgaris	inc	4.80E-207	0
Pvu.3	Panorpa vulgaris	inc	6.20E-207	0
Ama.3	Anurida maritima	inc	1.20E-29	2x10-31

E (hmm) hace referencia al valor de E obtenido al realizar la búsqueda de los dominios homólogos con el hmm y E (BLAST), al valor de E obtenido en el análisis del alineamiento local múltiple con la base de datos de referencia de NCBI. La abreviatura c, hace referencia a marco de lectura completo y la inc, a incompleto. Fuente: elaboración propia

Fuente	Abreviatura	Especie	Orden	Color
Transcriptomas	Lsa.1	Lepeophtheirus salmonis	Siphonostomatoida	Negro
Transcriptomas	Ama.1	Anurida maritima	Collembola	Morado
Uniprot	A0A226ESX3_F_Fca	Folsomia candida	Collembola	Morado
Uniprot	A0A1D2NMD5_O_Oci	Orchesella cincta	Collembola	Morado
Uniprot	A0A226EJ99_F_Fca	Folsomia candida	Collembola	Morado
Uniprot	A0A226EKN5_F_Fca	Folsomia candida	Collembola	Morado
Transcriptomas	Gyu.1	Galloisiana yuasai	Grylloblattodea	Fucsia
Uniprot	A0A6P8ZU54_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6J1SXP4_F_Foc	Frankliniella occidentalis	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUD5_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZU53_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUQ3_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZV68_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZU59_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZU58_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUE0_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUQ6_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZV74_T_Tpa	Thrips palmi	Thysanoptera	Amarillo

CUADRO 8. Secuencias utilizadas para el análisis filogenético del canal de calcio dependiente de voltaje (Dmca1A)

