Universidad del Valle de Guatemala Facultad de Ingeniería

PROPUESTA DE UN SISTEMA NATURAL UTILIZANDO LA CÁSCARA DE BANANO PARA LA REMOCIÓN DE PLOMO II

Trabajo de graduación presentado por Luisa Fernanda Mollinedo Romero para optar al grado académico de Licenciada en Ingeniería Química

Guatemala, 2021

PROPUESTA DE UN SISTEMA NATURAL UTILIZANDO LA CÁSCARA DE BANANO PARA LA REMOCIÓN DE PLOMO II

Universidad del Valle de Guatemala Facultad de Ingeniería

PROPUESTA DE UN SISTEMA NATURAL UTILIZANDO LA CÁSCARA DE BANANO PARA LA REMOCIÓN DE PLOMO II

Trabajo de graduación presentado por Luisa Fernanda Mollinedo Romero para optar al grado académico de Licenciada en Ingeniería Química

Guatemala, 2021

PREFACIO

La realización de esta tesis es producto de una investigación que se realizó hace diez años en la Universidad Federal de São Carlos, São Paulo, Brasil por la Doctora en Ciencias Químicas Milena Boniolo, a quien se le concede el descubrimiento de utilizar la cáscara de banano como descontaminante de uranio presente en el agua. Boniolo aseguraba que su siguiente reto era buscar socios que le permitieran utilizar la técnica a escala industrial; no obstante, hasta hoy en día se desconoce si se logró contactar con alguna identidad interesada en el tema.

Debido a lo anterior y a que los cultivos principales de Guatemala son la caña de azúcar, maíz, **banano**, café y cardamomo; me cuestioné el uso que se le da a los residuos orgánicos del banano en Guatemala. Al darme cuenta que no se le daba un uso industrial, pues solamente se recuperaban para utilizarlos como alimento para animales o para abono; me propuse a de darle seguimiento al reto que se había planteado la Doctora Boniolo pero con otro metal pesado que fuese más probable de encontrar en las aguas del territorio guatemalteco. Aunque todavía parecía muy general e imposible de llevar a cabo debido a la recientemente descubierta enfermedad por coronavirus (COVID 19), la tesis finalmente se titula: *Propuesta de un sistema natural utilizando la cáscara de banano para la remoción de plomo II*.

Agradezco infinitamente a Dios por darme salud, por cuidarme y guiarme, por ser mi refugio en los momentos más difíciles de mi vida, y por premiarme con una excelente mamá que me dio la oportunidad de estudiar en la Universidad del Valle De Guatemala. A mi mami, Mirna Mollinedo, por darme las fuerzas y motivarme las veces que eran necesarias para llegar hasta el final de este largo trayecto y porque sin su apoyo y amor esto no hubiese sido posible. A mi madrina, Iliana Estrada, por ser una de las personas más influyentes en mi vida, quien siempre me ha ayudado desde el día uno de mi existencia. A mis abuelitos, mamá Olgui y papá Rodolfo, por llenarme de mucho amor y por creer en mi. A mis amigos: Diego Garzaro, Andrea Jaser, Melissa Cruz, Leslie De León, César Catalán, Carol Mayorga, Ana Gómez, Carmen Pivaral, Álvaro Mérida y Melissa Duarte, por acompañarme durante esta corta permanencia en la universidad, por hacer más llevaderos mis problemas, por compartir conmigo momentos inolvidables y por estar presentes a lo largo de toda o la mayor parte de la realización de esta tesis. A mi Alma Mater, Universidad del Valle De Guatemala, a la Facultad de Ingeniería química, a mi asesora Ing. Frances Recari, a mis catedráticos:

Ing. Carmen Ortíz, Ing. Gamaliel Zambrano, Ing. Luis Núñez, Ing. Jaime Rosales, Ing. Jorge Muñoz, por su paciencia, asesoría y por compartir conmigo su conocimiento que contribuyó notablemente en el desarrollo de mi tesis. A José Coc, por brindarme su apoyo y tiempo para poder llevar a cabo la realización de la parte experimental de mi trabajo.

Sin duda, este nuevo logro es en gran parte gracias a todos ustedes, pues a pesar de que parecía una trabajo difícil de terminar, más aún por las consecuencias que trajo consigo el coronavirus (COVID-19), lo he concluido con éxito. Llevo conmigo la experiencia de platicar y convivir con todos ustedes. Dedico este trabajo principalmente a Dios y a todos ustedes, quienes pintan una sonrisa de colores, todos los días, en el lienzo gris de mi rostro.

CONTENIDO

PRE	FACIOV
LIST	ADO DE CUADROSX
LIST	A DE DE FIGURASXV
RES	UMENXIX
ABS	TRACTXX
I.	INTRODUCCIÓN1
п	PI ANTEAMIENTO DEL PROBLEMA
11.	I LANTEAMENTO DEL I RODLEMA
III.	OBJETIVOS
A.	GENERAL
B.	Específicos3
IV.	JUSTIFICACIÓN4
V.	MARCO TEÓRICO
A.	EL AGUA
	Recursos de agua subterranea Booursos de agua subterranea
	2. Recursos de agua superficial
	5. Callada del agua
	4. Agua polable y saneamienio
	 Aguas restautates
p	0. Contaminación del agua
D.	I Plomo 11
	 1 tomo
С	2. A DSORCIÓN
C.	1 Tinos de adsorción 12
	2 Isotermas de adsorción 13
	3. Funamentos de la adsorción
	4. Parámetros que afectan en la adsorción
	5. Bioadsorción
D.	INTERCAMBIO IÓNICO
	1. Propiedades del proceso de intercambio iónico
	2. Resinas intercambiadoras de iones
E.	BANANO
	1. Cáscara de banano
	2. Guatemala como país exportador de banano
F.	Piedra pómez

1.	Identificación de los peligros	
2.	Composición sobre los componentes	
3.	Propiedades físicas y químicas	
4.	Panorama mundial	
G.	ENSAYO GRANULOMÉTRICO	
1.	Porcentaje retenido acumulado	
2.	Porcentaje retenido parcial	
3.	Porcentaje retenido acumulado que pasa	
H.	ESPECTROSCOPIA INFRARROJA (IR)	
1.	Espectro electromagnético	
2.	Región infrarroja	
3.	Medición del espectro IR	
I.	Espectroscopia atómica	
1.	Espectrofotometría de absorción atómica	
J.	CARACTERIZACIÓN FÍSICA DE BIORESINA	
1.	Densidad aparente	
К.	ESCALAMIENTO DE COLUMNA CATIÓNICA	
1.	Similitud geométrica	
2.	Area de paso de la columna del sistema	
3.	Altura del lecho	
4.	<i>Relación de esbeltez (L/D)</i>	
5.	Porcentaje de expansión del lecho	
6.	Expansión del lecho por hinchazón de resina	
7.	Altura del lecho hinchado	
8.	Cabezales toriesféricos	
L.	TRANSPORTE Y MEDIDA DE FLUIDOS	
Ι.	Válvulas	
2.	Tubos y tuberias	
3.	Bombas	
M.	CALCULO Y ANALISIS DE RENTABILIDAD	
<i>I</i> .	Tasa Interna de retorno	
N.	ERRORES ALEATORIOS EN EL ANALISIS QUIMICO	
1.	Tratamiento estatistico	
2.	Desviacion estandar de los resultados calculados	
VI.	ANTECEDENTES	
VII.	MATERIALES Y EQUIPOS	
VIII.	METODOLOGÍA	
IX.	RESULTADOS	63
X. A	NÁLISIS DE RESULTADOS	
XI.	CONCLUSIONES	
XII.	RECOMENDACIONES	
XIII.	BIBLIOGRAFÍA	

XIV.	ANEXOS	86
A.	DATOS ORIGINALES	86
В.	CÁLCULOS DE MUESTRA	124
C.	ANÁLISIS DE ERROR	143
D.	DATOS CALCULADOS	145
A.	FOTOGRAFÍAS DE EXPERIMENTACIÓN	223
B.	FOTOGRAFÍAS DE RESULTADOS OBTENIDOS EN EL LABORATORIO DE ANÁLISIS	
INS	TRUMENTAL AVANZADO	228
C.	IFORMACIÓN ADICIONAL	294
XV.	GLOSARIO	314

LISTADO DE CUADROS

CUADRO 1. ÁREA, PRODUCCIÓN Y RENDIMIENTO.	24
CUADRO 2. PROPAGACIONES DEL ERROR EN CÁLCULOS ARITMÉTICOS.	47
CUADRO 4. PESAJE DE BIORESINA SECA PARA PRUEBAS DE REMOCIÓN DE PLOMO II.	64
CUADRO 5. MEDIDAS DE LA COLUMNA DEL SISTEMA A ESCALA LABORATORIO.	65
CUADRO 6. VOLÚMENES DE LOS COMPONENTES DE LA COLUMNA DEL SISTEMA TANTO A ESCALA LABORATORIO COMO SU	J
ESCALAMIENTO CON SUS RESPECTIVAS PROPORCIONES	65
CUADRO 7. DIMENSIONAMIENTO DE LA COLUMNA DEL SISTEMA TANTO A ESCALA LABORATORIO COMO SU ESCALAMIENT	о.
	65
CUADRO 8. DIMENSIONAMIENTO DE CABEZALES TORIESFÉRICOS DEL TIPO ASME FLANGED & DISHED	66
CUADRO 9. DIMENSIONAMIENTO DE TUBERÍAS ESTÁNDAR DE ACERO.	66
CUADRO 10. CONCENTRACIÓN DE ADSORBATO EN LA FASE SÓLIDA RESPECTO A UN DETERMINADO TIEMPO Y PORCENTAJI	E DE
REMOCIÓN DE PLOMO (II) CADA DIEZ MINUTOS.	68
CUADRO 11. CONCENTRACIÓN DE ADSORBATO EN LA FASE SÓLIDA RESPECTO A UN DETERMINADO TIEMPO Y PORCENTAJ	E DE
REMOCIÓN DE PLOMO (II) CADA HORA	69
CUADRO 12. CONCENTRACIÓN DE ADSORBATO EN LA FASE SÓLIDA RESPECTO A UN DETERMINADO TIEMPO Y PORCENTAJI	E DE
REMOCIÓN DE PLOMO (II) CADA ONCE HORAS	69
CUADRO 13. PESAJE DE BANANO SIN PELAR Y SOLO DE LA CÁSCARA	86
CUADRO 14. VARIACIÓN EN PESO DE CÁSCARA DE BANANO A LO LARGO DEL TIEMPO DE SECADO	87
CUADRO 15. CANTIDAD DE RESINA RETENIDA EN CADA TAMIZ DEL TAMIZADOR TIPO SHAKER.	88
Cuadro 16. Pesaje de nitrato de plomo Pb $NO32$ para la preparación de la solución madre a $20ppm$ de	
рlomo II (<i>Pb</i>)	88
CUADRO 17. PESAJE DE BIORESINA SECA PARA PRUEBAS DE SOLUBILIDAD Y PH EN AGUA DESTILADA	89
CUADRO 18. DETERMINACIÓN DE PH DE BIORESINA EN AGUA DESTILADA	89
CUADRO 19. PESAJE DE PROBETA DE 100ML CON Y SIN RESINA SECA.	90
CUADRO 20. PRUEBA PARA DETERMINACIÓN DE EXPANSIÓN DE LECHO.	90
CUADRO 21. VOLUMEN DE AGUA A TRATAR Y TIEMPO DE LLENADO	91
CUADRO 22. PESAJE DE BIORESINA SECA PARA PRUEBAS DE ADSORCIÓN.	91
CUADRO 23. MEDIDAS DE COLUMNA A ESCALA LABORATORIO.	91
CUADRO 24. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS	92
CUADRO 25. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	93
CUADRO 26. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	94
CUADRO 27. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	95
CUADRO 28. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	96
CUADRO 29. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	97
CUADRO 30. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	98
CUADRO 31. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	99
CUADRO 32. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	100
CUADRO 33. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	101
CUADRO 34. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	102
CUADRO 35. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	103
CUADRO 36. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	104
CUADRO 37. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA DIEZ MINUTOS, CONTINUACIÓN.	105
CUADRO 38. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA HORA	106
CUADRO 39. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA HORA, CONTINUACIÓN	107

	108
Cuadro 41. Determinación de plomo en muestras cada hora, continuación.	109
CUADRO 42. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA HORA, CONTINUACIÓN	110
CUADRO 43. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA HORA, CONTINUACIÓN.	111
CUADRO 44. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA HORA, CONTINUACIÓN	112
CUADRO 45. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS	112
CUADRO 46. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN.	113
CUADRO 47. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	114
CUADRO 48. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	115
CUADRO 49. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA DIEZ MINUTOS	115
CUADRO 50. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA DIEZ MINUTOS, CONTINUACIÓN	116
CUADRO 51. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA DIEZ MINUTOS, CONTINUACIÓN	117
CUADRO 52. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA DIEZ MINUTOS, CONTINUACIÓN	118
CUADRO 53. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA DIEZ MINUTOS, CONTINUACIÓN	119
CUADRO 54. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA HORA	120
CUADRO 55. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA HORA, CONTINUACIÓN.	121
CUADRO 56. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA HORA, CONTINUACIÓN.	122
CUADRO 57. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA ONCE HORAS	122
CUADRO 58. VOLUMEN DE MUESTRA Y TIEMPO DE LLENADO CADA ONCE HORAS, CONTINUACIÓN.	123
CUADRO 59. TIEMPO QUE LE TOMA TANTO AL AGUA DESTILADA SIN CONTAMINAR COMO A LA CONTAMINADA DE PLOM	10 II,
IR DE LA MARCA "D" A "E" DEL VISCOSÍMETRO	123
CUADRO 60. PORCENTAJE QUE REPRESENTA LA CÁSCARA DE BANANO EN TODO EL FRUTO.	145
CUADRO 61. PORCENTAJE DE REDUCCIÓN EN PESO DE LA CÁSCARA DE BANANO EN FUNCIÓN DEL TIEMPO DE SECADO	146
CUADRO 62. ENSAYO GRANULOMÉTRICO	148
CUADRO 63. MEDIA Y DESVIACIÓN ESTÁNDAR DE PESO DE BIORESINA PARA PRUEBAS DE PH Y SOLUBILIDAD PARA AGUA	
DESTILADA	110
	148
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA.	148 149
Cuadro 64. Media y desviación estándar del pH de bioresina en agua destilada Cuadro 65. Densidad aparente seca de resina	148 149 149
Cuadro 64. Media y desviación estándar del PH de bioresina en agua destilada. Cuadro 65. Densidad aparente seca de resina. Cuadro 66. Expansión de bioresina.	148 149 149 150
Cuadro 64. Media y desviación estándar del PH de bioresina en agua destilada. Cuadro 65. Densidad aparente seca de resina. Cuadro 66. Expansión de bioresina. Cuadro 67. Diluciones de plomo (<i>Pb</i>) a partir de la solución madre que está a 20 <i>ppm</i> de plomo (<i>Pb</i>) f	148 149 149 150 _{ARA}
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN.	148 149 149 150 ^{ARA} 150
Cuadro 64. Media y desviación estándar del PH de bioresina en agua destilada. Cuadro 65. Densidad aparente seca de resina. Cuadro 66. Expansión de bioresina. Cuadro 67. Diluciones de plomo (Pb) a partir de la solución madre que está a 20 ppm de plomo (Pb) f elaboración de curva de calibración. (Elaboración propia).	148 149 149 150 ARA 150 151
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (Pb) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A $20ppm$ DE PLOMO (Pb) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA.	148 149 150 ARA 150 151 151
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU	148 149 150 ARA 150 151 151 ros.
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (Pb) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 ppm DE PLOMO (Pb) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU	148 149 150 ARA 150 151 151 ros. 152
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CUADRO 70. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU	148 149 150 ARA 150 151 151 TOS. 152 TOS,
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CUADRO 70. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 149 150 ARA 150 151 ros. 152 ros, 153
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CUADRO 70. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU	148 149 150 ARA 150 151 ros. 152 ros, 153 ros,
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 150 ARA 150 151 151 ros. 152 ros, 153 ros, 154
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 72. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 150 ARA 150 151 151 ros. 152 ros, 153 ros, 154 ros,
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 72. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 149 150 ARA 150 151 ros. 152 ros, 153 ros, 154 ros, 155
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 72. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 150 ARA 150 151 151 ros. 152 ros, 153 ros, 154 ros, 155 ros,
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CUADRO 70. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 72. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 150 ARA 150 151 151 ros. 152 ros, 153 ros, 154 ros, 155 ros, 155 ros, 155
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CUADRO 70. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 72. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 149 150 ARA 150 151 151 ros. 153 ros, 153 ros, 154 ros, 155 ros, 156 ros,
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN. (ELABORACIÓN PROPIA). CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 70. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 72. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 149 150 ARA 150 151 151 ros. 153 ros, 153 ros, 154 ros, 155 ros, 156 ros, 156
CUADRO 64. MEDIA Y DESVIACIÓN ESTÁNDAR DEL PH DE BIORESINA EN AGUA DESTILADA. CUADRO 65. DENSIDAD APARENTE SECA DE RESINA. CUADRO 66. EXPANSIÓN DE BIORESINA. CUADRO 67. DILUCIONES DE PLOMO (<i>Pb</i>) A PARTIR DE LA SOLUCIÓN MADRE QUE ESTÁ A 20 <i>ppm</i> DE PLOMO (<i>Pb</i>) F ELABORACIÓN DE CURVA DE CALIBRACIÓN . (ELABORACIÓN PROPIA). CUADRO 68. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA. CUADRO 69. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 70. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 71. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 72. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 73. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 75. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 74. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 75. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 75. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 75. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN. CUADRO 75. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINU CONTINUACIÓN.	148 149 149 150 150 151 151 ros. 152 ros, 153 ros, 154 ros, 155 ros, 155 ros, 156 ros, 157 ros,