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P8ZU64_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZU72_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUE5_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUR0_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZV78_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZU68_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZU66_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUF2_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZUR5_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Uniprot	A0A6P8ZV84_T_Tpa	Thrips palmi	Thysanoptera	Amarillo
Transcriptomas	Eca.1	Essigella californica	Hemiptera	Rojo
Transcriptomas	Eca.2	Essigella californica	Hemiptera	Rojo
Uniprot	A0A6G0Z713_A_Acr	Aphis craccivora	Hemiptera	Rojo
Uniprot	A0A3Q0ISN7_D_Dci	Diaphorina citri	Hemiptera	Rojo
Uniprot	A0A146MBQ3_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A2S2NQW0_S_Sgr	Schizaphis graminum	Hemiptera	Rojo
Uniprot	A0A0A9YFA3_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A0A9YGW0_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A0A9WCW5_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A0A9YMV9_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Transcriptomas	Oab.1	Orussus abietinus	Hymenoptera	Anaranjado
Transcriptomas	Oab.2	Orussus abietinus	Hymenoptera	Anaranjado
Transcriptomas	Lcl.1	Leptopilina clavipes	Hymenoptera	Anaranjado
Transcriptomas	Lcl.2	Leptopilina clavipes	Hymenoptera	Anaranjado
Uniprot	A0A195AZJ3_9_Aco	Atta colombica	Hymenoptera	Anaranjado
Uniprot	A0A154P8Q0_D_Dno	Dufourea novaeangliae	Hymenoptera	Anaranjado
Uniprot	A0A310SRQ4_9_Eme	Eufriesea mexicana	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A151XDH7_9_Tze	Trachymyrmex zeteki	Hymenoptera	Anaranjado
Uniprot	A0A6J1QLQ8_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QK70_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QKA1_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QQM4_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QPF1_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QK74_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6I9WT07_9_Pba	Pogonomyrmex barbatus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QLR5_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J3L321_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3L1Q8_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LS02_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8L740_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6J1QKA6_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P8LK95_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8MDY1_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3L2Z9_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8L1G0_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8MGJ4_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3L3S4_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3LAL5_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3L6S3_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J1QQM9_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P8LRA5_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8MDY8_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8LZH9_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6I9W0G1_9_Pba	Pogonomyrmex barbatus	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6J1QKC0_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A195F654_9_Tse	Trachymyrmex septentrionalis	Hymenoptera	Anaranjado
Uniprot	A0A6J3LAH7_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3LC10_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LKA1_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8MGK1_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3LHC4_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LZI5_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3LF73_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A195D1E8_9_Cco	Cyphomyrmex costatus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QPF7_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A151JMQ8_9_Tco	Trachymyrmex cornetzi	Hymenoptera	Anaranjado
Uniprot	A0A6J3LHR4_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LRB0_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3LJL6_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8MDZ3_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3LPT2_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LKA5_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J1QLR9_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QKB1_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J1QQP4_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J3LQE7_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3LLS7_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3LMX6_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LFM3_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8LS10_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8LW12_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Fuente	Abreviatura	Especie	Orden	Color
---------	------------------	---------------------------	-------------	------------
Uniprot	A0A6P8L745_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8LZI9_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8LRB6_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8MGK6_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3LLN0_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8L1G1_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8MDZ8_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J1QPG3_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P8LW17_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6J1QLS5_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J3LLK9_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LFM9_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8LKA9_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J1QKB5_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6J3LP05_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8L752_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8MGL1_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8LS22_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8L1G3_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A026VYZ1_O_Obi	Ooceraea biroi	Hymenoptera	Anaranjado
Uniprot	A0A6P8LW23_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P3XE88_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3XFK9_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3XDZ9_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A0L7R533_9_Hla	Habropoda laboriosa	Hymenoptera	Anaranjado
Uniprot	A0A6J3LR77_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LFN5_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P8LZJ2_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A0N0BJF9_9_Mqu	Melipona quadrifasciata	Hymenoptera	Anaranjado
Uniprot	A0A6P3XEN7_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6J1QQN9_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P8L757_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6J3LMK3_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8ME05_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3LRS5_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8L1G5_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8MGL5_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P3XEU7_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6J3LP07_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3LNH5_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LW28_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8LFP0_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6J1QPG9_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P8LRC9_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P8LZJ5_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6J3LQJ2_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8L762_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8ME11_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P3XE97_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6J1QK92_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	CAC1A_A_Ame	Apis mellifera	Hymenoptera	Anaranjado
Uniprot	A0A6P3XFL5_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3UJV3_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3UK08_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P5IIC7_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3UJI9_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3UJN8_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3UKB2_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	E2BQF3_H_Hsa	Harpegnathos saltator	Hymenoptera	Anaranjado
Uniprot	A0A6J3LQS1_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LS29_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8LKB6_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A6P3UJV9_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3XE92_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3UK15_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3XE05_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3UJJ4_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3UJP3_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3XE01_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3XEV2_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	F4W5P1_A_Aec	Acromyrmex echinatior	Hymenoptera	Anaranjado
Uniprot	A0A6P3UKB7_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3UJW2_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3XEP8_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3XFM1_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	F4W5P4_A_Aec	Acromyrmex echinatior	Hymenoptera	Anaranjado
Uniprot	A0A195AZI8_9_Aco	Atta colombica	Hymenoptera	Anaranjado
Uniprot	V9I878_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	V9I6P1_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	A0A195AZI4_9_Aco	Atta colombica	Hymenoptera	Anaranjado
Uniprot	A0A0J7KW27_L_Lni	Lasius niger	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Transcriptomas	Sme.1	Stylops melittae	Strepsiptera	Celeste claro
Transcriptomas	Sme.2	Stylops melittae	Strepsiptera	Celeste claro
Transcriptomas	Mvi.1	Meloe violaceus	Coleoptera	Celeste
Uniprot	A0A6J2XE51_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A6J2XCL0_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A6J2XCM0_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A6J2XE87_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A6J2XDP4_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A6J2XCX8_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A6J2XCY8_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A6J2XD13_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A7F5R428_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R3C8_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R3C4_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5QXZ0_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R433_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R3Y8_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R3D8_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R435_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5QY06_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R434_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A139WB53_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A7F5R420_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5QY32_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A139WBD2_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A6P7GPH3_D_Dvi	Diabrotica virgifera	Coleoptera	Celeste
Uniprot	A0A139WB60_T_Tca	Tribolium castaneum	Coleoptera	Celeste

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A7F5R441_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R444_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R3E9_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A139WB57_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A139WB50_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A7F5R3Z8_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R3F6_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R468_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5QY37_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5QY41_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5QY50_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	D6X3I7_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A139WB25_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A7F5R448_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A7F5R3F5_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A6J2Y4B6_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Transcriptomas	Npi.1	Nemophora pilella	Lepidoptera	Azul
Uniprot	A0A7E5VK16_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A7E5VKE3_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A7E5VK72_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A194PR88_P_Pxu	Papilio xuthus	Lepidoptera	Azul
Uniprot	A0A6J2JVD6_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JUK3_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JVX0_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JZL4_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JVE4_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JUK9_B_Bma	Bombyx mandarina	Lepidoptera	Azul

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6J2JZM5_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JVX8_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JXH0_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JZL9_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2JVF2_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J3CCY7_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CB87_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CAB3_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3C871_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CEX9_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CBB0_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CCZ1_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A194QMU0_P_Pma	Papilio machaon	Lepidoptera	Azul
Uniprot	A0A6J3CB92_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3C877_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CAB8_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CEY6_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3C893_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CEZ6_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CD07_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J2JUL3_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J3CCZ6_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J2JXH5_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J3CB99_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CAC5_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3C882_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CD02_G_Gme	Galleria mellonella	Lepidoptera	Azul

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6J3C888_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CBA5_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CAD0_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J3CAD5_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J1NX16_B_Ban	Bicyclus anynana	Lepidoptera	Azul
Uniprot	A0A4C1Z565_E_Eva	Eumeta variegata	Lepidoptera	Azul
Transcriptomas	Cga.1	Ceratophyllus gallinae	Siphonaptera	Verde
Transcriptomas	Tsa.1	Trichocera saltator	Mecoptera	Verde
Transcriptomas	Tsa.2	Trichocera saltator	Mecoptera	Verde
Transcriptomas	Cfe.1	Ctenocephalides felis	Siphonaptera	Verde
Transcriptomas	Cfe.2	Ctenocephalides felis	Siphonaptera	Verde
Transcriptomas	Cga.2	Ceratophyllus gallinae	Siphonaptera	Verde
Transcriptomas	Bhy.1	Boreus hyemalis	Mecoptera	Verde
Uniprot	A0A6I8WAR2_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WB33_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAP9_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAQ6_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAQ5_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WB37_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAS0_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WD45_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAQ9_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6J2T036_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6I8WAR1_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6J2SX93_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6J2SZX3_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6J2SVD0_D_Dhy	Drosophila hydei	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6I8WB41_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8XX25_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8ZE67_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8KYL3_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8XRK1_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8ZE71_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8XRX8_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8ZE74_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6I8WAT0_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8XHJ7_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HT71_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P8XRP8_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HYD6_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P4HIJ7_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6I8WD49_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8ZE81_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HYE1_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P8XHM3_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HT80_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P8L0I6_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8KHQ3_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8XS30_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6I8WAR4_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WB48_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAU2_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WD53_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8ZE86_D_Dal	Drosophila albomicans	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P8KP81_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6I8WAR8_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAS2_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6J2T0U6_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P4IHF4_D_Dki	Drosophila kikkawai	Diptera	Verde
Uniprot	A0A6I8WB53_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P4FFE3_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F5D0_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P8XHP9_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4F1G5_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F1J0_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F1J9_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P8XS53_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6J2T042_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P4F1K4_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4HIX1_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P4F1I8_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F1L7_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6I8WAU7_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P4FAF1_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6I8WD57_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8XRV2_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6I8WAS7_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAV1_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WB64_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAT4_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WD63_D_Dps	Drosophila pseudoobscura	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P4F1L2_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6I8WAV5_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A1W4VT29_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P8XHS5_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8XXG6_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4FFN0_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P8XHV5_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HYD9_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P8ZEA2_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HIK2_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6J2SVD5_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P8KHQ6_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8KIT0_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8KIS1_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6J2SX98_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P8XHZ3_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8XS09_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8XHX3_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6J2T047_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P4HYF0_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6J2T0V5_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6J2SXA4_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6J2SVE0_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P4F5M4_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6J2T051_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P4F1Q3_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P5U556_D_Dob	Drosophila obscura	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P5U7N8_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P5U7P3_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P8XI41_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HIX6_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6J2TUN4_D_Dle	Drosophila lebanonensis	Diptera	Verde
Uniprot	A0A6P5U7U7_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A1W4VTM4_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VT07_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VTM7_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VUE4_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VGC5_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P5U811_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A0L0BUB5_L_Lcu	Lucilia cuprina	Diptera	Verde
Uniprot	A0A6P4F5Q4_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F1S8_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4IHF1_D_Dki	Drosophila kikkawai	Diptera	Verde
Uniprot	A0A6P4F1U5_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4I4L8_D_Dki	Drosophila kikkawai	Diptera	Verde
Uniprot	A0A6P4F5S9_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6I8WB70_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8XSL9_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4HIY2_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P8L0J1_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P4F5T8_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F5U9_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F1Y2_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4FAW5_D_Drh	Drosophila rhopaloa	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P4F607_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4F209_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P5U566_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A1W4VG26_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VT12_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VTN2_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VGD0_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	CAC1A_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	A0A1W4VUE9_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P5U570_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P5U820_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P5U575_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P5U7R1_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6J2TW71_D_Dle	Drosophila lebanonensis	Diptera	Verde
Uniprot	A0A6J2TY33_D_Dle	Drosophila lebanonensis	Diptera	Verde
Uniprot	A0A6I8WAV9_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6J2TT87_D_Dle	Drosophila lebanonensis	Diptera	Verde
Uniprot	A0A1W4VG31_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4FG39_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A1W4VT20_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4IJZ4_D_Dki	Drosophila kikkawai	Diptera	Verde
Uniprot	A0A6P5U870_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P8ZEC2_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6I8WD76_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A1W4VTN6_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VGD5_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VUF8_D_Dfi	Drosophila ficusphila	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P8KYM1_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P4HYE6_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	W8AJD7_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	A0A6I8WAT9_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAU1_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A1W4VG36_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A3B0K3H3_D_Dgu	Drosophila guanche	Diptera	Verde
Uniprot	A0A6I8WB72_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8KHQ9_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P4HIL3_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P8L0J4_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A1W7R5T1_A_Aal	Aedes albopictus	Diptera	Verde
Uniprot	A0A6I8WAW4_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WD81_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAU3_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A1W4VTP1_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VGE0_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VUG2_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4VG41_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4LDR7_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P5U7W6_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6I8WB77_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAW9_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8KP94_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P4LHQ2_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4JX41_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A3B0K7W2_D_Dgu	Drosophila guanche	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color		
Uniprot	A0A0A1WUI5_Z_Zcu	Zeugodacus cucurbitae	Diptera	Verde		
Fuente: elaboración	propia					
(CUADRO 9. Secuencias utilizadas para el análisis filogenético del canal de potasio dependiente de voltaje (Shaker)					
Fuente	Abreviatura	Especie	Orden	Color		
Transcriptomas	Lsa.1	Lepeophtheirus salmonis	Siphonostomatoida	Negro		
Transcriptomas	Ama.1	Anurida maritima	Collembola	Morado		
Transcriptomas	Ama.2	Anurida maritima	Collembola	Morado		
Transcriptomas	Plo.1	Pogonognathellus longicornis	Collembola	Morado		
Transcriptomas	Ama.3	Anurida maritima	Collembola	Morado		
Transcriptomas	Ama.4	Anurida maritima	Collembola	Morado		
Transcriptomas	Ama.5	Anurida maritima	Collembola	Morado		
Transcriptomas	Plo.2	Pogonognathellus longicornis	Collembola	Morado		
Transcriptomas	Plo.3	Pogonognathellus longicornis	Collembola	Morado		
Transcriptomas	Plo.4	Pogonognathellus longicornis	Collembola	Morado		
Transcriptomas	Plo.5	Pogonognathellus longicornis	Collembola	Morado		
Transcriptomas	Plo.6	Pogonognathellus longicornis	Collembola	Morado		
Transcriptomas	Ama.6	Anurida maritima	Collembola	Morado		
Uniprot	A0A1D2MRG7_O_Oci	Orchesella cincta	Collembola	Morado		
Uniprot	A0A226EV79_F_Fca	Folsomia candida	Collembola	Morado		
Uniprot	A0A1D2NDY0_O_Oci	Orchesella cincta	Collembola	Morado		
Uniprot	A0A226DCD1_F_Fca	Folsomia candida	Collembola	Morado		
Uniprot	A0A226E6H8_F_Fca	Folsomia candida	Collembola	Morado		
Transcriptomas	Tdo.1	Thermobia domestica	Zygentoma	Amarillo claro		
Transcriptomas	Eur.1	Eurylophella sp	Ephemeroptera	Gris		
Transcriptomas	Mda.1	Mastotermes darwiniensis	Isoptera	Rosado		
Transcriptomas	Cku.1	Cosmioperla kuna	Plecoptera	Rosado		