CUADRO 76. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 77. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 78. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 79. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 80. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 81. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 82. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 83. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA DIEZ MINUTOS,
CONTINUACIÓN
CUADRO 84. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA HORA 167
CUADRO 85. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA HORA,
CONTINUACIÓN
CUADRO 86. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA HORA,
CONTINUACIÓN
CUADRO 87. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA HORA,
CONTINUACIÓN
CUADRO 88. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA HORA,
CONTINUACIÓN
CUADRO 89. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA HORA,
CONTINUACIÓN
CUADRO 90. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA HORA,
CONTINUACIÓN
CUADRO 91. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA ONCE HORAS.
CUADRO 92. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA ONCE HORAS,
CONTINUACIÓN
CUADRO 93. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA ONCE HORAS.
CONTINUACIÓN
CUADRO 94. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR CORRIDA PARA CADA ONCE HORAS.
CONTINUACIÓN
Cuadro 95. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada diez
MINUTOS
CUADRO 96. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR TIEMPO DE CONTACTO CADA DIEZ
CUADRO 97. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR TIEMPO DE CONTACTO CADA DIEZ
Γιαδρό 98. Μεδία y δεςυιαζιών εςτάνδας de la determinación de ριώνω ρος τιεμρώ de contacto cada diez
CUADRO 99 ΜΕDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE ΡΙ ΟΜΟ ΡΟΒ ΤΙΕΜΡΟ DE CONTACTO CADA HORA

CUADRO 100. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR TIEMPO DE CONTACTO CADA HORA	Α,
CONTINUACIÓN	181
CUADRO 101. MEDIA Y DESVIACIÓN ESTÁNDAR DE LA DETERMINACIÓN DE PLOMO POR TIEMPO DE CONTACTO CADA ONCE	E
HORAS	182
CUADRO 102. CONCENTRACIÓN DE ADSORBATO EN LA FASE SÓLIDA RESPECTO A UN DETERMINADO TIEMPO Y PORCENTAJI	E
DE REMOCIÓN DE PLOMO (II) CADA DIEZ MINUTOS	183
CUADRO 103. CONCENTRACIÓN DE ADSORBATO EN LA FASE SÓLIDA RESPECTO A UN DETERMINADO TIEMPO Y PORCENTAJI	Е
DE REMOCIÓN DE PLOMO (II) CADA HORA	184
CUADRO 104. CONCENTRACIÓN DE ADSORBATO EN LA FASE SÓLIDA RESPECTO A UN DETERMINADO TIEMPO Y PORCENTAJI	Е
DE REMOCIÓN DE PLOMO (II) CADA ONCE HORAS	184
CUADRO 105. MEDIA Y DESVIACIÓN ESTÁNDAR DEL VOLUMEN Y TIEMPO DE LLENADO POR CADA DIEZ MINUTOS DE	
CONTACTO	191
Cuadro 106. Media y desviación estándar del volumen y tiempo de llenado por cada diez minutos de	
CONTACTO, CONTINUACIÓN	192
CUADRO 107. MEDIA Y DESVIACIÓN ESTÁNDAR DEL VOLUMEN Y TIEMPO DE LLENADO POR CADA DIEZ MINUTOS DE	
CONTACTO, CONTINUACIÓN	193
CUADRO 108. MEDIA Y DESVIACIÓN ESTÁNDAR DEL VOLUMEN Y TIEMPO DE LLENADO POR CADA DIEZ MINUTOS DE	
CONTACTO, CONTINUACIÓN	194
CUADRO 109. MEDIA Y DESVIACIÓN ESTÁNDAR DEL VOLUMEN Y TIEMPO DE LLENADO POR CADA DIEZ MINUTOS DE	
CONTACTO, CONTINUACIÓN	195
CUADRO 110. MEDIA Y DESVIACIÓN ESTÁNDAR DEL TIEMPO DE LLENADO POR CADA HORA DE CONTACTO	196
CUADRO 111. MEDIA Y DESVIACIÓN ESTÁNDAR DEL TIEMPO DE LLENADO POR CADA HORA DE CONTACTO, CONTINUACIÓN	۱.
	197
CUADRO 112. MEDIA Y DESVIACIÓN ESTÁNDAR DEL TIEMPO DE LLENADO POR CADA HORA DE CONTACTO, CONTINUACIÓN	۱.
	198
CUADRO 113. MEDIA Y DESVIACIÓN ESTÁNDAR DEL TIEMPO DE LLENADO POR CADA ONCE HORAS DE CONTACTO	198
CUADRO 114. MEDIA Y DESVIACIÓN ESTÁNDAR DEL TIEMPO DE LLENADO POR CADA ONCE HORAS DE CONTACTO,	
CONTINUACIÓN	199
Cuadro 115. Determinación de caudal para llenado de muestras de la columna del sistema a escala	
LABORATORIO	200
Cuadro 116. Determinación de caudal para llenado de muestras de columna del sistema a escala	
LABORATORIO, CONTINUACIÓN	201
CUADRO 117. MEDIA Y DESVIACIÓN ESTÁNDAR DEL TIEMPO QUE LE TOMA TANTO AL AGUA DESTILADA SIN CONTAMINAR	
COMO A LA CONTAMINADA DE PLOMO II, IR DE LA MARCA "D" A "E" DEL VISCOSÍMETRO	202
CUADRO 118. DETERMINACIÓN DE LA VISCOSIDAD TANTO PARA EL AGUA DESTILADA SIN CONTAMINAR COMO EL AGUA	
CONTAMINADA DE PLOMO II	202
CUADRO 119. VOLÚMENES DE LOS COMPONENTES DE LA COLUMNA DEL SISTEMA NATURAL TANTO A ESCALA LABORATORI	10
COMO SU ESCALAMIENTO CON SUS RESPECTIVAS PROPORCIONES	202
CUADRO 120. DIMENSIONAMIENTO DE LA COLUMNA DEL SISTEMA NATURAL TANTO A ESCALA LABORATORIO COMO SU	
ESCALAMIENTO	203
CUADRO 121. DIMENSIONAMIENTO DE CABEZALES TORIESFÉRICOS DEL TIPO ASME FLANGED & DISHED	203
CUADRO 122. DIMENSIONAMIENTO DE TUBERÍAS ESTÁNDAR DE ACERO	204
CUADRO 123. PÉRDIDA DE PRESIÓN EN ACCESORIO DE TUBERÍAS Y VÁLVULAS DE ENTRADA	211
CUADRO 124. DETERMINACIÓN DE CABEZA DINÁMICA PARA DIMENSIONAMIENTO DE BOMBAS CENTRÍFUGA DE ENTRADA.	
	211
CUADRO 125. DETERMINACIÓN DE CABEZA ESTÁTICA PARA DIMENSIONAMIENTO DE BOMBAS CENTRÍFUGA DE ENTRADA. 2	211
	211

Cuadro 127. Potencia y eficiencia para la bomba de entrada del escalamiento de la columna del sistema	
NATURAL.	212
CUADRO 128. TASA INTERNA DE RETORNO Y VALOR ACTUAL NETO DE LA FABRICACIÓN DE LA BIORESINA.	212

LISTA DE DE FIGURAS

Figura 1. Isotermas de adsorción	14
Figura 2. Métodos de linearización para isotermas de Langmuir.	15
Figura 3. Perfiles de concentración	16
Figura 4. Curva de ruptura	17
FIGURA 5. CURVAS DE RUPTURA PARA A) UNA ESTRECHA Y B) UNA AMPLIA ZONA DE TRANSFERENCIA DE MASA	17
Figura 6. Resina de intercambio iónico	22
FIGURA 7. DEPARTAMENTOS PRODUCTORES DE BANANO EN GUATEMALA	25
FIGURA 8. ESPECTRO ELECTROMAGNÉTICO Y EFECTOS MOLECULARES RESULTANTES.	28
Figura 9. Espectro infrarrojo del metanol	29
FIGURA 10. DIAGRAMA DE BLOQUES DE UN INTERFERÓMETRO EN UN ESPECTRO IR-TF.	30
FIGURA 11. TRAYECTORIAS ÓPTICAS EN UN ESPECTROFOTÓMETRO DE DOBLE HAZ DE ABSORCIÓN ATÓMICA	31
FIGURA 12. CABEZAL TORIESFÉRICO DEL TIPO ASME FLANGED & DISHED.	35
FIGURA 13. VELOCIDAD DE FLUIDOS EN TUBERÍAS.	38
FIGURA 14. PÉRDIDA DE PRESIÓN EN ACCESORIOS DE TUBERÍAS Y VÁLVULAS	40
FIGURA 15. BOMBAS CENTRÍFUGAS DE VOLUTA (A) SUCCIÓN SENCILLA. (B) SUCCIÓN DOBLE	41
Figura 16. Curvas características de una bomba centrífuga: (a) carga-capacidad; (b) potencia; (c)	
RENDIMIENTO	42
FIGURA 17. CURVAS CARACTERÍSTICAS PARA BOMBAS CENTRÍFUGAS.	44
FIGURA 18. CUADRO DE DIÁLOGO PARA EL CÁLCULO DE LA TIR CON EXCEL	45
FIGURA 19. VISCOSÍMETRO MARCA CANNON-INSTRUMENT COMPANY	58
FIGURA 20. ESPECTROFOTOMETRÍA DE INFRARROJO DE LA CÁSCARA DE BANANO MADURO EMPLEADA PARA EL PROCI	ESO DE
Adsorción de Plomo II	63
CUADRO 3. ENLACES PRESENTES EN LA FIGURA 20.	63
FIGURA 21. PROTOTIPOS DE SISTEMA NATURAL A ESCALA LABORATORIO PARA LLEVAR A CABO LAS PRUEBAS DE REMO	OCIÓN DE
Рьомо II	64
FIGURA 22. PROPUESTA DE SISTEMA NATURAL.	67
FIGURA 23. PRONÓSTICO DE VELOCIDAD NOMINAL DEL FLUIDO DENTRO DE LA TUBERÍA DE ACERO ESTÁNDAR	136
FIGURA 24. CURVA EXPERIMENTAL DE LA PÉRDIDA DE PESO DE LA CÁSCARA DE BANANO.	147
FIGURA 25. CURVA DE CALIBRACIÓN DE LA CONCENTRACIÓN DE PLOMO (II) EN AGUA.	151
FIGURA 26. CURVA DE RUPTURA DEL AGUA CONTAMINADA CON 20PPM DE PLOMO II, LUEGO QUE ABANDONA EL LE	сно,
CONSIDERANDO TODOS LOS TIEMPOS DE CONTACTO.	185
FIGURA 27. CURVA DE RUPTURA DEL AGUA CONTAMINADA CON 20PPM DE PLOMO II, LUEGO QUE ABANDONA EL LE	сно,
CONSIDERANDO SOLO LOS TIEMPOS DE CONTACTO DE LAS PRIMERAS CUATRO HORAS.	186
FIGURA 28. CURVA DE RUPTURA DEL AGUA CONTAMINADA CON 20PPM DE PLOMO II, LUEGO QUE ABANDONA EL LE	сно,
CONSIDERANDO SOLO LOS TIEMPOS DE CONTACTO A PARTIR DE LAS CUATRO HORAS EN ADELANTE.	187
FIGURA 29. CURVA DE RUPTURA DEL AGUA CONTAMINADA CON 20PPM DE PLOMO II, LUEGO QUE ABANDONA EL LE	сно,
CONSIDERANDO SOLO LOS TIEMPOS DE CONTACTO DE LA PRIMERA HORA Y LOS DE CADA ONCE HORAS	188
Figura 30. Efecto del tiempo de contacto entre una solución con 20ppm de Plomo (II) y la bioresina	
FABRICADA A PARTIR DE LA CÁSCARA DE BANANO	189
FIGURA 31. VARIACIÓN DE LA ADSORCIÓN CON EL TIEMPO DE UNA SOLUCIÓN CON 20PPM DE PLOMO II QUE ESTÁ EL	N
CONTACTO CON LA BIORESINA FABRICADA A PARTIR DE LA CÁSCARA DE BANANO	190
FIGURA 32 ÍNDICE: FOUNDOS V ACCESORIOS	205
	205

FIGURA 34. PROPUESTA DE SISTEMA NATURAL VISTA PLANTA	207
FIGURA 35. MEDIDAS DE LA PROPUESTA DE LA COLUMNA DEL SISTEMA NATURAL.	208
FIGURA 36. PROPUESTA DE LA COLUMNA DEL SISTEMA NATURAL VISTA 3D.	209
FIGURA 37. FICHA TÉCNICA DE LA PROPUESTA DEL LA COLUMNA DEL SISTEMA NATURAL QUE UTILIZA LA CÁSCARA DE BA	ANANO
PARA LA REMOCIÓN DE PLOMO II	210
FIGURA 38. DIAGRAMA DE BLOQUES DEL PROCESO DE FABRICACIÓN DE BIORESINA ÚTIL EN SACOS DE 25KG	212
FIGURA 39. INVERSIÓN EN MAQUINARIA REQUERIDA PARA LA FABRICACIÓN DE LA BIORESINA	213
	213
FIGURA 40. COSTO TOTAL DE LA CONSTRUCCIÓN, TERRENO Y PAREDES PARA LA FABRICACIÓN DE LA BIORESINA	215
FIGURA 41. INVERSIÓN TOTAL PARA LA FABRICACIÓN DE LA BIORESINA.	216
FIGURA 42. HORARIOS Y SALARIOS DE PERSONAL RESPONSABLE DE LA FABRICACIÓN DE BIORESINA.	217
FIGURA 43. HORARIOS Y SALARIOS DE PERSONAL RESPONSABLE DE LA FABRICACIÓN DE BIORESINA.	218
FIGURA 44. SALARIOS TOTALES REQUERIDOS PARA LA FABRICACIÓN DE LA BIORESINA.	219
FIGURA 45. COSTOS VARIABLES TOTALES.	220
FIGURA 46. COSTOS FIJOS TOTALES.	221
FIGURA 47. FLUJO DE CAJA PARA LA FABRICACIÓN DE LA BIORESINA.	222
Figura 48. Tratamiento de lavado, secado y de reducción de tamaño a la cáscara de banano para su	
POSTERIOR USO COMO ADSORBENTE NATURAL.	223
FIGURA 49. TAMIZADOR TIPO SHAKER	224
FIGURA 50. BIORESINA FABRICADA SEPARADA POR TAMAÑO DE PARTÍCULA.	224
FIGURA 51. PRUEBAS DE SOLUBILIDAD Y PH EN AGUA DESTILADA.	225
FIGURA 52. PRUEBA DE EXPANSIÓN DE LA BIORESINA FABRICADA.	225
FIGURA 53. PROTOTIPOS DE COLUMNA DEL SISTEMA NATURAL A ESCALA LABORATORIO PARA LLEVAR A CABO LAS PRUE	EBAS DE
	226
REMOCIÓN DE PLOMO II.	226
REMOCIÓN DE PLOMO II. Figura 54. Medición de la viscosidad, a temperatura ambiente, del fluido que sale de la columna del sis	226 STEMA
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY	226 Stema 227
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA)	226 STEMA 227 228
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA) FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA	226 STEMA 227 228 CA
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA).	226 STEMA 227 228 CA 229
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES.	226 TEMA 227 228 CA 229 230
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN.	226 STEMA 227 228 CA 229 230 231
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN.	226 STEMA 227 228 CA 229 230 231 232
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS.	226 TTEMA 227 228 CA 229 230 231 232 233
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TTEMA 227 228 CA 229 230 231 232 233 234
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TTEMA 227 228 CA 229 230 231 232 233 234 235
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237 238
REMOCIÓN DE PLOMO II FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA) FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237 238 239
REMOCIÓN DE PLOMO II FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA) FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237 238 239 239 239 240
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 68. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 68. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237 238 239 239 240 241
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY- FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN STÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 68. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 69. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237 238 239 239 240 241 242
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY- FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMIC (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN STÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 68. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 69. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237 238 239 239 240 241 242 243
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY	226 TEMA 227 228 CA 229 230 231 232 233 234 235 236 237 238 239 240 241 242 244
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY- FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS. FIGURA 62. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 68. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 69. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 70. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 71. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 72. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 72. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	226 TEMA 227 228 CA 229 230 231 232 233 233 234 235 236 237 238 239 240 241 242 243 244 245
REMOCIÓN DE PLOMO II. FIGURA 54. MEDICIÓN DE LA VISCOSIDAD, A TEMPERATURA AMBIENTE, DEL FLUIDO QUE SALE DE LA COLUMNA DEL SIS NATURAL A ESCALA LABORATORIO, MEDIANTE UN VISCOSÍMETRO MARCA CANNON-INSTRUMENT-COMPANY FIGURA 55. CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA) FIGURA 56. PARÁMETROS PARA CURVA DE CALIBRACIÓN OBTENIDA DEL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA (LLAMA). FIGURA 57. DETERMINACIÓN DE PLOMO EN ESTÁNDARES. FIGURA 58. DETERMINACIÓN DE PLOMO EN ESTÁNDARES, CONTINUACIÓN. FIGURA 59. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 60. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 61. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 63. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 64. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 65. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 66. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 67. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 68. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 69. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 69. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 70. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 70. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 71. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 72. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 73. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 73. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 74. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 75. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 76. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN. FIGURA 76.	226 TEMA 227 228 CA 229 230 231 232 233 233 234 235 236 237 238 238 239 240 241 242 243 245 246

FIGURA 75. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 248
FIGURA 76. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 249
FIGURA 77. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 250
FIGURA 78. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 251
FIGURA 79. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 252
FIGURA 80. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 253
FIGURA 81. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 254
FIGURA 82. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 255
FIGURA 83. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 256
FIGURA 84. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 257
FIGURA 85. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 258
FIGURA 86. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 259
FIGURA 87. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 260
FIGURA 88. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 261
FIGURA 89. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 262
FIGURA 90. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 263
FIGURA 91. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 264
FIGURA 92. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 265
FIGURA 93. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 266
FIGURA 94. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 267
FIGURA 95. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 268
FIGURA 96. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 269
FIGURA 97. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 270
FIGURA 98. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 271
FIGURA 99. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 272
FIGURA 100. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 273
FIGURA 101. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 274
FIGURA 102. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 275
FIGURA 103. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 276
FIGURA 104. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 277
FIGURA 105. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 278
FIGURA 106. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 279
FIGURA 107. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 280
FIGURA 108. DETERMINACIÓN DE PLOMO EN MUESTRAS, CONTINUACIÓN.	. 281
FIGURA 109. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS.	. 282
FIGURA 111. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 284
FIGURA 112. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 285
FIGURA 113. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 286
FIGURA 115. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 288
FIGURA 116. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 289
FIGURA 117. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 290
FIGURA 118. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 291
FIGURA 119. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 292
FIGURA 120. DETERMINACIÓN DE PLOMO EN MUESTRAS CADA ONCE HORAS, CONTINUACIÓN	. 293
FIGURA 121. RELACIÓN DE LAS SUSTANCIAS INORGÁNICAS CON SIGNIFICADO PARA LA SALUD, CON SUS RESPECTIVOS LÍN	AITES
PERMISIBLES (LMP).	. 294
FIGURA 122. FRECUENCIA DE LOS ESTIRAMIENTOS DE LOS ENLACES.	. 294