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A067RLV3_Z_Zne	Zootermopsis nevadensis	Isoptera	Rosado
Uniprot	A0A6J1SCX1_F_Foc	Frankliniella occidentalis	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9AEU9_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9AK76_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9ACH4_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9ACG2_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9AEV3_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9AEH7_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9AK79_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9ACH6_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9ACG7_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A6J1SI67_F_Foc	Frankliniella occidentalis	Thysanoptera	Amarillo oscuro
Uniprot	A0A6J1SKG5_F_Foc	Frankliniella occidentalis	Thysanoptera	Amarillo oscuro
Uniprot	A0A6P9AEV7_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Uniprot	A0A2S2QSN2_9_Sfl	Sipha flava	Hemiptera	Rojo
Transcriptomas	Mga.1	Menopon gallinae	Phthiraptera	Café
Uniprot	A0A6P8NAQ2_9_Bbi	Bombus bifarius	Hymenoptera	Anaranjado
Uniprot	A0A0N0U6N2_9_Mqu	Melipona quadrifasciata	Hymenoptera	Anaranjado
Uniprot	A0A310SFC1_9_Eme	Eufriesea mexicana	Hymenoptera	Anaranjado
Uniprot	A0A6J3KSR1_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3KP99_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J3KPA4_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P8LHZ9_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P8LLP6_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6I9W9J3_9_Pba	Pogonomyrmex barbatus	Hymenoptera	Anaranjado
Uniprot	A0A6J1RAC2_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6I9W2N2_9_Pba	Pogonomyrmex barbatus	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6J1RGV2_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A151I5G4_9_Aco	Atta colombica	Hymenoptera	Anaranjado
Uniprot	A0A6J3KS19_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P6F7M3_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A195DUN5_9_Tco	Trachymyrmex cornetzi	Hymenoptera	Anaranjado
Uniprot	A0A154P0M2_D_Dno	Dufourea novaeangliae	Hymenoptera	Anaranjado
Uniprot	A0A6P3TSH1_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P3TPL6_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6J3KP23_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P3UM16_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6J0CE30_N_Nle	Neodiprion lecontei	Hymenoptera	Anaranjado
Uniprot	A0A151K1K0_9_Tse	Trachymyrmex septentrionalis	Hymenoptera	Anaranjado
Uniprot	A0A6P3U228_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P8LLP9_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P3XYU7_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6P3XYE5_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6J1RB73_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6I9WU27_9_Pba	Pogonomyrmex barbatus	Hymenoptera	Anaranjado
Uniprot	A0A0L7QSF7_9_Hla	Habropoda laboriosa	Hymenoptera	Anaranjado
Uniprot	A0A6J3KNQ9_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6J1RAC3_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P6F7X0_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P5I5V8_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6J3KSR6_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P3ULE9_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A195CD68_9_Cco	Cyphomyrmex costatus	Hymenoptera	Anaranjado
Uniprot	E2AQU3_C_Cfl	Camponotus floridanus	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A151WRY2_9_Tze	Trachymyrmex zeteki	Hymenoptera	Anaranjado
Uniprot	A0A6P8KZU9_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6P3TYJ1_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A6P5HQS4_B_Bte	Bombus terrestris	Hymenoptera	Anaranjado
Uniprot	A0A2A3EHD8_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	A0A6P3XYN6_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6I9W1D8_9_Pba	Pogonomyrmex barbatus	Hymenoptera	Anaranjado
Uniprot	A0A6J1RGV6_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P8KZV4_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A6J3KS24_9_Bvo	Bombus vosnesenskii	Hymenoptera	Anaranjado
Uniprot	A0A6P3XX25_D_Dqu	Dinoponera quadriceps	Hymenoptera	Anaranjado
Uniprot	A0A6I9W9J6_9_Pba	Pogonomyrmex barbatus	Hymenoptera	Anaranjado
Uniprot	A0A4S2K1S1_9_Tlo	Temnothorax longispinosus	Hymenoptera	Anaranjado
Uniprot	A0A6P3ULN6_B_Bim	Bombus impatiens	Hymenoptera	Anaranjado
Uniprot	A0A026WWX1_O_Obi	Ooceraea biroi	Hymenoptera	Anaranjado
Uniprot	A0A6J1RB77_9_Tcu	Temnothorax curvispinosus	Hymenoptera	Anaranjado
Uniprot	F4WVX1_A_Aec	Acromyrmex echinatior	Hymenoptera	Anaranjado
Transcriptomas	Eno.1	Euroleon nostras	Neuroptera	Fucsia
Uniprot	A0A482VJB5_9_Ave	Asbolus verrucosus	Coleoptera	Celeste
Uniprot	A0A139WLK6_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A1W4WSZ1_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A1W4X2C8_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A1W4X443_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A6J2XMR8_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	D6WHV5_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	A0A1W4WTF4_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A1W4X4K0_A_Apl	Agrilus planipennis	Coleoptera	Celeste

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6J2XQ91_S_Sor	Sitophilus oryzae	Coleoptera	Celeste
Uniprot	A0A1W4X4N1_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A1W4X4V0_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A6P7FR88_D_Dvi	Diabrotica virgifera	Coleoptera	Celeste
Uniprot	A0A6P7G1E6_D_Dvi	Diabrotica virgifera	Coleoptera	Celeste
Uniprot	A0A1W4WUD3_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Uniprot	A0A6P7G1G0_D_Dvi	Diabrotica virgifera	Coleoptera	Celeste
Uniprot	A0A1W4WUS2_A_Apl	Agrilus planipennis	Coleoptera	Celeste
Transcriptomas	Pic.1	Polyommatus icarus	Lepidoptera	Azul
Uniprot	A0A6J1MIG6_B_Ban	Bicyclus anynana	Lepidoptera	Azul
Uniprot	A0A6J2KA15_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J2K933_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A7E5WNI3_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A6J2K851_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6J3C874_G_Gme	Galleria mellonella	Lepidoptera	Azul
Uniprot	A0A6J2KA20_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A194PLL7_P_Pxu	Papilio xuthus	Lepidoptera	Azul
Uniprot	A0A194QL53_P_Pma	Papilio machaon	Lepidoptera	Azul
Uniprot	A0A7E5WNB9_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A7E5WNH5_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A6J2KDZ4_B_Bma	Bombyx mandarina	Lepidoptera	Azul
Uniprot	A0A6P5HQN5_B_Bte	Bombus terrestris	Lepidoptera	Azul
Uniprot	A0A7E5WNB4_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A7E5WQ06_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A6J1MQG9_B_Ban	Bicyclus anynana	Lepidoptera	Azul
Uniprot	A0A7E5WPH2_T_Tni	Trichoplusia ni	Lepidoptera	Azul
Uniprot	A0A7E5WNC3_T_Tni	Trichoplusia ni	Lepidoptera	Azul