FIGURA 123. IR: ABSORCIONES EN EL INFRARROJO CARACTERÍSTICAS DE LOS GRUPOS FUNCIONALES	95
FIGURA 124. IR: FRECUENCIAS INFRARROJO CARACTERÍSTICAS DE LOS GRUPOS (S = FUERTE, M = MEDIO, W = DÉBIL) 29	96
FIGURA 125. IR: FRECUENCIAS INFRARROJO CARACTERÍSTICAS DE LOS GRUPOS (S = FUERTE, M = MEDIO, W = DÉBIL);	
CONTINUACIÓN	97
FIGURA 126. RELACIONES ENTRE EL TAMAÑO DE LA TUBERÍA, LA VELOCIDAD VOLUMÉTRICA DEL FLUJO Y LA VELOCIDAD DEL	
FLUIDO	98
FIGURA 127. GRÁFICA DEL FACTOR DE FRICCIÓN PARA TUBERÍAS CIRCULARES	99
FIGURA 128. LECTURA DE LA POTENCIA Y EFICIENCIA DE LA BOMBA DE ENTRADA A LA COLUMNA DEL SISTEMA NATURAL. 30	00
FIGURA 129. LECTURA DE LA POTENCIA Y EFICIENCIA DE LA BOMBA DE ENTRADA A LA COLUMNA DEL SISTEMA NATURAL. 30	01
FIGURA 130. FICHA TÉCNICA DE LAVADORA CON SALIDA POR BANDA TRANSPORTADORA GEWA XL	02
FIGURA 131. FICHA TÉCNICA DE LAVADORA CON SALIDA POR BANDA TRANSPORTADORA, CONTINUACIÓN	03
FIGURA 132. FICHA TÉNCNICA DE HORNO DESHIDRATADOR AINGETHERM, MODELO HD 120-1000 AG P	04
FIGURA 133. FICHA TÉCNICA DE MOLINO DE MARTILLOS 650	05
FIGURA 134. FICHA TÉCNICA DE ENSACADORA AUTOMÁTICA PARA SACOS ILERSAC.	06
FIGURA 135. FICHA TÉCNICA DE ENSACADORA AUTOMÁTICA PARA SACOS ILERSAC, CONTINUACIÓN	07
FIGURA 136. EXPONENTES TÍPICOS DEL COSTO DEL EQUIPO FRENTE A LA CAPACIDAD.	08
FIGURA 137. ESTIMACIÓN USANDO FACTORES DE LA FIGURA 134	09
FIGURA 138. FACTORES TÍPICOS PARA CONVERTIR EL COSTO DEL ACERO AL CARBONO EN COSTOS DE ALEACIÓN	
EQUIVALENTES	09
FIGURA 139. RANGOS TÍPICOS DE INSTALACIONES AUXILIARES COMO PORCENTAJE DEL COSTO TOTAL DE LA PLANTA	
INSTALADA	10
FIGURA 140. CERTIFICADO DE CALIBRACIÓN DE VISCOSÍMETRO CANNON- INSTRUMENT COMPANY	11
FIGURA 141. SEGUIMIENTO DEL ÍNDICE DE COSTOS DE EQUIPOS DE MARSHALL & SWIFT	12
FIGURA 142. MOBICON 2000 CUBE	13

RESUMEN

En este trabajo se realizó la propuesta de un sistema natural que utiliza la cáscara de banano para la remoción de Plomo II. Para ello, primero fue necesario identificar los grupos funcionales presentes en la cáscara de banano, utilizando la espectroscopía infrarroja con transformada de Fourier (FTIR). Luego, se llevó a cabo un tratamiento de lavado, secado y de reducción de tamaño a la cáscara de banano para su posterior uso como adsorbente para la remoción de plomo II.

Al realizar el sistema natural a escala laboratorio para llevar a cabo las pruebas de remoción de plomo II, utilizando la bioresina fabricada, se dio lugar al escalamiento del sistema por similitud geométrica, térmica y cinemática. Además, con las pruebas de remoción de plomo II en agua contaminada, empleando cáscara de banano en polvo, se calculó el porcentaje de reducción de este metal en cada muestra. Con estos datos experimentales se pudo obtener la curva de ruptura del agua contaminada con 20ppm de Plomo II, luego que abandonara el lecho compuesto por bioresina y piedra pómez; fue a partir de ella que se estableció la concentración y el tiempo de ruptura. Estos datos son importantes para determinar el momento en el que la bioresina ya no puede seguir reduciendo la concentración de Plomo II.

ABSTRACT

In this work, the proposal of a natural system that uses the banana peel for the removal of Lead II was carried out. For this, it was first necessary to identify the functional groups present in the banana peel, using Fourier transform infrared spectroscopy (FTIR). Then, a washing, drying and size reduction treatment was carried out on the banana peel for its later use as an adsorbent for the removal of lead II.

By performing the natural system on a laboratory scale to carry out the lead II removal tests, using the manufactured bioresin, the scaling of the system by geometric, thermal and kinematic similarity resulted. In addition, with the lead II removal tests in contaminated water, using powdered banana peel, the percentage reduction of this metal in each sample was calculated. With these experimental data it was possible to obtain the rupture curve of the water contaminated with 20ppm of Lead II, after leaving the bed composed of bioresin and pumice stone; it was from her that the concentration and the break time were established. These data are important to determine when the bioresin can no longer further reduce the concentration of Lead II.

I. INTRODUCCIÓN

El aumento de la población humana a lo largo de las últimas décadas ha llevado a una mejora de la actividad industrial y con ello a un aumento de problemas ambientales. Como resultado de esta situación, la contaminación del suelo, aire y los cuerpos de agua ya forman parte de la vida cotidiana. Siendo ésta última, una de las principales preocupaciones. Este problema ambiental está estrechamente relacionado con la industria alimentaria, las actividades mineras y agrícolas que producen una cantidad considerable de desechos tóxicos (Silva, Gomes, Andrade, Monteiro, Dias, Zagatto y Tornisielo, 2013). Asimismo, puede ser causado de manera natural como producto de lixiviación de suelos, rocas y erupciones volcánicas.

Para eliminar estos contaminantes, se han aplicado varias estrategias que incluyen adsorción, fotocatálisis y/o procesos de oxidación avanzados. Con respecto a la adsorción, los adsorbentes de origen natural se han vuelto atractivos a la vista debido a la abundante disponibilidad de suministros, la alta capacidad de adsorción y bajo costo. Lo anterior es un aspecto importante, especialmente si se utiliza biomasa regional (Ahmad y Danish, 2017).

La cáscara de banano presenta una alta capacidad de adsorción para metales y compuestos orgánicos, aspecto que se debe principalmente a la presencia de los grupos hidroxilo y carboxilo de la pectina. El proceso de bioadsorción es un proceso que permite la captación activa o pasiva de iones metálicos, debido a la propiedad que distintas biomasas vivas o muertas poseen para enlazar y acumular este tipo de contaminantes con diferentes mecanismos. Esta es una tecnología que no solo permite remover los metales pesados, sino también da lugar al tratamiento de los desechos agrícolas que antes no tenían ninguna utilidad (Silva, Gomes, Andrade, Monteiro, Dias, Zagatto y Tornisielo, 2013).

En el presente trabajo, se utiliza la cáscara de banano para realizar una bioresina que sirve como adsorbente de metales pesados presentes en aguas contaminadas con plomo II. Asimismo, se evalúa la eficiencia de remoción de metales pesados por el medio adsorbente y se determina la capacidad de vida útil de este último.

II. PLANTEAMIENTO DEL PROBLEMA

En Guatemala, cerca de la mitad de la población no cuenta con servicio de agua en su vivienda. De la otra mitad, más del 60% no aplica ningún tratamiento al agua para beber. Otro dato relevante es que más de 200,000 personas murieron entre los años 2000 y 2007 por problemas digestivos relacionados con la contaminación del agua (MARN, 2013).

La contaminación ambiental es uno de los más importantes problemas que afectan a la sociedad del siglo XXI. La tasa de contaminación del agua puede ser estimada en 2000 millones de metros cúbicos diarios; problema que está relacionado principalmente con la industria alimentaria y las actividades mineras y agrícolas que producen una notable cantidad de desechos tóxicos. Por ello es evidente la crisis de este recurso para los próximos años, lo que podría comprometer el cumplimiento de uno de los objetivos de Desarrollo del Milenio de la Organización de Naciones Unidas.

Específicamente, la contaminación del agua por metales pesados provocada por vía antrópica y natural, está afectando drásticamente la seguridad alimentaria y salud pública. Estudios recientes revelan la presencia de metales pesados tales como: el plomo, cadmio, arsénico y mercurio en hortalizas de lechuga, repollo, calabaza, brócoli y papa. Dicha contaminación, proviene del uso para riego de aguas afectadas. De igual modo, es importante destacar que se han encontrado metales en diferentes concentraciones en peces, carnes y leche, resultado de la bio-acumulación y movilidad desde el ambiente a las fuentes hídricas.

Debido a su alto nivel de toxicidad, el impacto ocasionado en salud por su exposición prolongada o por bio-acumulación de metales pesados es preocupante. De acuerdo al tipo de metal o metaloide, es como se producen afecciones que van desde daños en órganos vitales hasta desarrollos cancerígenos.

III. OBJETIVOS

- A. General
- Proponer un sistema natural utilizando la cáscara de banano como medio adsorbente para la remoción de plomo II que se encuentra en aguas contaminadas.
- B. Específicos
- Identificar los grupos funcionales presentes en la cáscara de banano, utilizando la espectroscopía infrarroja con transformada de Fourier (FTIR).
- Proponer un sistema natural a escala laboratorio y su escalamiento, para llevar a cabo las pruebas de remoción de plomo II utilizando la bioresina fabricada.
- Realizar pruebas de remoción de plomo II en agua contaminada, empleando cáscara de banano en polvo y determinar el porcentaje de reducción de este metal en la muestra.

IV. JUSTIFICACIÓN

El agua dulce es un requisito básico para los humanos y la vida silvestre. La disponibilidad de agua potable es fundamental para mantener una vida sana. Sin embargo, aunque la demanda mundial de agua aumenta anualmente, varias formas de contaminación han comprometido las posibles fuentes de agua (Joseph, L., Jun, B., Flora, J., Park, C., y Yoon, Y., 2019). En los últimos años, las actividades industriales y urbanas han aumentado en todo el mundo, lo que consecuentemente ha contribuido a aumentar la contaminación por metales pesados. Según las Naciones Unidas, se estima que el 80% de todas las aguas residuales industriales y municipales en los países en vías de desarrollo se libera al medio ambiente sin ningún tratamiento previo (UN-Water, 2018). Lo anterior se fundamenta con el hecho de que en el Río Villalobos y el Río Las Vacas, los cuales drenan la ciudad de Guatemala, se encuentran materiales peligrosos provenientes de desperdicios industriales de la ciudad tales como: Cromo VI, arsénico, plomo y otros (Spillman; Buckalew, 2000). Los metales pesados son especialmente preocupantes debido a su naturaleza tóxica y cancerígena, junto con sus efectos nocivos documentados para la salud humana. Estos son los contaminantes más peligrosos puesto que no son biodegradabes y poseen un gran potencial de bioacumulación en los organismos vivos (Morales, 2018).

Por otro lado, los desechos de banano también pueden causar una seria amenaza ambiental si estos no se manejan adecuadamente, pueden producir gases de efecto invernadero si se vierten en condiciones húmedas. A parte de los desechos producidos por el árbol de banano y la fruta, la cáscara de banano es uno de los desechos importantes generados en grandes cantidades debido al consumo de fruta de banano (Ahmad y Danish, 2017).

El uso de residuos agrícolas cumple bien con las estrategias de tratamiento de efluentes con alta eficiencia y viabilidad económica. Un ejemplo es la cáscara de banano, misma que se ha utilizado como adsorbente para metales pesados y compuestos fenólicos. Debido a lo anterior, en el presente trabajo, se propone una nueva estrategia que explota la adsorción en la cáscara de banano para la remoción eficiente de metales pesados en aguas contaminadas con plomo II (Ahmad y Danish, 2017).

V. MARCO TEÓRICO

A. El agua

El agua es uno de los recursos vitales para cualquier forma de vida en nuestro planeta. Estudios han revelado que el 97.5% del agua total pertenece al mar y es salada; mientras que el porcentaje restante es agua dulce. De este 2.5%, el 60% está contenida en los glaciares, el 30% se encuentra en aguas subterráneas y el 10% son fuentes superficiales (ríos y lagos). Del agua que no está congelada, el 70% se utiliza para la agricultura, el 22% para procesos industriales y el 8% para uso domiciliario.

El agua puede ser considerada como un recurso renovable cuando se controla cuidadosamente su uso. De no ser así, puede considerarse como un recurso no renovable, limitado por las cantidades que se mueven del sistema natural. El agua es un recurso finito y no siempre se podrá disponer de la misma. Su captación depende del régimen de lluvias de la región y del grado de desarrollo que permita métodos distintos de recolección, tratamiento y distribución para hacerla apta para el consumo humano (SEGEPLAN, 2011).

Aunque el agua está en movimiento constante, se acumula temporalmente en los océanos, lagos, ríos y arroyos (fuentes superficiales) y en el subsuelo, como fuentes subterráneas.

1. Recursos de agua subterránea

El agua dulce que proviene de pozos y fuentes son un recurso esencial y a la vez grande de suministro de agua para el consumo. El agua de estos pozos y vertientes se utiliza para propósitos agrícolas, industriales, públicos y privados. No obstante, la disponibilidad de agua subterránea es muy variable.

El agua subterránea es abundante en acuíferos sedimentarios a través de las planicies, valles y tierras bajas del país. Sin embargo, en las áreas montañosas la disponibilidad de agua dulce varía considerablemente de localmente abundante a inadecuada para su uso.

Es importante destacar que la deforestación tiene un impacto negativo en los recursos de agua subterráneos del país, de manera que reduce la cantidad de agua que recarga los acuíferos, dando como resultado niveles más bajos de agua.

A pesar de que el agua subterránea es más segura que los suministros de agua superficial que no han sido tratados, muchos acuíferos poco profundos en las cercanías de áreas populosas están biológicamente contaminados, principalmente debido a la disposición inadecuada de los desechos (Spillman; Buckalew, 2000).

2. Recursos de agua superficial

El agua superficial cubre aproximadamente 1,000 km2 de los 108,900 km2 de tierra del país. Los recursos de agua superficial proveen el 70% del suministro público de agua en las áreas urbanas y el 90% del suministro de agua en las áreas rurales del país.

Pese a que los recursos de agua superficial son abundantes, están distribuidos en forma variable, son altamente estacionales y generalmente están contaminados. Mientras dura la estación seca, muchos arroyos dejan de fluir. En las épocas de los cambios de estación, los recursos de agua superficial se encuentran en su punto inicial y flujo mínimo (Spillman; Buckalew, 2000).

3. Calidad del agua

El Instituo Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) a través del Departamento de Servicios Hídricos, ejecuta mediciones mensuales en los principales ríos del país sobre las principales características físicas y químicas de aspecto, potencial de hidrógeno, temperatura, turbiedad, conductividad eléctrica, sólidos totales disueltos, salinidad, porcentaje de saturación de oxígeno, tensoactivos, calcio, cloruros, cobre, dureza total, fluoruros, hierro, magnesio, sulfatos, carbonatos, bicarbonatos, alcalinidad, silicatos, amonio, fosfatos, fósforo, fósforo de fosfatos, sodio, potasio, litio, magnesio, demanda química de oxígeno, nitritos, cianuro liberado, cromo y cadmio.

Para la selección de los lugares de toma de muestra se toma en consideración que exista estación hidrométrica, accesibilidad y criterios de consideración sobre los diferentes usos que se le da en el área al agua subterránea y superficial, como son riego, consumo humano, descargas de aguas servidas, uso industrial en general y otros usos.

Los análisis de las aguas superficiales se realizan con la finalidad de determinar el grado de contaminación existente en el agua y su capacidad para que después de recibir un tratamiento, pueda ser empleada para consumo humano y otros usos. El INSIVUMEH se basa en la Norma Panamericana de la Salud establecida en el año 1965, la cual toma en consideración la calidad física y química del agua, como una guía de referencia para establecer si es o no apta para el consumo humano. Asimismo, el INSIVUMEH utiliza como referente la Norma Coguanor NGO 29001 para agua potable. Esta última norma, define el agua potable como "aquella que por sus características de calidad especificadas es adecuada para el consumo humano" (IARNA, 2011).

a. Aguas subterráneas

La contaminación biológica ocasionada por patógenos en los acuíferos poco profundos es por la inapropiada disposición de desperdicios humanos y animales, esto representa un problema en muchas áreas populosas y agrícolas del país. La contaminación química se relaciona principalmente al uso de fertilizantes y pesticidas en las plantaciones de caña de azúcar y bananos en las planicies del Pacífico y el Caribe.

El agua dulce subterránea está generalmente disponible en muy pequeñas a muy grandes cantidades, pero las pendientes empinadas, la densa vegetación y las condiciones inestables del suelo, impiden el acceso. Dichos acuíferos son empleados para el suministro doméstico y la irrigación, y son apropiados para pozos de bombas de mano y tácticos. La mayor parte del suministro de agua (60% aprox.) para la ciudad de Guatemala proviene de recursos de agua subterránea (Spillman; Buckalew, 2000).

b. Aguas superficiales

La calidad del agua superficial es dulce con excepción de las áreas a lo largo de la costa del país. No obstante, en base a las normas biológicas y químicas establecidas, todos los cuerpos de agua del país deberán considerarse contaminados. En áreas agrícolas, los pesticidas representan la primera fuente de contaminación.

Esta agua proviene del Lago de Amatitlán; no obstante, este lago está exageradamente contaminado con desechos industriales y biológicos de la ciudad de Guatemala. Los ríos que drenan la ciudad se consideran contaminados debido a la inadecuada disposición de las aguas negras y los desechos industriales. Entre estos ríos están el Río Las Vacas y el Río Villalobos. El Río Villalobos fluye al sur de la ciudad descargándose en el Lago de Amatitlán y provocando contaminación extrema en el lago. El Río Michatoya, el cual fluye al sur del Lago de Amatitlán hacia el Departamento de Escuintla, está también extremadamente contaminado (Spillman; Buckalew, 2000).

4. Agua potable y saneamiento

En Guatemala, cerca de la mitad de la población no tiene servicio de agua en su vivienda. De la otra mitad, más del 60% no aplica ningún tratamiento al agua para beber. Otro dato sobresaliente es que más de 200,000 personas murieron entre los años 2000 a 2007 por problemas digestivos relacionados con la contaminación del agua.

En nuestro país no siempre el agua entubada significa que sea potable. De los 18,800 sistemas de suministro de agua muestreados por el Programa de Vigilancia del Ministerio de Salud Pública y Asistencia Social en 2008, más del 50% no contenía niveles adecuados de cloro, y más de una cuarta parte presentó contaminación bacteriológica.

Por otro lado, es importante mencionar que el suministro de agua potable de las 331 municipalidades proviene en un 70% de aguas superficiales y 30% de aguas subterráneas, un 66% usa sistemas de gravedad,

18.5% utilizan bombeo y 15.2% son sistemas mixtos. La Empresa Municipal de Aguas de la Ciudad de Guatemala en 1999 obtenía el 55% del agua de fuentes superficiales y el 45% restante de pozos (IARNA, 2004).

5. Aguas residuales

Las aguas residuales son el cuerpo líquido de composición variada proveniente del uso municipal, industrial, comercial, agrícola, pecuario o de cualquier otra índole, pública o privada, y que por tal motivo haya sufrido degradación en su calidad original (Ramos; Sepúlveda; Villalobos, 2003). Es importante destacar que todas las aguas residuales han sido manipuladas por el ser humano, quien es el único responsable de la contaminación de ríos, mares y lagos.

El contenido y características de las aguas residuales dependen del uso que se le haya dado al agua; por tanto, esto es lo que se toma en consideración para realizar una planeación y saber cuál es el proceso que se le debe dar.

Dependiendo del lugar de procedencia, las aguas residuales se pueden clasificar de la siguiente manera:

a. Agua residual doméstica

El uso del agua en los hogares genera agua residual, conocida como ordinaria o doméstica, que contiene los residuos propios de la actividad humana.

Poseen concentraciones de materia orgánica, tanto en suspensión como en disolución, normalmente biodegradable, y con cantidades importantes de nitrógeno, fósforo y sales minerales. Debido a que en su contenido no tienen químicos importantes que se emplean en las industrias, pueden ser catalogadas como las aguas menos contaminadas (MARN, 2013).

b. Agua residual industrial

Las aguas residuales varían dependiendo su caudal y composición. Además, las características de las descargas se diferencian no solo de una industria a otra, sino también dentro de un mismo tipo de industria.

Por lo general, las industrias no generan descargas de forma continua, sino únicamente en determinadas horas del día o incluso únicamente en determinadas épocas del año. Lo anterior depende del tipo de producción y del proceso industrial; es por ello que existen variaciones de caudal y carga a lo largo del día (Espigares García y Pérez López, 1985).

Las aguas residuales industriales poseen más contaminantes que las aguas de tipo doméstico. Su elevada carga aunada a la enorme variabilidad de contaminantes que presentan hace que su tratamiento sea complicado, siendo preciso un estudio específico para cada caso. Esto debido a que no es lo mismo la contaminación que ocasiona una industria de alimentos que la contaminación que genera una industria de textiles. Muchos de los compuestos orgánicos e inorgánicos que se han identificado en aguas residuales industriales son objeto de regulación especial a causa de su toxicidad o a sus efectos biológicos a largo plazo (MARN, 2013).

6. Contaminación del agua

Se estima que el origen de la contaminación hídrica en Guatemala es el siguiente: Por contaminación orgánica, aguas residuales domésticas, un 40%; efluentes industriales (tóxicos, metales, colorantes, orgánico) un 13%; agroindustria (agroquímicos) un 7%; y agropecuaria (agroquímicos) un 40%.

El Río Villalobos y el Río Las Vacas poseen concentraciones de fósforo, nitrato, potasio y sodio que superan los límites establecidos por la Organización Mundial de la Salud. Estos ríos también acarrean una alta cantidad de coliformes, lo cual indica una contaminación de materiales fecales provenientes de aguas negras no tratadas. Asimismo, se encuentran materiales peligrosos provenientes de desperdicios industriales de la ciudad de Guatemala tales como: Cromo VI, arsénico, plomo, cianuro, aluminio y otros (Spillman; Buckalew, 2000).

La OPS establece que la contaminación del agua en Guatemala es la mayor amenaza a la salud de las personas, compromete fondos públicos en acciones sanitarias de curación y no de prevención, inhibe o limita actividades agrícolas productivas y amenaza el turismo asociado con cuerpos de agua (SEGEPLAN, 2011).

a. Contaminación por metales pesados

La presencia de metales pesados en el agua, a parte de las causas naturales, es ocasionada en gran medida por los residuos de las actividades humanas. De forma natural, los metales pesados son introducidos a los sistemas acuáticos como producto de la lixiviación de suelos, rocas y erupciones volcánicas. Por otro lado, estos elementos tóxicos también son introducidos por las actividades antropogénicas como lo son la agricultura, actividades domésticas, industriales y minería.

Las elevadas concentraciones de metales pesados en las aguas de corrientes fluviales relacionados a sulfuros, tales como: Arsénico (As), Cadmio (Cd), cobre (Cu), plomo (Pb) y Zinc (Zn) pueden atribuirse a la minería. Mientras que los metales no sulfurosos así como el Cromo (Cr), Níquel (Ni) y Mercurio (Hg) son muestra de una contaminación antropogénica de metales pesados que están estrechamente asociados con las descargas industriales (Cerón, 2016).

Los metales pesados son los contaminantes más peligrosos puesto que no son biodegradabes y poseen un gran potencial de bioacumulación en los organismos vivos. La toxicidad de los metales depende del grado y la forma de oxidación de un ion metálico y que, en concentraciones que superan los límites establecidos, causan efectos negativos en la salud de los seres humanos, flora y/o fauna (Morales, 2018).

B. Metales pesados

El término "metales pesados" no tiene un significado único que permita enumerarlos y clasificarlos. Sin embargo, algunos criterios usados para definirlos han sido:

- La densidad relativa del metal, mayor de cuatro o de cinco.
- La localización dentro de la tabla periódica de los elementos.
- La respuesta específica zoológica o botánica.
- La toxicidad del elemento.

Entre los elementos que suelen considerarse como metales pesados están: plomo, cromo, arsénico, níquel, cadmio, mercurio y cobre.

Puesto que los metales pesados tienen un carácter acumulativo y de permanencia, éstos se pueden encontrar no sólo en los distintos compartimientos ambientales como aire, agua, suelo, flora y fauna; sino que también se hallan en el organismo humano. Una de las vías más importantes de exposición suele ser el consumo de los distintos grupos de alimentos que los contienen, ya sea de forma natural o como contaminantes (Ferré-Huguet, Schuhmacher, Llobet, y Domingo, 2007).

Los metales no pueden ser degradados o destruidos y pueden incorporarse al cuerpo humano a través del agua, ya sea por ingestión o por absorción dérmica durante la ducha o baño. De igual forma, también pueden ser ingeridos, inhalados o absorbidos dérmicamente a partir de las partículas de polvo resuspendidas que provienen de los suelos (Ferré-Huguet, Schuhmacher, Llobet, y Domingo, 2007).

De acuerdo a la lista de contaminantes de mayor importancia de la Agencia de Protección Ambiental de los Estados Unidos (USEPA), los metáles tóxicos son: arsénico, cromo, plomo, níquel, cobalto, cobre, zinc, cadmio, mercurio, titanio y selenio. Asimismo, es importante destacar que la Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR) considera entre sus sustancias más peligrosas al arsénico, plomo, mercurio y cadmio.

Por otro lado, la Agencia Internacional para la Investigación sobre el Cáncer (IARC) organiza las sustancias dependiendo su condición carcinogénica. En el grupo 1 (Carcinógeno Humano) están el cromo

(VI), arsénico orgánico e inorgánico, cadmio y níquel. Mientras que en el grupo 2A (Probable Carcinógeno Humano) están el plomo inorgánico y sus compuestos (IARC, 2012).

1. Plomo

El plomo es no biodegradable y puede acumularse en los tejidos vivos, con lo que se concentra en toda la cadena alimentaria y puede ser fácilmente absorbido por el cuerpo humano. La presencia de plomo en el agua potable incluso a bajas concentraciones puede causar daños fisiológicos o neurológicos graves; y enfermedades tales como anemia, hepatítis y síndrome nefrótico. Es en general, un veneno metabólico y un inhibidor de enzimas que también causa retardo mental y daño cerebral semipermanente en niños pequeños (Valencia, J. y Castellar, G., 2013).

A parte de que el plomo se puede encontrar de manera natural en distintas concentraciones en rocas y suelos, las industrias que participan en el procesamiento de bacterias ácidas de plomo, pulpa de papel, petroquímicas, refinerías, impresión, pigmentos, material fotográfico, elaboración de explosivos, cerámica, vidrio, pintura, la galvanoplastia, el recubrimiento de metales y la manufactura de tetraetilo de plomo, son la mayor fuente de contaminación de plomo (Valencia, J. y Castellar, G., 2013).

a. Propiedades físicas y químicas

- Fórmula química: Pb.
- Número atómico: 82
- Masa molar: 207.98*g*/*mol*.
- Punto de fusión: 326.9°C
- Punto de ebullición: 1,740°C
- Densidad: 11.85*g/cm*³
- Usos recomendados: En baterías, pigmentos, aleaciones, cerámica, plásticos, municiones, soldaduras, cubiertas de cables, plomadas y armamento.
- 2. Técnicas de tratamiento para la remoción de metales pesados

El impacto ambiental provocado por estas sustancias tóxicas ha llevado a los científicos a desarrollar distintos métodos para el tratamiento de los efluentes industriales contaminados con estas sustancias, entre las cuales están:

Técnicas convencionales

- A. Filtración por membrana
- a. Electrodiálisis

- b. Ósmosis Inversa
- c. Nanofiltración
- d. Ultrafiltración
 - B. Adsorción
- a. Intercambio iónico
- b. Carbón activado
- c. Nanotubos de carbono
 - C. Precipitación química
 - D. Electrocoagulación
 - E. Coagulación-Floculación
 - F. Electrofloculación
 - G. Flotación
 - H. Fotocatálisis en la degradación de metales pesados

Las técnicas mencionadas anteriormente son demasiado costosas e ineficientes especialmente cuando la concentración de los metales es muy baja y no son respetuosas con el medio ambiente, en comparación con la adsorción. Es por ello que es importante buscar subproductos agrícolas y transformar dichos materiales en adsorbentes. Hoy en día, los materiales agrícolas reciben cada vez más atención como adsorbentes para la eliminación de metales pesados del agua. Los adsorbentes de origen agrícola tienen grupos poliméricos como celulosa, hemicelulosa, pectina, lignina y proteínas como centros activos para la captación de metales (Anwar, Shafique, Zaman, Salman, Dar y Anwa, 2009).

C. Adsorción

El proceso de adsorción es un fenómeno superficial en el cual las sustancias solubles en la fase líquida se transfieren a la superficie o al grueso del adsorbente sólido. La adsorción se utiliza ampliamente para la remoción de contaminantes de soluciones acuosas. Estudiar el equilibrio de adsorción es importante para el buen diseño de sistemas de adsorción (Xuan, G. y Jianlong, W., 2019).

La adsorción es gobernada por una atracción electro-química y no por un proceso mecánico. Las fuerzas moleculares en la superfície del adsorbente están en un estado de insaturación. Según la naturaleza del enlace de adsorción, ésta puede ser física o química (Treybal, 2005).

1. Tipos de adsorción

a. Adsorción física

También es llamada "adsorción de Van der Waals". Es un fenómeno fácilmente reversible, es el resultado de las fuerzas intermoleculares de atracción entre las moléculas del sólido y la sustancia adsorbida. Esta se

caracteriza por ser siempre reversible y sus fuerzas moleculares son las mismas que en el caso de la condensación de un gas a líquido (Fraga, 1991).

b. Quemisorción

También llamada "adsorción activada". Ésta es el resultado de la interacción química entre el sólido y la sustancia adsorbida. La fuerza de unión química puede variar considerablemente y puede que no se formen compuestos químicos; sin embargo, la fuerza de adhesión es generalmente mucho mayor que la observada en la adsorción física (Treybal, 2005).

2. Isotermas de adsorción

Una isoterma de adsorción es la relación de equilibrio entre la concentración de la fase fluida y la concentración de las partículas de adsorbente a una temperatura determinada. Para líquidos, la concentración se expresa por lo general en unidades de masa, tales como mg/L (ppm). La concentración de adsorbato sobre el sólido está dada como masa adsorbida por unidad de masa de adsorbente original (McCabe, Smith y Harriot, 2007).

a. Tipos de isotermas

En la Figura 1 se muestran algunas formas típicas de isotermas como gráficas aritméticas. La isoterma lineal pasa por el origen de coordenadas y la cantidad adsorbida es proporcional a la concentración en el fluido. Las isotermas que son convexas hacia arriba se les denomina favorables, debido a que puede obtenerse una carga relativamente elevada del sólido para una baja concentración en el fluido. La isoterma de Langmuir está dada por la ecuación:

$$q_e = \frac{q_m K_a C_e}{1 + K_a C_e} \qquad (ec.1)$$

Donde

 q_e = Cantidad de concentración de adsorbato en la fase sólida en equilibrio (mg/g).

 q_m = Es la máxima capacidad de adsorción (mg/g).

 K_a = Constante de afinidad (L/mg).

 C_e = Concentración de adsorbato en la fase líquida en equilibrio (mg/L).

La isoterma es del tipo favorable. Cuando K_a es mayor y $K_a C_e \gg 1$, la isoterma es altamente favorable; y cuando $K_a C_e < 1$, la isoterma es prácticamente lineal (McCabe, Smith y Harriot, 2007).

Una isoterma que es cóncava hacia arriba recibe el nombre de desfavorable debido a que se obtienen cargas de sólido relativamente bajas y a que conducen a largas zonas de transferencia de materia en el lecho. Este tipo de isotermas es raro; sin embargo, resultan interesantes para ayudar a comprender el proceso de regeneración. Si la isoterma de adsorción es favorable, la transferencia de masa desde el sólido hacia la fase fluida tiene características similares a las de la adsorción con una isoterma no favorable (McCabe, Smith y Harriot, 2007).

Figura 1. Isotermas de adsorción.

(McCabe, Smith y Harriot, 2007).

La isoterma de Langmuir es la más utilizada; esta isoterma simula la adsorción en monocapa del adsorbato sobre una superficie adsorbente homogénea. Las constantes de la isoterma de Langmuir tienen significados físicos específicos que pueden describir las capacidades máximas y las propiedades de superficie del adsorbente. La isoterma de Langmuir es una ecuación de forma no lineal. Es por ello que, para estimar los parámetros, la isoterma no lineal de Langmuir a menudo se transforma en sus formas lineales. Este proceso permite calcular los parámetros de Langmuir mediante el método de regresión lineal, que es más sencillo, conveniente y fácil de realizar con el software Microsoft Excel (Xuan, G. y Jianlong, W., 2019).

Los isotermas de Langmuir se pueden linealizar en al menos cuatro tipos diferentes, como se muestra en la Figura 2. Sin embargo, los métodos de linealización de la isoterma de Langmuir en la literatura de los últimos años establecen que el método Langmiur-1 es el método aplicado con más frecuencia para estimar los parámetros de la isoterma de Langmuir. La mayoría de la literatura ha sugerido que la isoterma de Langmuir-1 puede representar adecuadamente sus datos de adsorción experimental basados en el valor del coeficiente de correlación R2 (Xuan, G. y Jianlong, W., 2019).

Isotherms	Linear forms	Plot
Langmiur-1	$\frac{C_e}{a_e} = \frac{1}{a_m}C_e + \frac{1}{k_e a_m}$	$\frac{C_e}{a_e}$ vs. C_e
Langmiur-2	$\frac{1}{q_e} = \left(\frac{1}{k_a q_m}\right) \frac{1}{C_e} + \frac{1}{q_m}$	$\frac{1}{q_e}$ vs. $\frac{1}{C_e}$
Langmiur-3	$q_e = q_m - \left(\frac{1}{k_a}\right) \frac{q_e}{C_e}$	q_e vs. $\frac{q_e}{C_e}$
Langmiur-4	$\frac{q_e}{C_e} = k_a q_m - k_a q_e$	$\frac{q_e}{C_e}$ vs. q_e

Figura 2. Métodos de linearización para isotermas de Langmuir.

(McCabe, Smith y Harriot, 2007).

La capacidad de adsorción se puede determinar con la ecuación de transferencia de masa:

$$q_t = \frac{V}{m}(C_o - C_t) \qquad (ec.2)$$

Donde

 q_t = Cantidad de concentración de adsorbato en la fase sólida en un tiempo determinado (mg/g).

V = Volumen de la solución (L).

m = Masa del adsorbente (g).

 C_o = Concentración inicial de adsorbato de equilibrio en la fase líquida (mg/L).

 C_t = Concentración de adsorbato en la fase líquida en un tiempo determinado (mg/L).

El porcentaje de eliminación se puede obtener mediante la siguiente ecuación:

% de remoción =
$$\frac{C_o - C_t}{C_o} * 100$$
 (ec. 3)

Donde

 C_o = Concentración inicial de adsorbato de equilibrio en la fase líquida (mg/L).

 C_t = Concentración de adsorbato en la fase líquida en un tiempo determinado (mg/L).

3. Funamentos de la adsorción

a. Modelos de concentración en lechos fijos

En la adsorción en lecho fijo las concentraciones en la fase líquida y en la fase sólida varían con el tiempo y la posición en el lecho. En un principio, la mayor parte de transferencia de masa se da cerca de la entrada
del lecho, donde el fluido se pone en contacto con el adsorbente. Si al inicio el sólido no contiene adsorbato, la concentración en el fluido disminuye en forma exponencial con la distancia hasta casi cero antes de alcanzar el extremo final del lecho. Dicho perfil de concentración se representa en la curva t_1 de la Figura 3, donde c/c_0 es la relación de concentraciones correspondiente al fluido y a la alimentación. Luego de unos minutos, el sólido que está cerca de la entrada está prácticamente saturado, y la mayor parte de la transferencia de materia tiene lugar lejos de la entrada. El gradiente de concentración adquiere la forma de *S*, tal como se muestra en la curva t_2 (McCabe, Smith y Harriot, 2007).