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6J1ML60_B_Ban	Bicyclus anynana	Lepidoptera	Azul
Transcriptomas	Bma.1	Bombylius major	Diptera	Verde
Transcriptomas	Bmar.1	Bibio marci	Diptera	Verde
Transcriptomas	Tse.1	Triarthria setipennis	Diptera	Verde
Uniprot	A0A6J0RHU8_B_Bdo	Bactrocera dorsalis	Diptera	Verde
Uniprot	A0A6I8WA51_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAG9_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	W8B415_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	A0A6P4KYG8_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KYF7_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4L0A2_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4F8W6_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4FNP9_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P8YZR8_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8X2R1_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	W8AHM5_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	A0A6P8X2S1_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4F9H3_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A1W4V0P7_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4UNF5_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6J2SVH3_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P5VEM2_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P5VDS6_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P5VFJ9_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6P4KYJ5_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A1W4V1X9_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4L0F5_D_Dbi	Drosophila bipectinata	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P4KYK7_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A1W4UMX6_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A1W4UMY5_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4FHI9_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4FHJ8_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4FCJ7_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6I8WCJ1_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WA52_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	KCNAS_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	A0A6P4KYN7_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P8L3D8_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A1W4V0D3_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6J2TS27_D_Dle	Drosophila lebanonensis	Diptera	Verde
Uniprot	A0A6P4KYR0_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P8KQX1_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8LAA6_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A1W4V0Q2_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4FNQ5_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4FCK3_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4H6Y2_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P4HKU6_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P4HDP2_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6I8WA55_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6I8WAH5_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8XCT5_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8YZW6_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8LD36_D_Dma	Drosophila mauritiana	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P8KTZ6_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A1W4UNG0_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4F8X3_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4FNR0_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P8X2U3_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8X2V0_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6I8WA66_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6J1M9M2_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P5VF48_D_Dob	Drosophila obscura	Diptera	Verde
Uniprot	A0A6J1M4J9_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6J1M740_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P4KYN1_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A1W4UMY0_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4KYP0_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4F9I5_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A1W4V0D8_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6P4FHJ7_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4FCK6_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6I8WCJ6_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P8LAB3_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8XCW6_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P4H719_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6P4KYU1_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A1W4V0Q7_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6I8WA57_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6J2SRZ1_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6I8VHV8_D_Dps	Drosophila pseudoobscura	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6J2SUH7_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6I8WA61_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P4FNR5_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P8KQX6_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P4J1L2_D_Dki	Drosophila kikkawai	Diptera	Verde
Uniprot	A0A6P4HKJ4_D_Dta	Drosophila takahashii	Diptera	Verde
Uniprot	A0A6I8WAI3_D_Dps	Drosophila pseudoobscura	Diptera	Verde
Uniprot	A0A6P4F8X9_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A3B0JSU8_D_Dgu	Drosophila guanche	Diptera	Verde
Uniprot	A0A6P8L3E8_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8XCX7_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8Z030_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8XGA6_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8KU00_D_Dma	Drosophila mauritiana	Diptera	Verde
Uniprot	A0A6P8XE14_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A6P8X302_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	W8AJ67_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	A0A6P8XGD2_D_Dal	Drosophila albomicans	Diptera	Verde
Uniprot	A0A0A1X2I6_Z_Zcu	Zeugodacus cucurbitae	Diptera	Verde
Uniprot	A0A6J2SQ65_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A034WIJ2_B_Bdo	Bactrocera dorsalis	Diptera	Verde
Uniprot	A0A1W4UNG5_D_Dfi	Drosophila ficusphila	Diptera	Verde
Uniprot	A0A6J1MFX5_D_Dhy	Drosophila hydei	Diptera	Verde
Uniprot	A0A6P4F9J2_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	W8AV96_C_Cca	Ceratitis capitata	Diptera	Verde