Conforme pasa el tiempo, la zona de transferencia de masa se mueve hacia la parte inferior del lecho, tal como muestran los perfiles t_3 y t_4 . Perfiles similares podrían trazarse para la concentración media de adsorbato sobre el sólido, encontrándose sólido casi saturado a la entrada, a una gran variación en la región de transferencia de materia, y concentración cero al final del lecho. En lugar de representar gráficamente la concentración real sobre el sólido, la línea de trazo discontinuo para el tiempo t_2 representa la concentración en la fase fluida en equilibrio con el sólido. Esta concentración debe ser siempre menor que la concentración real en el fluido, y a diferencia de concentraciones o fuerza impulsora, es considerable cuando el perfil de concentración es brusco y la transferencia de materia es rápida (McCabe, Smith y Harriot, 2007).

Los perfiles de concentración para t_2 , t_3 y t_4 tienen la misma forma, la cual es característica de sistemas con isotermas favorables. Estos perfiles son de autoagudización y se diferencian de aquellos con isotermas lineales, que se vuelven más ensanchados con la distancia, debido a la dispersión axial (McCabe, Smith y Harriot, 2007).

(McCabe, Smith y Harriot, 2007).

b. Curva de ruptura

Los perfiles de la Figura 3. se pueden predecir y utilizar para calcular la curva de concentración frente al tiempo para el fluido que sale del lecho. La curva que se muestra en la Figura 4 recibe el nombre de curva de ruptura. Para los tiempos t_1 y t_2 la concentración a la salida es prácticamente cero, tal y como se presenta en la Figura 3. Luego de un tiempo, cuando la concentración alcanza el valor límite permisible, en t_b , se dice que el sistema ha llegado al punto de ruptura. Comúnmente, el punto de ruptura se toma como una

concentración relativa de 0.05 o 0.10 y, puesto que solo la última porción de fluido tratado tiene la concentración más elevada, la fracción media de soluto separado desde el comienzo hasta el punto de ruptura es con frecuencia 0.99 o superior (McCabe, Smith y Harriot, 2007).

Si la adsorción continuara más allá del punto de ruptura, la concentración aumentaría muy rápido hasta aproximadamente 0.5 y después se acercaría más lento hasta 1.0, tal como se muestra en la Figura 4. Esta curva en forma de S es similar a la de los perfiles de concentración interna y es con frecuencia casi simétrica.

(McCabe, Smith y Harriot, 2007).

Si la zona de transferencia de masa es estrecha a la longitud del lecho, la curva de ruptura será como la Figura 5 (a)., y la mayoría de la capacidad del sólido será empleada en el punto de ruptura. Mientras que cuando la zona de transferencia de masa es casi tan larga como el lecho, la curva de ruptura es más extendida, como en la Figura 5 (b)., y se emplea menos de la mitad de la capacidad del lecho. Una zona de transferencia de masa estrecha es deseable para hacer uso eficiente del adsorbente (McCabe, Smith y Harriot, 2007).

Figura 5. Curvas de ruptura para a) una estrecha y b) una amplia zona de transferencia de masa.

(McCabe, Smith y Harriot, 2007).

4. Parámetros que afectan en la adsorción

El fenómeno de adsorción puede verse afectado tanto de manera positiva como negativa por algunas variables como la temperatura, pH, tamaño de partículas o simplemente por la presencia de otros iones. Estos parámetros pueden aumentar o disminuir la captación de los iones metálicos (Tovar, Ortíz y Jaraba, 2015).

a. Efecto de la temperatura

Estudios anteriores sugieren que un aumento elevado de la temperatura puede causar un cambio en la textura del adsorbente y un deterioro del material que conlleva a una pérdida de capacidad de adsorción (Tovar, Ortíz y Jaraba, 2015).

b. Efecto del pH

El valor del pH de la fase acuosa es el factor más importante tanto en la adsorción de cationes como de aniones, siendo el efecto distinto en ambos casos. Lo anterior debido a que la adsorción de cationes suele estar favorecida para valores de pH superiores a 4.5; mientras que la adsorción de aniones prefiere un valor bajo de pH, entre 1.5 y 5 (Tovar, Ortíz y Jaraba, 2015).

Según Mahindrakar y Rathod un pH entre 5 y 7 se considera un rango adecuado para el estudio de biosorción. Se requieren condiciones ácidas ya que aumenta la afinidad de la cáscara de banano por los iones metálicos. Más allá del pH óptimo, la adsorción disminuye. A pH más bajo, H + compite con cationes metálicos para el sitio de adsorción disponible, mientras que a pH más alto, los sitios de adsorción no se activan (Anwar, Shafique, Zaman, Salman, Dar y Anwa, 2009).

c. Efecto del tiempo de contacto y velocidad de agitación

El tiempo de contacto y la velocidad de agitación se evaluaron como factores importantes que afectan la eficiencia de adsorción. La adsorción aumenta con el aumento del tiempo de contacto y la velocidad de agitación. La baja velocidad acumula el adsorbente en el fondo, en lugar de esparcirse en la solución que resulta en el entierro de varios sitios activos debajo de las capas de adsorbente anteriores. Dado que la adsorción es un fenómeno superficial, las capas enterradas no juegan su papel en la captación de metales. La velocidad de agitación debe ser adecuada para garantizar todos los sitios de unión disponibles para la adsorción de metal. Sin embargo, una velocidad muy alta puede reducir la eliminación del metal, no permitiendo suficiente tiempo para que los iones metálicos se adsorban (Anwar, Shafique, Zaman, Salman, Dar y Anwa, 2009).

d. Efecto del tamaño de partícula

Una de las variables importantes que influyen en la biosorción es el tamaño del biosorbente que decide el área de superficie total disponible y, por lo tanto, la capacidad del biosorbente.

En experimentos anteriores, al trabajar con partículas de 107 µm mostró menos capacidad de bioadsorción. Esto se debe a que las partículas de menor tamaño tienden a convertirse en agregados que tienen menos área superficial para la bioadsorción que las partículas individuales. Mientras que la capacidad de biosorción para un tamaño de partícula de 439 µm es mejor, dando la máxima eficiencia. Por otro lado, las muestras que tenían un tamaño más grande de 439 µm presentaron a una menor capacidad de biosorción, ya que proporcionaban menos área superficial para la adsorción (Mahindrakar y Rathod, 2018).

e. Efecto de la altura del lecho

La remoción de metales en una columna de lecho fijo, depende, entre otros factores, de la cantidad de adsorbente utilizado, o lo que es lo mismo, de la altura de relleno con que se trabaja. Al aumentar la altura del lecho, se incrementa el tiempo de ruptura, y por lo tanto, la cantidad del ion metálico removido; de igual manera, incrementa el área superficial del adsorbente, disponiéndose de más sitios de unión para la adsorción y consecuentemente, la capacidad de adsorción del lecho en el punto de ruptura aumenta (Valencia y Castellar, 2013).

5. Bioadsorción

La bioadsorción es un proceso que da lugar a la captación activa o pasiva de iones metálicos, lo anterior debido a la propiedad que diversas biomasas vivas o muertas poseen para enlazar y acumular este tipo de contaminantes por distintos mecanismos. Esta surge como una alternativa para la remoción de iones de metales pesados en los efluentes industriales, puesto que es una tecnología que no solo permite removerlos, sino que también permite darle un tratamiento a los desechos agrícolas que antes no tenían ninguna utilidad. Entre las ventajas que presenta la bioadsorción, comparado con las técnicas convencionales, están: bajo costo, fácil adquisición, alta eficiencia, minimización de productos químicos, no se requieren nutrientes adicionales, regeneración de los biosorbentes y posibilidad de recuperación de metales (Tovar, Ortíz y Jaraba, 2015).

Investigaciones recientes sobre la adsorción de iones de metales pesados en aguas residuales, demuestran la capacidad de adsorción de distintas biomasas residuales tales como: corteza de árbol del pirul, la cáscara de tamarindo, cáscara de banano *(Musa paradisiaca),* cáscara de limón *(Cítricos limonum),* cáscara de naranja *(Cítricos sinensis),* hoja de maíz, cáscara de maní, quitosano, desechos de tallo de uva, entre otros. El fenómeno de bioadsorción utilizando biomasa muerta es la mejor alternativa para la eliminación de iones metálicos, puesto que no utiliza organismos vivos como materiales bioadsorbentes; donde estos últimos pueden verse afectados por las altas concentraciones de dichos contaminantes, interrumpiendo el proceso de adsorción por la muerte de los mismos (Tovar, Ortíz y Jaraba, 2015).

La bioadsorción es un proceso que involucra una fase sólida (biomasa) y una fase líquida (agua) que contiene disueltos la sustancia de interés que será adsorbida. Además, debe existir una gran afinidad entre los grupos funcionales de la biomasa y el contaminante, puesto que este último debe ser atraído hacia el sólido y enlazado por distintos mecanismos. En general, la extracción de metales mediante biomasas residuales se debe a sus proteínas, carbohidratos y componentes fenólicos que poseen grupos carboxilo, hidroxilo, sulfatos, fosfatos y amino, los cuales presentan afinidad por los iones metálicos, facilitando su captación (Tovar, Ortíz y Jaraba, 2015).

D. Intercambio iónico

Las operaciones de intercambio iónico son reacciones químicas de sustitución entre un electrolito en solución y un electrolito insoluble con el cual se pone en contacto la solución. El mecanismo de estas reacciones y las técnicas empleadas para alcanzarlas son parecidos a los de adsorción que, para la mayoría de los fines de Ingeniería, el intercambio iónico puede considerarse como un caso especial de la adsorción (Treybal, 2005).

1. Propiedades del proceso de intercambio iónico

Las propiedades que rigen el proceso de intercambio iónico y establecen sus características son:

- Las resinas actúan selectivamente, de manera que pueden preferir un ión sobre otro. La selectividad depende de la carga y el tamaño de los iones. La influencia más importante es la magnitud de la carga del ión, puesto que una resina prefiere contraiones de elevada valencia (García, 2016).
- La reacción de intercambio iónico es reversible; lo que quiere decir que puede avanzar en los dos sentidos (Contyquim, 2019).
- En la reacción se mantiene la electroneutralidad, en donde un ión simple se intercambia por otro ión sinple (Contyquim, 2019). Un ejemplo puede ser la siguiente reacción:

$$R - H^+ + Na^+ + Cl^- \leftrightarrow R - Na + H^+ + Cl^- \tag{1}$$

Donde:

R = Estructura molecular orgánica.

 $H^+ = Hidrón$

 $Na^+ =$ Ión de sodio cargado positivamente.

 $Cl^- =$ Ión de cloro cargado negativamente.

(Contyquim, 2019).

2. Resinas intercambiadoras de iones

Una resina de intercambio iónico hace referencia a cualquier variedad de compuestos orgánicos polimerizados sintéticamente y que contienen sitios cargados positiva o negativamente que pueden atraer un ión de carga opuesta de una solución circundante. Los grupos cargados eléctricamente son comúnmente sales

de ácido sulfónico o carboxílico o sales de amonio cuaternario. Los polímeros que contienen grupos ácidos se clasifican como intercambiadores ácidos o catiónicos porque intercambian iones con carga positiva, como iones hidrógeno e iones metálicos; los que contienen grupos amonio se consideran intercambiadores básicos o aniónicos porque intercambian iones cargados negativamente, generalmente iones hidróxido o iones haluro (Britannica, 2012).

Si el ión intercambiable en la resina es el H^+ , evidentemente podrá ser sustituido por otros iones de su mismo signo según la siguiente ecuación:

$$R - H + M^+ \leftrightarrow R - M + H^+ \tag{2}$$

Donde:

R = Estructura molecular orgánica.

 $H^+ =$ Catión hidrógeno.

 M^+ = Es un catión proveniente de un elemento electropositivo.

En el segundo caso, se tendría análogamente:

$$R - OH + A^- \leftrightarrow R - A + OH^- \tag{3}$$

Donde:

R =Estructura molecular orgánica.

 $OH^- =$ Anión hidróxido.

 $A^- =$ Ión cargado negativamente.

(Contyquim, 2019).

Las resinas de intercambio iónico son sólidos ligeros y porosos, generalmente preparados en forma de gránulos, perlas o láminas. Cuando se sumergen en solución, las resinas absorben la solución y se hinchan; el grado de hinchamiento depende de la estructura polimérica y de la concentración total de iones de la solución (Britannica, 2012).

Se pueden sintetizar resinas de composiciones químicas y propiedades físicas adecuadas para aplicaciones específicas de intercambio iónico; es por ello que, conforman la mayor parte de los materiales sintéticos de intercambio iónico utilizados en el laboratorio y la industria. En aplicaciones industriales y domésticas, las resinas de intercambio iónico se utilizan para la eliminación de sales de calcio, magnesio, hierro y manganeso

del agua (ablandamiento del agua), para la purificación del azúcar y para la concentración de elementos valiosos, como oro, plata, y uranio de minerales minerales. En el análisis químico, las resinas de intercambio iónico se utilizan para la separación o concentración de sustancias iónicas, y en la síntesis química, algunas resinas de intercambio iónico se han utilizado como catalizadores eficaces, especialmente en reacciones de esterificación e hidrólisis (Britannica, 2012).

(Wet, 2020).

E. Banano

El banano es una de las frutas tropicales más cultivadas, la cual se cultiva en más de 130 países. Las plantas de banano pertenecen a la familia Musaceae; estas se reproducen asexualmente por vástagos que nacen de un tallo subterráneo. Los brotes tienen un crecimiento enérgico y pueden producir un racimo maduro en menos de un año. Los vástagos siguen brotando de una única mata año tras año, lo que hace de los bananos un cultivo continuo (Arias, Dankers, Liu y Pilkauskas, 2004). Éstos se cultivan principalmente por su fruto y, en menor medida, por la producción de fibra y como plantas ornamentales. Las plantas de banano son normalmente altas y resistentes. Para algunas especies, la altura puede alcanzar hasta 8 m. Cada tallo puede producir un montón de bananos verdes que cuando maduran se vuelven amarillos. Las frutas de banano crecen en racimos colgantes, con casi 20 frutas por mano (nivel) y 3–20 manos por racimo. El fruto promedia 125 g, de los cuales el 25% es materia seca y el resto es agua. El banano es una de las frutas más grandes consumidas en el mundo y las cáscaras inútiles, por lo tanto, crean uno de los principales problemas de los residuos agrícolas (Anwar, Shafique, Zaman, Salman, Dar y Anwa, 2009).

1. Cáscara de banano

Las cáscaras de banano son una buena fuente de lignina (6%-12%), pectina (10%-21%), celulosa (7.6-9.6%) y hemicelulosa (6.4%-9.4%). Las sustancias de pectina son heteropolisacáridos complejos que contienen ácido galacturónico, arabinosa, galactosa y ramnosa como principales componentes del azúcar. Los grupos carboxilo del ácido galacturónico permiten que las sustancias pectínicas se unan fuertemente a los cationes metálicos en solución acuosa. Es por ello que las cáscaras de banano en polvo podrían usarse para la bio-adsorción de formas solubles de metales pesados en las aguas residuales, lo que ha generado una creciente preocupación en varios países (Velardi, Di Palma y Verdone, 2017).

2. Guatemala como país exportador de banano

El banano en Guatemala, Honduras y Panamá contribuye fundamentalmente a las economías de estos países y es una importante fuente de ingresos de exportación y de empleo. No obstante, la producción global en estos países se mantuvo relativamente estancada en los años 1985-2000 debido a la influencia de fenómenos relacionados con la climatología, desacuerdos industriales, enfermedades de los cultivos, el aumento de los costos de producción y la depresión de los precios del banano. Fue a partir del año 2000, donde se empezó a observar una importante recuperación de la producción y las exportaciones en Guatemala, las cuales se vieron afectadas a finales de 1998 por el Huracán Mitch (Arias, Dankers, Liu y Pilkauskas., 2004).

Los principales productos agrícolas del Guatemala son café, caña de azúcar, bananos, plátano y cardamomo. Las exportaciones de banano han ido aumentando de manera constante a un ritmo de 5.4% anual desde la década de los sesenta, pero la mayor parte del aumento se produjo en los noventa. Los obstáculos más importantes para el aumento de la producción y las exportaciones son el transporte (Arias, Dankers, Liu y Pilkauskas., 2004).

El banano se posicionó como el principal generador de divisas del sector agrícola, en 2018. A pesar de que la producción bananera tuvo una caída de 47.3 toneladas en 2018, a causa de fenómenos climáticos, Guatemala se ubicó como el tercer exportador mundial, detrás de Ecuador y Filipinas, al suministrar un 13% de la demanda, estimó preliminarmente la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO, por sus siglas en inglés). Esta última refiere que el país exportó 2 millones 319 mil toneladas, de las 19.2 millones que se comercializaron en el mundo (Jilguan, 2019).

a. Aspectos productivos

Año calendario	Área cosechada (manzanas)	Producción (quintales)		
2011	94,300	63,503,400		
2012	97,700	65,660,800		
2013	100,600	72,918,800		
2014	102,100	75,506,700		
2015 p/	107,400	83,690,000		
2016 e/	111,900	83,227,800		

a 1	1 1	<u>í</u>	1	• ,	1
linadro	1 4	Area -	produc	c_{100} v	rendimiento
Cuuuio	1.1	nou,	produce	cion y	renammento.

p/ Cifras preliminares. e/ Cifras estimadas.

FUENTE: -DIPLAN-MAGA con datos de BANGUAT.

b. Principales departamentos productores

La producción nacional se encuentra distribuida de la siguiente manera: Escuintla 46%, Izabal 33% y los demás departamentos de la República suman el 21% restante.

El 84.5% de la superficie cosechada se encuentra concentrada en 6 departamentos: Izabal 34.3%, Escuintla 27.6%, San Marcos 8.1%, Suchitepéquez 6.5%, Sololá 5.5% y Quetzaltenango 2.5% (MAGA, 2016).

Figura 7. Departamentos productores de banano en Guatemala.

(MAGA, 2016).

F. Piedra pómez

La piedra pómez, también llamada "pumita" o "pumacita" es una materia prima mineral de origen volcánico, en cuya composición intervienen mayoritariamente la sílice y la alúmina, con porcentajes aproximados del orden de: $70\% de SiO_2$ y $13\% de Al_2O_2$. Esta piedra es una roca con alta porosidad, ligera, eficaz aislante térmico y con propiedades puzolánicas. Debido a que se le considera una puzolana natural de bajo coste, la piedra pómez es un ingrediente importante en la elaboración del cemento Portland, incrementando así su durabilidad química (resistencia frente al ataque por las aguas puras, carbónicas, agresivas o ligeramente ácidas). Aparte de este uso industrial, se emplea piedra pómez en la fabricación de filtros, abrasivos y usos agrícolas (IGME, 2003).

- 1. Identificación de los peligros
- a. Para el medio ambiente

La piedra pómez es una sustancia de origen natural, no modificada químicamente, y no presenta ningún peligro para su uso en condiciones medio ambientales normales (Manuel Riesgo, 2011).

b. Efectos perjudiciales para la salud

La exposición a una excesiva concentración de polvo en el aire, puede provocar dificultades respiratorias. Irritación en los ojos y depósitos del producto en las vías respiratorias y en los oídos (Manuel Riesgo, 2011).

2. Composición sobre los componentes

a. Composicón química estándar

Silicato complejo natural amorfo constituido principalmente por: Óxido de aluminio (Al_2O_3) entre 12 y 13%; Sílice amorfa (SiO_2) entre 70 y 72%; y cantidades menores de otros óxidos metálicos (Manuel Riesgo, 2011).

3. Propiedades físicas y químicas

a. Información general

Aspecto: Sólido granulado o en polvo. Olor: Inodoro.

b. Información importante en relación con la salud, la seguridad y el medio ambiente

pH: (Solución acuosa 10%) entre 7 y 8.
Punto de ebullición: No aplicable.
Punto de ignición: No aplicable.
Inflamabilidad: No inflamable.
Propiedades explosivas: No aplicable.
Propiedades comburentes: No aplicable.
Presión de vapor: No aplicable.
Densidad relativa: 2.2 a 2.4g/cm³.
Solubilidad en agua: Insoluble.
Viscosidad: No aplicable.
Densidad de vapor: No aplicable.
Velocidad de evaporación: No aplicable.

(Manuel Riesgo, 2011)

4. Panorama mundial

Entre los campos de aplicación de la piedra pómez, se encuentran la construcción (cementos, hormigones ligeros, roca ornamental o de sillería), horticultura, tratamiento de aguas y la producción de abrasivos, textil,

filtros, absorbentes, etc.; en forma micronizada, la piedra pómez se agrega por su capacidad absorbente y suavemente abrasiva en detífricos, jabones y productos domésticos o industriales destinados al pulido (IGME, 2003).

G. Ensayo granulométrico

Para poder llevar a cabo un buen ensayo granulométrico se hace uso de una tamizadora, la cual es un elemento mecánico que facilita el tamizado de las muestras, realiza el tamizado de una sola vez. Es importante mencionar que se debe de colocar la batería de tamices de mayor a menor abertura de malla y luego, con el movimiento oscilatorio se realiza el tamizado de la muestra (García y Saval, 2009).

1. Porcentaje retenido acumulado

Es el porcentaje en masa de todas las partículas de mayor tamaño que la abertura de un determinado tamiz. Se calcula como:

Retenido Acumulado (%) =
$$\frac{Retenido acumulado}{\sum Retenidos parciales} * 100$$
 (ec. 4)

(García y Saval, 2009).

2. Porcentaje retenido parcial

Es el porcentaje en masa correspondiente a la fracción directamente retenida en un determinado tamiz y se calcula de la siguiente manera:

Retenido parcial (%) =
$$\frac{Retenido parcial}{\sum Retenidos parciales} * 100$$
 (ec. 5)

(García y Saval, 2009).

3. Porcentaje retenido acumulado que pasa

Es el porcentaje en masa de todas las partículas de menor tamaño que la abertura de un determinado tamiz. Se calcula como:

Retenido que Pasa (%) =
$$100 - \%$$
 Retenido acumulado (ec.6)

(Registro, 1977)

H. Espectroscopia infrarroja (IR)

Analiza las vibraciones de los enlaces y proporciona evidencia de los grupos funcionales presentes (Wade, Simekm, 2017).

1. Espectro electromagnético

Hace referencia al intervalo de todas las frecuencias posibles, de cero al infinto. En la práctica, los intervalos del espectro van desde las frecuencias de radio muy bajas que se utilizan para comunicarse con submarinos, hasta las frecuencias demasiado altas de los rayos gamma. La siguiente figura muestra la longitud de onda y las relaciones de energía de varias partes del espectro electromagnético (Wade y Simekm, 2017).

Figura 8. Espectro electromagnético y efectos moleculares resultantes.

(Wade y Simekm, 2017).

2. Región infrarroja

Esta región del espectro corresponde a las frecuencias que están justo por debajo de las frecuencias visibles, y justo por encima de las frecuencias más altas de las microondas y del radar. Los espectrómetros de infrarrojo comunes operan en medio de esta región, a longitudes de onda de entre $2.5 \times 10^{-4} cm$ y $25 \times 10^{-4} cm$ (Wade y Simekm, 2017).

Un espectro infrarrojo es una gráfica de la energía absorbida por una molécula como una función de la frecuencia o de la longitud de onda de la luz. En la región del infrarrojo, las absorciones por lo general resultan de la excitación de los modos vibracionales de los enlaces en la molécula. Incluso en los compuestos sencillos, los espectros infrarrojos contienen varias absorciones distintas, no sólo una absorción para cada enlace. En la siguiente figura se muestra un ejemplo del espectro infrarrojo del metanol (Wade y Simekm, 2017).

(Wade y Simekm, 2017).

3. Medición del espectro IR

Los espectros infrarrojos se pueden medir empleando muestras líquidas, sólidas o gaseosas que se colocan en el haz de luz infrarroja. Se puede colocar una gota de un líquido como una película delgada entre dos placas de sal hechas de *NaCl* o *KBr*, las cuales son transparentes a las frecuencias más importantes de la luz infrarroja. También, se puede moler un sólido con *KBr* y hacer una pastilla compacta que se coloca en el haz de luz. Como alternativa, se puede moler una muestra sólida y agregar aceite de parafina para formar una suspensión, y como con un líquido, la muestra se coloca entre dos placas de sal. Los sólidos también se pueden disolver en disolventes comunes como CH_2Cl_2 , CCl_4 o CS_2 los cuales no tienen absorciones en las áreas de interés. Los gases se colocan en una celda más grande con ventanas de sal pulidas. Estas celdas de gas comúnmente poseen espejos que reflejan el haz a través de la celda varias veces para obtener una absorción más intensa (Wade y Simekm, 2017).

Un espectrofotómetro de infrarrojo mide las frecuencias de la luz infrarroja absorbida por un compuesto. En la actualidad, los espectrofotómetros de infrarrojo por transformada de Fourier (IR-TF) son los más utilizados. Estos equipos utilizan un interferómetro, el cual se muestra en la Figura 10, para medir un espectro IR. La luz infrarroja va de la fuente luminosa a un separador de haces, por lo general fabricado con *KBr* pulido, colocado a un ángulo de 45°. Parte del haz pasa a través del separador de haces y parte se refleja a un ángulo recto. El haz reflejado incide sobre un espejo estacionario, mientras que el haz transmitido incide sobre un espejo que se mueve a una velocidad constante. Los haces regresan de los espejos para volver a combinarse en el separador de haces. El haz del espejo móvil ha recorrido una distancia distinta a la del haz del espejo fijo, y los dos haces se combinan para crear un patrón de interferencia llamado interferograma, el cual contiene de manera simultánea todas las frecuencias y pasa a través del compartimiento de la muestra para alcanzar el detector (Wade y Simekm, 2017).

Figura 10. Diagrama de bloques de un interferómetro en un espectro IR-TF.

(Wade y Simekm, 2017).

I. Espectroscopia atómica

La contaminación del agua es un problema muy grande tanto en los Estados Unidos como en otros países industrializados. Los metales traza en muestras de agua contaminada suelen ser determinados mediante una técnica de múltiples elementos, como la espectroscopia de emisión atómica de plasma acoplado inductivamente. También se emplean técnicas de un solo elemento, como es el caso de la espectrometría de absorción atómica (Skoog, West, Holler y Crouch, 2015).

Los métodos de espectroscopia atómica son empleados para la determinación cualitativa y cuantitativa de más de 70 elementos. Normalmente estos métodos pueden identificar cantidades entre partes por millón y por billón, e incluso, en algunos casos, concentraciones aún menores. Los métodos de espectroscopia atómica también son rápidos, convenientes y generalmente de alta selectividad (Skoog, West, Holler y Crouch, 2015).

1. Espectrofotometría de absorción atómica

En la actualidad, la espectroscopia de absorción atómica (AAS, por sus siglas en inglés) es el método atómico más utilizado debido a su simplicidad, eficiencia y bajo costo relativo (Skoog, West, Holler y Crouch, 2015).

a. Instrumento de absorción atómica (Espectrofotómetro)

La mayoría de las mediciones de AAS son ejecutadas con instrumentos equipados con un monocromador de rejilla para poder aislar la radiación ultravioleta/visible. La Figura 11 representa el esquema de un instrumento típico de doble haz. La radiación desde la lámpara de cátodo hueco es bloqueada y dividida mecánicamente en dos haces, uno de los cuales pasa a través de la flama y el otro, alrededor de la flama. Un espejo semiplateado regresa ambos haces hacia una sola trayectoria por la cual pasan ambos de manera alternante a través del monocromador y hacia el detector (Skoog, West, Holler y Crouch, 2015).

Figura 11. Trayectorias ópticas en un espectrofotómetro de doble haz de absorción atómica.

(Skoog, West, Holler y Crouch, 2015).

- J. Caracterización física de bioresina
- 1. Densidad aparente

La densidad aparente de un material o un cuerpo, es la relación entre el volumen y el peso seco, incluyendo huecos y poros que contenga, aparentes o no (Construmatica, 2016).

a. Factores que la afectan

Algunos factores que pueden afectar la densidad aparente son: la composición y la estructura. Si se trata de suelos arenosos, los cuales tienden a tener densidades mayores que suelos muy finos, al mismo tiempo en suelos estructurados los valores son menores. La densidad aparente del suelo es un buen indicador de importantes características del suelo, tales como porosidad, grado de aireación y capacidad de drenaje (Crespo, 2004).

En un tipo de suelo los valores bajos de densidad aparente implican suelos porosos, bien aireados y con buen drenaje. Por otro lado, si los valores son elevados, indica que el suelo es compacto o poco poroso, que tiene poca porosidad en su composición, que la infiltración del agua es lenta, lo cual puede provocar inundaciones (Crespo, 2004).

K. Escalamiento de columna catiónica

Para poder llevar a cabo el escalado a nivel de planta industrial, se hace uso de la metodología propuesta por Cuberlo. Dicha metodología toma en cuenta los parámetros de operación del modelo en función de las mejores condiciones (Leiva-Mas, 2012). En esta metodología se plantea que para el modelo y el prototipo se deben de cumplir los siguientes principios:

- Similitud geométrica.
- Similitud térmica, debido a que el rango de temperatura de trabajo no varía.
- Similitud cinemática, en la cual las propiedades físicas del fluido se mantienen constantes de una escala a otra, con el fin de garantizar el régimen de transferencia de masa.

1. Similitud geométrica

El modelo a escala laboratorio y el de planta industrial deberán de ser iguales geométricamente, de manera que la relación L/D es constante e igual en cada sistema, cumpliéndose que:

$$\frac{H_p}{H_m} = \frac{D_p}{D_m} \qquad (ec.7)$$

Donde:

H_p = Altura de modelo a escala.
H_m = Altura de modelo experimental.
D_p = Diámetro de columna de modelo a escala.
D_m = Diámetro de columna de modelo experimental.

(Cuberlo, 1997)

Las propiedades físicas del fluido no varían, debido a que es lo mismo tanto en el laboratorio como en el escalado a planta industrial:

$$\frac{\rho_p}{\rho_m} = \frac{\mu_m}{\mu_p} \qquad (ec.8)$$

El rango de temperatura no cambia, de manera que se considera similitud térmica.

En operaciones de adsorción, absorción o reacciones catalíticas en lecho fijo o fluidizado, el escalado se efectúa sin variar el tipo de partícula, puesto que la naturaleza, dimensiones y porosidad se mantienen en ambos sistemas, por lo que se cumple que:

$$Re_m = Re_p = constante$$

$$\frac{Re_p}{Re_m} = 1 \qquad (ec.9)$$

(Cuberlo, 1997)

Al considerar que los sistemas homólogos son semejantes geométrica y térmicamente, se cumple que:

$$v_{om} = v_{op} = constante.$$

 $\frac{v_{op}}{v_{om}} = 1$ (ec. 10)

(Cuberlo, 1997)

Significa que manteniéndose constantes las dimensiones entre el modelo del laboratorio y el de la planta industrial, así como las propiedades del fluido que circula a través de la columna y el tipo de partícula que se emplee como adsorbente, la velocidad superficial tiene que ser la misma para ambos sistemas (Cuberlo, 1997).

2. Área de paso de la columna del sistema

$$A_P = 2\pi(rh + r^2) \qquad (ec.11)$$

Donde:

D = Diámetro de la columna del sistema.h = Altura de la columna del sistema. $A_c = Área de paso de la columna del sistema.$

(Agamez, 2014).

3. Altura del lecho

$$h_l = \frac{V_R}{A_C} \qquad (ec. 12)$$

Donde:

 $A_C =$ Área de paso de la columna. $V_R =$ Volumen del lecho. $h_l =$ Altura del lecho.

(Agamez, 2014).

4. Relación de esbeltez (L/D)

$$\frac{h_T}{D}$$
 (ec. 13)

Donde:

 $h_T = Altura total de la columna del sistema.$ D = Diámetro de la columna del sistema.

(Agamez, 2014).

5. Porcentaje de expansión del lecho

% de expansión =
$$\frac{(h_m - h_s)}{h_m} * 100$$
 (ec. 14)

Donde:

 $h_m = Altura del lecho mojado.$ $h_s = Altura del lecho seco.$

(Reyes, 2004).

6. Expansión del lecho por hinchazón de resina

$$E_{Max.} = h_l * (\% \ de \ expansión) \qquad (ec. 15)$$

Donde:

 $h_l = Altura \ del \ lecho.$

(Agamez, 2014).

7. Altura del lecho hinchado

$$h_{lex.} = h_l + E_{Max.} \qquad (ec. 16)$$

Donde:

 $h_l = Altura del lecho.$ $E_{Max.} = Expansión del lecho.$ $h_{lex.} = Altura del lecho hinchado.$

(Agamez, 2014).

8. Cabezales toriesféricos

Los cabezales son las tapas que cierran la carcasa. Normalmente son bombeados, existiendo una gran diversidad de tipos entre ellos, y como excepción existen los fondos cónicos y planos, de muy reducida utilización (Agamez, 2014).

Los cabezales toriesféricos son los de mayor aceptación en la industria, puesto que son de bajo costo y soportan grandes presiones. Además, su característica principal es que el radio del abombado es aproximadamente igual al diámetro. Estos se pueden fabricar en diámetros desde 0.3m hasta 6m (Agamez, 2014).

Figura 12. Cabezal toriesférico del tipo ASME FLANGED & DISHED.

(Agamez, 2014).

a. Radio de corona

$$R = D \qquad (ec. 17)$$

Donde:

 $R = Radio \ de \ corona.$

- D = Diámetro de columna.
- b. Radio de nudillo

$$r = 0.10D$$
 (ec. 18)

Donde:

r = Radio de nudillo. D = Diámetro de columna.

c. Altura de parte recta

$$h = 0.15D + t$$
 (ec. 19)

Donde:

h = Altura parte recta.D = Diámetro de columna.t = Espesor

(Agamez, 2014).

L. Transporte y medida de fluidos

1. Válvulas

Una planta de procesamiento típica contiene miles de válvulas de diferentes tamaños y formas. Sin embargo, a pesar de la amplia variedad de diseños, todas las válvulas tienen un propósito principal: disminuir o detener el flujo de un fluido. Algunas válvulas funcionan mejor en servicio de cerrado-abierto prendidoapagado, es decir, abiertas o cerradas por completo. Otras están diseñadas para suprimir o reducir la presión y la velocidad de flujo de un fluido. Existen otras que permiten el flujo sólo en una dirección o bajo ciertas condiciones de temperatura y presión. Finalmente, mediante el uso de sensores y sistemas de control automático para ajustar la posición de la válvula y por consiguiente el flujo a través de la válvula, es posible controlar desde puntos alejados de la válvula, la temperatura, la presión, el nivel del líquido y otras propiedades del fluido (McCabe, Smith y Harriot, 2007). No obstante, en todos los casos, la válvula inicialmente detiene o controla el flujo. Esto se realiza colocando un obstáculo en la trayectoria del fluido, el cual es posible moverlo a voluntad dentro de la tubería, sin que prácticamente existan fugas del fluido hacia el exterior de la misma (McCabe, Smith y Harriot, 2007).

a. Válvulas de globo

Las válvulas de globo se utilizan con frecuencia para controlar la velocidad de flujo de un fluido. Además, la abertura aumenta en forma lineal con respecto a la posición del vástago, y su uso es uniformemente distribuido alrededor del disco (McCabe, Smith y Harriot, 2007).

2. Tubos y tuberías

Los fluidos se transportan generalmente por el interior de tubos o tuberías de sección circular, que existen en una gran variedad de tamaños, espesores de pared y materiales de construcción (McCabe, Smith y Harriot, 2007).

No existe una clara distinción entre tubería y tubo. Sin embargo, las tuberías tienen paredes gruesas, diámetro relativamente grande y se construyen en longitudes moderdas, comprendidas entre los 6 y 12 metros (20 y 40 pies); mientras que los tubos, son de pared delgada y generalmente se venden en forma de rollos de muchos metros de longitud. Las tuberías metálicas se pueden roscar, pero los tubos no. Las paredes de las tuberías son generalmente rugosas, y en cambio, los tubos tienen paredes muy lisas (McCabe, Smith y Harriot, 2007).

Los tramos de tubos se pueden unir por bridas o mediante accesorios soldados. Las piezas de tuberías se unen generalmente mediante accesorios. Los tubos se fabrican por extrusión o laminación en frío; y las tuberías se fabrican por soldadura o moldeo. Los tubos y tuberías se fabrican de muy diferentes materiales, incluyendo metales y aleaciones, madera, cerámica, vidrio y diferentes plásticos. El cloruro de polivinilo (PVC) es ampliamente utilizado para conducciones de agua (McCabe, Smith y Harriot, 2007).

En las plantas de proceso, el material más frecuente es acero de bajo contenido en carbono, con el que se fabrica la llamada tubería de hierro negro. Con frecuencia se emplean también las tuberías de hierro forjado y de fundición. También es común encontrar tuberías de acero galvanizado, la cual también está estandarizada (McCabe, Smith y Harriot, 2007).

a. Tamaños

Los tubos y tuberías se clasifican en función de su diámetro y del espesor de pared. En tuberías de acero, los diámetros nominales normalizados están comprendidos en el intervalo de 1/8 a 30 pulgadas. En tuberías

grandes, de más de 12 pulgadas de diámetro, el diámetro nominal es igual al diámetro externo real. En tuberías pequeñas, el diámetro nominal no corresponde a ninguna dimensión real (McCabe, Smith y Harriot, 2007).