Fuente: elaboración propia

Fuente	Abreviatura	Especie	Orden	Color
Transcriptoma	Lsa.1	Lepeophtheirus salmoni	Siphonostomatoida	Negro
Transcriptoma	Ama.1	Anurida maritima	Collembola	Morado
Transcriptoma	Tbi.1	Tetrodontophora bielanensis	Collembola	Morado
Transcriptoma	Ama.2	Anurida maritima	Collembola	Morado
Transcriptoma	Ama.3	Anurida maritima	Collembola	Morado
Uniprot	A0A1D2MM61_O_Oci	Orchesella cincta	Collembola	Morado
Uniprot	A0A1D2MFE2_O_Oci	Orchesella cincta	Collembola	Morado
Uniprot	A0A1D2MEU5_O_Oci	Orchesella cincta	Collembola	Morado
Transcriptoma	Ibi.1	Isonychia bicolor	Ephemeroptera	Amarillo
Transcriptoma	Eur.1	Eurylophella sp.	Ephemeroptera	Amarillo
Transcriptoma	Cwr.1	Cryptocercus wrighti	Blattodea	Rosado
Transcriptoma	Mda.1	Mastotermes darwiniensis	Isoptera	Rosado
Transcriptoma	Fau.1	Forficula auricularia	Dermaptera	Rosado
Uniprot	A0A2Z6BBV5_B_Bge	Blattella germanica	Blattodea	Rosado
Uniprot	A0A2Z6BC64_B_Bge	Blattella germanica	Blattodea	Rosado
Uniprot	A0A2P8XFB2_B_Bge	Blattella germanica	Blattodea	Rosado
Uniprot	A0A6P8ZMX5_T_Tpa	Thrips palmi	Thysanoptera	Amarillo oscuro
Transcriptoma	Eca.1	Essigella californica	Hemiptera	Rojo
Transcriptoma	Eca.2	Essigella californica	Hemiptera	Rojo
Transcriptoma	Xgr.1	Xenophysella greensladeae	Hemiptera	Rojo
Uniprot	A0A0E3VHM1_D_Dci	Diaphorina citri	Hemiptera	Rojo
Uniprot	A0A0A9W7M5_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A0A9WB91_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A0A9W5R5_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A0A9WG08_L_Lhe	Lygus hesperus	Hemiptera	Rojo
Uniprot	A0A146LU77_L_Lhe	Lygus hesperus	Hemiptera	Rojo

CUADRO 10. Secuencias utilizadas para el análisis filogenético del canal de sodio dependiente de voltaje (para)

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6G0Z8K6_A_Acr	Aphis craccivora	Hemiptera	Rojo
Uniprot	A0A2S2Q2S4_9_Sfl	Sipha flava	Hemiptera	Rojo
Uniprot	A0A2H8TNW1_9_Msa	Melanaphis sacchari	Hemiptera	Rojo
Uniprot	E4WMC3_M_Mpe	Myzus persicae	Hemiptera	Rojo
Uniprot	A0A0M4BS15_R_Rpa	Rhopalosiphum padi	Hemiptera	Rojo
Uniprot	A0A0M4C166_R_Rpa	Rhopalosiphum padi	Hemiptera	Rojo
Uniprot	A0A2S2P9N5_S_Sgr	Schizaphis graminum	Hemiptera	Rojo
Uniprot	A0A2S2N919_S_Sgr	Schizaphis graminum	Hemiptera	Rojo
Uniprot	A0A2S2PCT2_S_Sgr	Schizaphis graminum	Hemiptera	Rojo
Uniprot	A0A2S2QHN5_9_Sfl	Sipha flava	Hemiptera	Rojo
Uniprot	A0A2S2N7Q1_S_Sgr	Schizaphis graminum	Hemiptera	Rojo
Uniprot	A0A6G0W3P3_A_Acr	Aphis craccivora	Hemiptera	Rojo
Uniprot	A0A6G0W4K2_A_Acr	Aphis craccivora	Hemiptera	Rojo
Uniprot	A0A3Q0JKH3_D_Dci	Diaphorina citri	Hemiptera	Rojo
Transcriptoma	Lbo.1	Liposcelis bostrychophila	Psocoptera	Gris
Transcriptoma	Tko.1	Tenthredo koehleri	Hymenoptera	Anaranjado
Transcriptoma	Cve.1	Cotesia vestalis	Hymenoptera	Anaranjado
Uniprot	A5I9E8_N_Nvi	Nasonia vitripennis	Hymenoptera	Anaranjado
Uniprot	A5I9E9_N_Nvi	Nasonia vitripennis	Hymenoptera	Anaranjado
Uniprot	C9D7C5_A_Ame	Apis mellifera	Hymenoptera	Anaranjado
Uniprot	F4WWY7_A_Aec	Acromyrmex echinatior	Hymenoptera	Anaranjado
Uniprot	A0A2A3E865_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	V9I7L0_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	V9I8I4_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	V9I6I5_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	V9I6I8_A_Ace	Apis cerana	Hymenoptera	Anaranjado
Uniprot	A0A0J7L1P1_L_Lni	Lasius niger	Hymenoptera	Anaranjado

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A0C9PKM6_9_Far	Fopius arisanus	Hymenoptera	Anaranjado
Uniprot	A0A0J7KTT8_L_Lni	Lasius niger	Hymenoptera	Anaranjado
Transcriptoma	Xxa.1	Xanthostigma xanthostigma	Raphidioptera	Fucsia
Transcriptoma	Icr.1	Inocellia crassicornis	Raphidioptera	Fucsia
Uniprot	C9D7C8_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Uniprot	C9D7C7_T_Tca	Tribolium castaneum	Coleoptera	Celeste
Transcriptoma	Npi.1	Nemophora pilella	Lepidoptera	Azul
Transcriptoma	Npi.2	Nemophora pilella	Lepidoptera	Azul
Transcriptoma	Npi.3	Nemophora pilella	Lepidoptera	Azul
Uniprot	C9D7C6_B_Bmo	Bombyx mori	Lepidoptera	Azul
Uniprot	A0A7I0Z1B4_D_Dpl	Danaus plexippus	Lepidoptera	Azul
Uniprot	A0A4C1T0L6_E_Eva	Eumeta variegata	Lepidoptera	Azul
Uniprot	A0A4C1T3A8_E_Eva	Eumeta variegata	Lepidoptera	Azul
Transcriptoma	Cfe.1	Ctenocephalides felis	Siphonaptera	Verde
Transcriptoma	Tse.1	Triarthria setipennis	Diptera	Verde
Transcriptoma	Tse.2	Triarthria setipennis	Diptera	Verde
Transcriptoma	Pvu.1	Panorpa vulgaris	Mecoptera	Verde
Transcriptoma	Tsa.1	Trichocera saltator	Mecoptera	Verde
Transcriptoma	Cga.1	Ceratophyllus gallinae	Siphonaptera	Verde
Transcriptoma	Tsa.2	Trichocera saltator	Mecoptera	Verde
Transcriptoma	Tsa.3	Trichocera saltator	Mecoptera	Verde
Transcriptoma	Pvu.2	Panorpa vulgaris	Mecoptera	Verde
Transcriptoma	Pvu.3	Panorpa vulgaris	Mecoptera	Verde
Uniprot	M9MSP5_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MSP7_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MSP1_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MS73_D_Dme	Drosophila melanogaster	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	M9MSD7_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MSC3_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MS96_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MSQ0_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MSP9_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MSE9_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	M9MSF2_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	X2JFE8_D_Dme	Drosophila melanogaster	Diptera	Verde
Uniprot	A0A0K8U6F2_B_Bla	Bactrocera latifrons	Diptera	Verde
Uniprot	A0A0K8UUM4_B_Bla	Bactrocera latifrons	Diptera	Verde
Uniprot	A0A0K8VCA3_B_Bla	Bactrocera latifrons	Diptera	Verde
Uniprot	A0A6P4KSM4_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTS6_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KW90_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU54_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX43_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KUA2_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KSM7_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTT0_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWA1_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU57_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX48_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KSP3_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWA4_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX85_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU65_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX52_D_Dbi	Drosophila bipectinata	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P4KSQ0_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTT5_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWD0_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWA8_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU70_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX57_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KSQ6_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTT9_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX63_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU75_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWB2_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTU2_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU80_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX67_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTU6_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KSR8_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX72_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWB9_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU86_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTV0_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KSS2_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWC3_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KU90_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX75_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTV4_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KSS6_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KWC5_D_Dbi	Drosophila bipectinata	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P4KU95_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KX80_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KTV8_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A6P4KST2_D_Dbi	Drosophila bipectinata	Diptera	Verde
Uniprot	A0A3B0K2N9_D_Dgu	Drosophila guanche	Diptera	Verde
Uniprot	A0A6P4EI38_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4ECV3_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4ECY1_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E8W4_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4EI43_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4M3_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4W6_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4ECV6_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E8Z1_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E8X1_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4M8_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4X1_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E8X7_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4ECW1_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4N6_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4EI52_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4P6_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4ECW5_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4X4_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E4P1_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4EI54_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	A0A6P4E8Y5_D_Drh	Drosophila rhopaloa	Diptera	Verde

Fuente	Abreviatura	Especie	Orden	Color
Uniprot	A0A6P4EI56_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	W8AYW1_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	W8B5U7_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	A0A034WJ14_B_Bdo	Bactrocera dorsalis	Diptera	Verde
Uniprot	A0A6P4E4X8_D_Drh	Drosophila rhopaloa	Diptera	Verde
Uniprot	B0WM42_C_Cqu	Culex quinquefasciatus	Diptera	Verde
Uniprot	W8BL02_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	W8BXM0_C_Cca	Ceratitis capitata	Diptera	Verde
Uniprot	A0A0A1XJ03_Z_Zcu	Zeugodacus cucurbitae	Diptera	Verde

Fuente: elaboración propia