Independientemente del espesor de pared, el diámetro externo de todas las tuberías correspondientes a un determinado diámetro nominal es el mismo. Esto con el fin de poder intercambiar los accesorios como uniones, válvulas, etc. El espesor de pared de una tubería viene dado por el "Número de Catálgo, Cédula, Chapa o Norma" que aumenta con el espesor. Se utilizan diez números de catálogo: 10, 20, 30, 40, 60, 80, 100, 120, 140 y 160. Sin embargo, los más comunes son el 40, 80, 120 y 160, sobre todo en tuberías de menos de ocho pulgadas de diámetro. Es importante mencionar que la presión de operación máxima admisible es la cuarta parte de la máxima que soporta el material (McCabe, Smith y Harriot, 2007).

b. Selección del tamaño de tubería

Si la fuerza motriz para impulsar el fluido a través de la tubería está disponible gratis, por ejemplo, cuando se baja la presión de un recipiente a otro o si hay suficiente altura para el flujo por gravedad, el diámetro de tubería más pequeño que da la tasa de flujo requerida normalmente sería usado. No obstante, si el fluido debe bombearse a través de la tubería, el tamaño debe seleccionarse para dar el menor costo total anualizado. (Towler & Sinnott, 2008).

En instalaciones pequeñas, basta con una estimación según criterio. Simpson (1986) da valores para la velocidad óptima en términos de densidad del fluido. En la siguiente tabla, se indican sus valores, convertidos a unidades SI y redondeados:

Fluid Density kg/m ³	Velocity m/s		
1600	2.4		
800	3.0		
160	4.9		
16	9.4		
0.16	18.0		
0.016	34.0		

Figura 13. Velocidad de fluidos en tuberías.

(Towler & Sinnott, 2008).

c. Caída de presión en tuberías

La caída de presión en una tubería, debido a la fricción, es función del caudal de fluido, la densidad y viscosidad del fluido, el diámetro de la tubería, la rugosidad de la superficie de la tubería y la longitud de la tubería. Se puede calcular utilizando la siguiente ecuación:

$$\Delta P_f = 8f\left(\frac{L}{d_i}\right)\frac{\rho u^2}{2} \qquad (ec. 20)$$

Donde:

$$\begin{split} \Delta P_f &= Caída \ de \ presión \ (N/m^2). \\ f &= Factor \ de \ fricción. \\ L &= Longitud \ de \ tubería \ (m). \\ d_i &= Diámetro \ interno \ de \ tubería \ (m). \\ \rho &= Densidad \ del \ fluido \ (kg/m^3). \\ u &= Velocidad \ del \ fluido \ (m/s). \end{split}$$

(Towler & Sinnott, 2008)

El factor de fricción depende del número de Reynolds y de la rugosidad de la tubería. El factor de fricción para usar en la ecuación, se puede encontrar en la Figura 106.

Número de Reynolds =
$$\frac{D_{iR} * V_R * \rho}{\mu}$$
 (ec. 21)

Donde:

$$D_{iR} = Diámetro interior real (m).$$

 $V_R = Velocidad real (m/s).$
 $\rho = Densidad del fluido (kg/m3).$
 $\mu = Viscosidad del fluido (kg/m * s).$

(Towler & Sinnott, 2008)

Para calcular la viscosidad, se debe de considerar la siguiente ecuación:

$$\mu = t_s C_v \rho \qquad (ec. 22)$$

Donde:

 $t_s = Tiempo \ de \ salida \ (s).$

 $C_v = Constante \ del \ viscosímetro \ (mm^2/s).$

 ρ = Densidad del fluido (kg/m³).

 $\mu = Viscosidad \ del \ fluido \ (kg/m * s).$

(CANNON, 2012)

d. Efecto de válvulas y accesorios

Las válvulas y accesorios alteran las líneas normales de flujo y dan lugar a fricción. En conductos de corta longitud con muchos accesorios, las pérdidas por fricción causadas a los mismos llegan a ser mayores que las correspondientes a la longitud recta de la tubería (McCabe, Smith y Harriot, 2007).

El número de cargas de velocidad perdidas, o el diámetro equivalente de la tubería, es una característica del accesorio o tipo de válvula particular utilizado. Los valores se pueden encontrar en manuales y literatura de fabricantes. Los valores para un número seleccionado de accesorios y válvulas se dan en el siguiente figura:

Fitting or Valve	K, Number of Velocity Heads	Number of Equivalent Pipe Diameters
45° standard elbow	0.35	15
45° long radius elbow	0.2	10
90° standard radius elbow	0.6-0.8	30-40
90° standard long elbow	0.45	23
90° square elbow	1.5	75
Tee-entry from leg	1.2	60
Tee-entry into leg	1.8	90
Union and coupling	0.04	2
Sharp reduction (tank outlet)	0.5	25
Sudden expansion (tank inlet)	1.0	50
Gate valve		
fully open	0.15	7.5
1/4 open	16	800
1/2 open	4	200
3/4 open	1	40
Globe valve, bevel seat-		
fully open	6	300
1/2 open	8.5	450
Globe valve, plug disk-		
fully open	9	450
1/2 open	36	1800
1/4 open	112	5600
Plug valve - open	0.4	18

Figura 14. Pérdida de presión en accesorios de tuberías y válvulas.

(Towler & Sinnott, 2008).

3. Bombas

En las bombas, la densidad del fluido es a la vez constante y elevada. Las diferencias de presión son generalmente considerables y se requiere una construcción robusta (McCabe, Smith y Harriot, 2007).

Los líquidos a veces se mueven por gravedad desde tanques elevados, o desde un "soplador" (recipiente de almacenamiento presurizado por una fuente externa de gas comprimido), aunque los aparatos más comunes para este propósito son las bombas (McCabe, Smith y Harriot, 2007).

Las bombas incrementan la energía mecánica del líquido, aumentando su velocidad, presión o elevación, o las tres anteriores. Las dos clases principales son las bombas de desplazamiento positivo y las bombas centrífugas. Las unidades de desplazamiento positivo aplican presión directamente al líquido por un pistón reciprocante, o por miembros rotatorios, los cuales forman cámaras alternadamente llenas o vacías del líquido. Las bombas centrífugas generan altas velocidades de rotación, entonces convierten la energía cinética resultante del líquido en energía de presión (McCabe, Smith y Harriot, 2007).

(McCabe, Smith y Harriot, 2007).

a. Bombas centrífugas

En este tipo de bombas, la energía mecánica del líquido se incrementa por acción centrífuga.

El líquido ingresa a través de una unión de succión, concéntrica con el eje de una pieza que gira a gran velocidad, llamada "rodete o impulsor". El rodete está provisto de álabes radiales solidarios con el mismo. El líquido circula del centro hacia afuera, por el interior de los espacios que existen entre los álabes, y abandona el rodete con una velocidad mucho mayor que la que tenía a la entrada del mismo (McCabe, Smith y Harriot, 2007).

El líquido que sale periféricamente del rodete se recoge en una carcasa en espiral, llamada voluta, y sale de la bomba a través de una conducción tangencial de descarga. Es importante mencionar que la en la voluta, la carga de velocidad del líquido procedente del rodete, se convierte en carga de presión (McCabe, Smith y Harriot, 2007).

Las bombas centrifugas generan flujos volumétricos virtualmente constantes, y constituyen en la práctica, el tipo más corriente de aparatos de bombeo (McCabe, Smith y Harriot, 2007).

b. Curvas características

Las representaciones gráficas de la carga real, el consumo total de potencia y el rendimiento frente a la velocidad volumétrica de flujo (caudal), reciben el nombre de "Curvas características" de una bomba. Estas curvas se representan esquemáticamente en la siguiente figura (McCabe, Smith y Harriot, 2007).

Figura 16. Curvas características de una bomba centrífuga: (a) carga-capacidad; (b) potencia; (c) rendimiento.

c. Carga-capacidad

En la Figura 16 (a), la relación entre la carga teórica y la velocidad de flujo es una línea recta. La carga real desarrollada es considerablemente menor, no es recta, y cae bruscamente hacia cero conforme el caudal aumenta hasta un cierto valor en cualquier bomba dada (McCabe, Smith y Harriot, 2007).

A lo anterior, se le conoce como "Velocidad de flujo a carga cero", y representa el flujo máximo que puede producir la bomba en cualquier condición. La velocidad de flujo óptima de operación es menor a esta (McCabe, Smith y Harriot, 2007).

d. Curvas de potencia

En la Figura 16 (b), se presentan curvas típicas de la potencia de fluido P_f y la potencia total P_B frente a la velocidad de flujo (caudal) (McCabe, Smith y Harriot, 2007).

La diferencia entre el funcionamiento ideal y el real, representa la pérdida de potencia en la bomba, que se debe a la fricción del fluido y las pérdidas de choque, con conversión de energía mecánica en calor, y pérdidas por fugas, fricción de disco y en los cojinetes (McCabe, Smith y Harriot, 2007).

e. Rendimiento

El rendimiento de una bomba es la relación entre la potencia comunicada al fluido y la entrada total de potencia. La curva de la Figura 16 (C), derivada de las curvas de la Figura 16 (b), demuestra que el rendimiento disminuye rápidamente con la velocidad de flujo para bajas velocidads; alcanza un máximo en la región de la capacidad especificada de la bomba, y disminuye después a medida que la velocidad de flujo se aproxima al valor de carga cero (McCabe, Smith y Harriot, 2007).

Es importante mencionar que en la literatura, también se puede encontrar figuras en las que se combinan las tres gráficas anteriores en una sola (McCabe, Smith y Harriot, 2007).

Figura 17. Curvas características para bombas centrífugas.

⁽McCabe, Smith y Harriot, 2007).

M. Cálculo y análisis de rentabilidad

La medición de la rentabilidad económica de un proyecto no es fácil por las dificultades que existen para pronosticar el comportamiento de todas las variables que condicionan su resultado. Debido a lo anterior, lo más común es explicar que lo que se evalúa es uno, quizás el más probable, de los escenarios que podría enfrentar un proyecto. El cálculo de la rentabilidad de cada uno de los escenarios es una de las tareas más simples, fáciles y certeras del trabajo del evaluador.

1. Tasa interna de retorno

La tasa interna de retorno (TIR), mide la rentabilidad como porcentaje. La máxima tasa exigible será aquella que haga que el VAN sea 0 (Sapag, 2011).

La TIR tiene cada vez menos aceptación como criterio de evaluación, por cuatro razones principaes:

- Entrega un resultado que conduce a la misma regla de decisión que la obtenida con el VAN. Es decir, que si el VAN es 0, se gana exactamente lo que se quería ganar, por lo que la TIR es igual a la tasa de descuento. Si el VAN es positivo, la TIR es mayor que la tasa de descuento, por cuanto se gana más de lo exigido. Y si el VAN es negativo, la TIR es menor que la tasa de descuento exigida al proyecto (Sapag, 2011).
- No sirve para comparar proyectos, por cuanto una TIR mayor no es mejor que una menor, ya que la conveniencia se mide en función de la cuantía de la inversión realizada (Sapag, 2011).
- Cuando hay cambios de signos en el flujo de caja, por ejemplo, por una alta inversión durante la operación, pueden encontrarse tantas TIR como cambios de signo se observen en el flujo de caja (Sapag, 2011).
- No sirve en los proyectos de desinversión, ya que la TIR muestra la tasa que hace equivalentes los flujos actualizados negativos con los positivos, sin discriminar cuál es de costo y cuál es de beneficio para el inversionista, por lo que siempre es positiva (Sapag, 2011).

La TIR se puede calcular en una planilla electrónica, como Excel, donde se hace uso de la opción "Insertar función", del menú "Fórmulas", se selecciona "Financieras" en la "Categoría de la función" y se elige "TIR" en el "Nombre de la función". En el cuadro "TIR" se selecciona el rango de valores que se desea actualizar, a partir del momento 0, y marcando la opción "Aceptar", se obtiene la TIR (Sapag, 2011).

	TR •	* X - 6 «TIR(82:G2)					
	A	В	С	D	E	F	G
1		0	1	2	3	4	5
2	Flujo	-10000	2000	2600	3200	3200	3200
3		· · · · · · · · · · · · · · · · · · ·	Argumentos de	Nincoles		10	and And
4	TIR	=TIR(B2:G2)	78	and and a second			
5			1000	Valores 82:62	(-10) (-10)	900; 2000; 2600; 3200; 3200; 3 100	(000)
6			10000		= 0,12	946032	
7	1		Devuelré la tana interna de referito de una investión para una sorte de valores un afectivo. Valores: es una matrix a referencia a calclas que conservajan los números para los países las desas calcular la tana interno, de reference				and a state
8							
9			Readlade de la f	irmaa - 11,95%			
10			Anala sobre est.	. functio		Acestar Car	unier
11			-				

Figura 18. Cuadro de diálogo para el cálculo de la TIR con Excel.

N. Errores aleatorios en el análisis químico

Los errores aleatorios nunca son eliminados completamente y comúnmente son la mayor fuente de incertidumbre en una determinación. Los errores aleatorios son provocados por diversas variables incontrolables que acompañan a cada medición. Aunque se identifiquen las fuentes de errores aleatorios, sería imposible medirlos, debido a que la mayoría de ellos son tan pequeños que no pueden ser detectados

individualmente. No obstante, el efecto acumulado de las incertidumbres individuales, causa que las repeticiones varíen aleatoriamente alrededor de la media del conjunto (Skoog, West, Holler y Crouch, 2015).

1. Tratamiento estadístico

a. Media

Es la medida de posición central que se calcula al resumir los valores de datos y dividir entre el número de observaciones.

$$\bar{x} = \frac{\sum x_i}{n} \qquad (ec.23)$$

Donde:

 $\bar{x} = Media.$

- n = Número de observaciones.
- $x_i =$ Iésima observación de la variable x.

(Skoog, West, Holler y Crouch, 2015).

b. Desviación estándar

La desviación estándar de la muestra, s, está definida por la ecuación:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}}$$
 (ec. 24)

Donde:

 $(x_i - \bar{x}) =$ Desviación del valor x_i de la media x.

N - 1 =Número de grados de libertad.

(Skoog, West, Holler y Crouch, 2015).

2. Desviación estándar de los resultados calculados

Con frecuencia, se estima la desviación estándar de un resultado que ha sido calculado a partir de dos o más datos experimentales, cada uno de los cuales posee una desviación estándar muestral conocida. En el siguiente cuadro, se muestra la forma en la que dichos estimados son obtenidos dependiendo del tipo de cálculos que se estén realizando (Skoog, West, Holler y Crouch, 2015).

Cuadro 2. Propagaciones del error en cálculos aritméticos.

Tipo de cálculo	Ejemplo	Desviación estándar de y
Suma o diferencia	y = a + b - c	$s_y = \sqrt{s_a^2 + s_b^2 + s_c^2}$ (ec. 25)
Multiplicación o división	$y = a \times bc$	$\frac{s_y}{y} = \sqrt{\left(\frac{s_a}{a}\right)^2 + \left(\frac{s_b}{b}\right)^2 + \left(\frac{s_c}{c}\right)^2} \qquad (ec.26)$

Donde:

a, b, c = Variables experimentales.

 $s_a, s_b, s_c =$ Incertidumbres.

 $s_y, \frac{s_y}{y}$ = Propagaciones de error.

(Skoog, West, Holler y Crouch, 2015).

VI. ANTECEDENTES

Dado al crecimiento desordenado de las ciudades, varias actividades antrópicas, principalmente industriales, han consumido recursos naturales y generado residuos que contienen metales peligrosos y tóxicos que afectan intensamente al medio ambiente. Estos elementos pueden acumularse en los organismos y ser transferidos a través de la cadena alimentaria, llegando al hombre a través de los alimentos que consume.

Debido a lo anterior, a parte de evitar que nuevos contaminantes entren en contacto con el medio ambiente, se considera necesario desarrollar nuevas tecnologías para recuperar recursos ya dañados. Para ser viables, estos deben tener un bajo costo operativo y eficiencia en la capacidad de eliminar contaminantes. Es por ello que el estudio de la biomasa residual como biosorbente ha despertado gran interés en los últimos años. Se trata de un material natural prácticamente económico, abundante y con capacidad de adsorción de metales y compuestos orgánicos (Cruz, 2013).

Investigaciones recientes, llevadas a cabo por diferentes profesionales, demuestran que algunos residuos agrícolas pueden ser descontaminantes efectivos del agua. Entre estas investigaciones, se encuentra la de la Doctora en Ciencias Químicas Milena Boniolo, a quien se le atribuye el descubrimiento del uso de residuos de cáscaras de banano para la remoción efectiva de uranio presente en el agua. Lo que inició como una investigación casera, luego se presentó como tesis en el Instituto para la Energía y la Investigación Nuclear (IPE), proporcionándole así a Boniolo el Premio Joven Científico en el 2011. Las conclusiones de su investigación, dieron lugar a la posibilidad de emplear esta biomasa para la descontaminación de metales pesados en aguas contaminadas. Por su parte, en el 2018, la Ingeniera Química Alma Verónica García, docente investigadora de la Escuela de Ingeniería Química en El Salvador, manifestó que la bioresina obtenida de cáscara de banano, a la cual se le redujo su tamaño de partícula promedio, sigue siendo efectiva para disminuir la concentración de metales pesados en agua contaminada. Además, que el pseudotallo de mata de banano también mostró tener capacidades adsorbentes que permitieron capturar cromo, hierro y níquel de la muestra de agua; así como también, disminuyó el color provocado por el proceso de adsorción con la bioresina de cáscara de banano (Cruz, 2013).

Las investigaciones mencionadas, han demostrado que la cáscara de banano es una abundante biomasa residual que se ha convertido en una alternativa de bajo costo a los tratamientos convencionales de aguas residuales. Además, respeta el desarrollo sostenible ya que su uso como biosorbente también reduce el impacto ambiental que ocasiona en los lugares donde se deposita en grandes cantidades.

VII. MATERIALES Y EQUIPOS

- $0.00002m^3$ (20mL) de ácido nítrico.
- 0.00006kg (0.06393822g) de Nitrato de Plomo.
- 1 Espátula.
- 1 Balanza analítica.
- 2 Balones aforados de $0.001m^3$ (1000mL).
- 1 Pipeta graduada de $0.000003m^3$ (3mL).
- 1 Bulbo de succión.
- 1 Pipeta graduada de $0.000025m^3$ (25mL).
- 6 Balones aforados de $0.000025m^3$ (25mL).
- Papel aluminio.
- Maskinng tape.
- 1 Balanza de humedad.
- 1 Horno.
- 1 Licuadora.
- 1 Tamizador tipo shaker.
- 1 Potenciómetro.
- 1 Solución Buffer pH 7.
- 1 Beaker de $0.00005m^3$ (50mL).
- 1 Pipeta de $0.00002m^3$ (20mL).
- 1 Probeta de $0.00005m^3$ (50mL).
- 69 Frascos de $0.00003m^3$ (30mL).
- 1 Regla.
- 1 Cronómetro.
- 1 Termómetro.
- 1 Espectrofotómetro UV/VIS.
- 1 Espectrofotómetro de absorción atómica (llama).
- 1 Rollo de teflón de $\frac{1}{2}$ de pulgada.
- 1 Viscosímetro marca CANNON-Instrument Company-.

VIII. METODOLOGÍA

Elaboración de muestras de agua

Solución Madre $0.001m^3$ (1L) con agua destilada:

- 1. Se pesó 0.000032kg (0.03196911g) de nitrato de plomo en la balanza analítica.
- 2. Se colocó esta cantidad de nitrato de plomo en un balón aforado de $0.001m^3$ (1L).
- 3. Se le agregó agua destilada hasta llegar a la marca del balón aforado.
- Se añadió 0.000003m³ (3mL) de ácido nítrico con ayuda de una pipeta graduada de 0.000003m³ (3mL).
- 5. Se tapó el balón aforado.
- 6. Se agitó la solución gentilmente.
 - a. Se posicionó el matraz en el antebrazo.
- 7. Se almacenó en refrigeración.

Nota: Se prepararon $0.002m^3$ (2L) de solución madre.

Curva de calibración

- 1. Se colocó un pipeteador a una pipeta graduada de $0.00025m^3$ (25mL).
- Se pipeteó 0.00025m³ (25mL) de la solución madre y se transfirió a un balón aforado de 0.00025m³ (25mL).
 - a. Se rotuló como "Estándar 1".
 - b. Se envolvió en papel aluminio y se refrigeraró.
- Del balón aforado "Estándar 1", se pipeteó 0.000225m³ (22.5mL) de la solución y se le agregó 0.0000025m³ (2.5mL) de agua destilada.
- 4. Se tapó el balón aforado.
 - a. Se agitó gentilmente como se hizo en el apartado anterior.
 - b. Se rotuló como "Estándar 2".
 - c. Se envolvió en papel aluminio y se refrigeró.
- Del balón aforado "Estándar 2", se pipeteó 0.00001944m³ (19.44mL) de la solución y se le agregó 0.00000556m³ (5.56mL) de agua destilada.
- 6. Se tapó el balón aforado.
 - a. Se agitó gentilmente como se hizo en el apartado anterior.

- b. Se rotuló como "Estándar 3".
- c. Se envolvió en papel aluminio y se refrigeró.
- Del balón aforado "Estándar 3", se pipeteó 0.00002143m³ (21.43mL) de la solución y se le agregó 0.00000357m³ (3.57mL) de agua destilada.
- 8. Se tapó el balón aforado.
 - a. Se agitó gentilmente como se hizo en el apartado anterior.
 - b. Se rotuló como "Estándar 4".
 - c. Se envolvió en papel aluminio y se refrigeró.
- Del balón aforado "Estándar 4", se pipeteó 0.00001667m³ (16.67mL) de la solución y se le agregó 0.00000833m³ (8.33mL) de agua destilada.
- 10. Se tapó el balón aforado.
 - a. Se agitó gentilmente como se hizo en el apartado anterior.
 - b. Se rotuló como "Estándar 5".
 - c. Se envolvío en papel aluminio y se refrigeró.
- Del balón aforado "Estándar 5", se pipeteó 0.00000625m³ (6.25mL) de la solución y le agregó 0.00001875m³ (18.75mL) de agua destilada.
- 12. Se tapó el balón aforado.
 - a. Se agitó gentilmente como se hizo en el apartado anterior.
 - b. Se rotuló como "Estándar 6".
 - c. Se envolvió en papel aluminio y se refrigeró.
- 13. A todos los estándares se les midió la absorbancia en el laboratorio de Instrumental Avanzado.
- Una vez hecho esto, se realizó la curva de calibración (Absorbancia en función de la concentración leída por el espectrofotómetro (en ppm)).

Medición de concentración de plomo en estándares y muestras de agua contaminada

En el espectrofotómetro de absorción atómica:

- 1. Verificar el compresor de aire, el cual debe estar seteado a 220,632pa (32psi).
 - a. Debe estar en automático.
 - b. Girar la palanca hacia abajo para suministrar aire directamente al equipo.
- 2. La presión a la que entra el acetileno al equipo debe de ser 68,947.6 pa (10psi).
 - a. Cuando marca 482,633 pa (70psi), significa que debe ser cambiado.
- 3. En la parte izquierda del equipo del espectrofotómetro de llama (compuerta circular), colocar la lámpara de plomo según corresponda el número.
 - a. La lámpara de plomo se debe dejar en calentamiento aproximadamente una hora.
- 4. Encender el equipo en el botón general y el de la computadora.
- 5. Abrir el software para trabajar con el equipo.
 - a. Seleccionar la opción "online".
 - b. Seleccionar las lámparas con las que se van a trabajar (plomo).
 - c. Work Lamp: Plomo.
 - d. Verificar que las corrientes de la lámpara sean las correctas.
 - e. Leer en el equipo la longitud de onda a la que se trabaja con el plomo.
- 6. Seleccionar la pestaña de muestra.
 - a. Seleccionar la opción de curva de calibración.
 - b. Colocar las unidades con las que se estará trabajando (ppm).
 - c. El nombre del estándar: Plomo.
 - d. Presionar "NEXT".
 - e. Introducir los datos para la curva de calibración.
 - f. Colocar el número de muestras que se van a analizar.
 - g. Presionar "Finalizar".
 - h. Tanto el tiempo de integración como el factor de filtro van a variar con respecto al metal que se está analizando.
- 7. Encender el cilindro de acetileno y el botellón de la presión del aire.
- 8. Para encender la llama:
 - a. Dirigirse en la computadora a "Flama".
 - b. Presionar en el botón "Fire".
- 9. Para iniciar la medición:
 - a. Presionar el botón de "Medir".
 - b. Primero medir en "Zero" pues se medirá el valor del agua destilada.
 - c. Leer uno a uno los estándares y revisar la curva de calibración al terminar de leer el último estándar.
 - d. Leer las muestras de agua contaminada.
- 10. Cerrar la válvula del acetileno al terminar de utilizar el equipo.
- 11. Una vez obtenidos los análisis de la concentración de plomo para cada muestra

Recolección y tratamiento de cáscaras

- 1. Se recolectaron las cáscaras de banano.
- Se sumergieron las cáscaras de banano en una solución de hipoclorito de sodio al 2-5% p/v durante 10 minutos.
- 3. Se escurrió y se secó el exceso de agua con papel toalla.
- 4. Se le quitó a las cáscaras los tallos y partes dañadas, podridas o restos del fruto.
- 5. Se pesó las cáscaras de banano ya limpias en balanza.

- 6. Se colocaron las cáscaras en bandejas de aluminio y se secaron en horno durante 16h.
 - a. Se colocó una temperatura de secado de 95°C.
 - b. Se sacaron las bandejas de aluminio con las cáscaras cada hora y se pesaron en la balanza.
- Inmediatamente después del secado, se colocaron todas las cáscaras de banano en la licuadora en la segunda velocidad durante 120 segundos (2 minutos).
 - a. En un recipiente grande se recolectó la bioresina fabricada.
 - b. Se pesó la bioresina fabricada.

Ensayo granulométrico

- 1. Se colocó todo el material en la parte de arriba del tamizador.
- 2. Se colocó el juego de tamices en el vibrador mecánico por durante 900 segundos (15 minutos).
- 3. Se pesaron las porciones retenidas en cada tamizador en balanza analítica.
- Se escogió el tamiz que tuvo mayor cantidad de resina, considerando que el elegido debía estar entre el de 350-600micrones. En este caso, el que presentó mayor cantidad de bioresina fue el tamiz No. 30.
- Se calculó el porcentaje retenido parcial para cada tamiz con la ecuación 5 del marco teórico, página 27.
- Se calculó el porcentaje retenido acumulado para cada tamiz con la ecuación 4 del marco teórico, página 27.
- Se calculó el porcentaje acumulado que pasa para cada tamiz con la ecuación 6 del marco teórico, página 27.

Caracterización de bioresina

Determinación de pH y solubilidad en agua:

- 1. Se introdujo el electrodo del potenciómetro en la solución buffer pH 7 hasta que se quedaron constantes los valores.
- 2. Se pesó 0.002kg (2g) de bioresina en balanza analítica.
- 3. Se colocó los 0.002kg (2g) de bioresina en un beaker de $0.00005m^3$ (50mL).
- 4. Se agregó $0.00002m^3$ (20mL) de agua destilada al beaker con la bioresina y se mezcló.
- 5. Se dejó reposar la mezcla durante 600 segundos (10 minutos).
- 6. Se introdujo el electrodo del potenciómetro en la solución de agua destilada con bioresina.
 - a. Se midió el pH y se anotó el valor hasta que sea constante.

Nota: Se realizó el mismo procedimiento cinco veces.

Se calculó la media y desviación estándar del pH de la bioresina en agua destilada con las ecuaciones
 23 y 24 del marco teórico, página 46.

Densidad aparente seca:

- 1. Se pesó una probeta seca de $0.00005m^3$ (50mL) en balanza analítica.
- 2. Se llenó la probeta con la bioresina hasta la marca de $0.00001m^3$ (10mL).
- 3. Se pesó la probeta con la bioresina.
 - a. Se determinó el peso de la bioresina por diferencia de pesos (1 y 3).
- Se calculó la densidad aparente seca de la bioresina como en el cálculo 8, en anexos, en cálculos de muestra, página 127.

Nota: Se realizó este procedimiento cinco veces.

5. Se calculó la media y desviación estándar de la densidad aparente seca de la bioresina con las ecuaciones 23 y 24 del marco teórico, página 46.

Prueba de expansión de la bioresina:

- 1. Se llenó con bioresina una probeta de100mL.
- 2. Se midió la altura del lecho seco.
- 3. Se le añadió agua hasta antes de que sobrepasara el lecho.
- 4. Se midió la altura del lecho mojado.
- 5. Calcular el porcentaje de expansión de la bioresina con la ecuación 14 del marco teórico, página 34.

Realización de sistema para remoción de Plomo II a escala laboratorio

- 1. Se midió el diámetro de una botella plástica de 3L.
- 2. A la botella, se le cortó la parte superior.
- 3. Se colocó en la boquilla teflón de ½ de pulgada para asegurar de que no existiesen fugas.
 - a. Se forró con aproximadamente 5 vueltas.
- 4. En la boquilla:
 - a. Se pegó una malla de un colador.
 - b. Se colocó una válvula de globo que casara.
- 5. Se midió la altura de la botella plástica de 3L.
- 6. Se introdujo unas cuantas piedras pómez de manera que llegaran justo al cuello de la botella.
- 7. Se introdujo piedra pómez en la botella hasta terminar la parte cóncava hacia arriba de la misma.
- 8. Se mezcló 0.08kg (80g) de bioresina con 0.328kg (328g) de piedra piedra pómez.
- 9. Se introdujo a la botella la mezcla de bioresina con la piedra pómez.

- 10. Se midió la altura del lecho seco.
- Se calculó la relación de esbeltez de la columna del sistema con la ecuación 13 del marco teórico, página 34.

Escalamiento de sistema natural

- Se determinó la altura del lecho sin expansión de bioresina por similitud geométrica con la ecuación 7 del marco teórico, página 32.
- Con la densidad aparente seca, se realizó la conversión de gramos a metro cúbico de bioresina utilizada en la columna del sistema a escala laboratorio. Ver cálculo 14, en anexos, en cálculos de muestra, página 130.
- 3. Se aplicó una regla de tres, en la que se conocían tres valores y solo existía una incógnita, para establecer el porcentaje que representaba tanto la piedra pómez como la bioresina y el agua a tratar en la columna del sistema a escala laboratorio. Ver cálculo 15, en anexos, en cálculos de muestra, página 131.
- Se determinó la altura que ocupa la bioresina en la columna del sistema a escala como con la ecuación 12 del marco teórico, página 34.
- Se calculó la expansión del lecho en la columna del sistema a escala con la ecuación 15 del marco teórico, página 34.
- Se calculó la altura del lecho hinchado en la columna del sistema a escala con la ecuación 16 del marco teórico, página 35.
- Se determinó la altura total de la columna del sistema a escala considerando un factor de seguridad del 20% como en el cálculo 19, en anexos, en cálculos de muestra, página 133.
- 7. Se calculó la relación de esbeltez con la ecuación 13 del marco teórico, página 34.
- Se calculó el área de la columna del sistema a escala con la ecuación 11 del marco teórico, página 33.
- Se calculó el volumen de la columna del sistema a escala como en el cálculo 22, en anexos, en cálculos de muestra, página 134.
- Se calculó el radio de nudillo para el cabezal toriesférico de la columna del sistema a escala con la ecuación 18 del marco teórico, página 36.
- Se determinó la altura de la parte recta del cabezal toriesférico de la columna del sistema a escala con la ecuación 19 del marco teórico, página 36.

Pruebas de remoción de plomo II a escala laboratorio

Influencia del tiempo de contacto con la bioresina en el porcentaje de remoción de metales pesados en agua contaminada:

- 1. Se colocó la columna del sistema natural en un soporte universal.
- 2. Con una regla, se midió el diámetro y altura de la columna del sistema.
- 3. Se verificó que la válvula de la columna del sistema estuviese completamente cerrada.
- 4. Con ayuda de una regla, se midió la altura del lecho seco.
- 5. Se agregó la solución de agua contaminada (Solución madre) hasta que esta llegó a la marca a la cual se llenó de la mezcla bioresina con piedra pómez.
- 6. Se colocó una probeta de 10mL en la salida de la columna del sistema natural.
- Luego de 600 segundos (10 minutos), se abrió la válvula de la columna del sistema y se sacaron 0.00001m³ (10mL) de agua lentamente.
 - a. Mientras estaba saliendo la muestra de agua, se tomó el tiempo con un cronómetro hasta completar los $0.00001m^3$ (10mL).
 - i. Se realizó en quintuplicado.
- 8. Se cerró la llave de la columna.
- 9. Se trasvasó la muestra a un frasco pequeño ámbar.
- 10. Se tapó el frasco con la muestra, se envolvió en papel aluminio y se refrigeró.
- Se realizó los pasos 7-10 hasta completar dos horas y 600 segundos (10 minutos); es decir, cada 10 minutos se realizó un muestreo.
 - a. Se rotuló cada muestra.
- 12. Se midió la altura de la mezcla de bioresina con piedra pome mojada.
- 13. Se llevó la muestra obtenida al laboratorio Instrumental Avanzado y se midió la concentración de plomo.
- 14. Se calculó la concentración de adsorbato en la fase sólida en un tiempo determinado (q_t) con la ecuación 2 del marco teórico, página 15.
- 15. Se calculó el porcentaje de remoción de plomo II en las muestras de agua contaminada con la ecuación 3 del marco teórico, página 15.

Filtración de partículas suspendidas en muestras:

- 1. Se colocó un embudo en soporte universal.
- 2. Se colocó un pedazo de manta cruda sobre el embudo.
- 3. Se colocó la probeta debajo de la salida del embudo.
- 4. Se agregó la muestra que se deseaba filtrar en el embudo junto con la manta cruda.

Nota: Se realizó el mismo procedimiento pero con tiempos de contacto de una hora y luego de cada once horas.

Tratamiento para soluciones y resina con nitrato de plomo

- 1. Para el caso de la solución de nitrato de plomo sin utilizar y las muestras de la adsorción, colocar los residuos en el recipiente destinado a soluciones tóxicas.
- La resina que se utilizó en la columna del sistema, depositarla en el recipiente destinado a residuos tóxicos.

Efecto del tiempo de contacto entre la solución de Plomo (II) y la bioresina de cáscara de banano

- Se graficó la media de la concentración final de cada muestra obtenida en las primeras dos horas de operación en función del tiempo de contacto (Ver Figura 30, en anexos, en datos calculados, página 189).
- Con el objetivo de observar la variación de la adsorción con el tiempo de una solución de Plomo (II), se graficó la concentración de adsorbato de cada muestra obtenida en las primeras dos horas de operación en función del tiempo de contacto (Ver Figura 31, en anexos, en datos calculados, página 190).

Curvas de ruptura

- 1. Se realizó una gráfica con la media de las concentraciones, para cada muestra obtenida, en función del tiempo de contacto (Ver Figura 26, en anexos, en datos calculados, página 185).
- Con el objetivo de observar el comportamiento de la remoción de plomo al principio de la operación, se realizó una gráfica con la media de las concentraciones de cada muestra obtenida en las primeras cuatro horas de operación, en función del tiempo de contacto (Ver Figura 27, en anexos, en datos calculados, página 186).
- 3. Con el objetivo de observar el comportamiento de la remoción de plomo al final de la operación, se realizó una gráfica con la media de las concentraciones de cada muestra obtenida en las considerando solo los tiempos de contacto a partir de las cuatro horas en adelante de operación, en función del tiempo de contacto (Ver Figura 28, en anexos, en datos calculados, página 187).
- 4. Finalmente, se realizó una curva de ruptura del agua contaminada con 20ppm de Plomo II, considerando solo los tiempos de contacto de la primera hora y los de cada once horas de operación (Ver Figura 29, en anexos, en datos calculados, página 188).

Medición de la viscosidad del fluido que sale de la columna del sistema

- 1. Se llenó de agua destilada el viscosímetro hasta la marca "A".
- Se colocó el pipeteador en la parte "B" del viscosímetro, y se succionó el agua destilada hasta la marca "C".
- 3. Se quitó el pipeteador y se tapoó con el dedo la parte "B" del viscosímetro.
- 4. Se quitó el dedo y se esperó a que el agua bajara hasta la marca "D".
- 5. Con un cronómetro, se tomó el tiempo que tardaba al algua bajar desde la marca "D" a la marca "E".

Nota: Ver Figura 19, que se encuentra en la sección de metodología, página 58.

Figura 19. Viscosímetro marca CANNON-Instrument Company-.

Dimensionamiento de tuberías y bombas

- 1. Se realizó un pronóstico de las velocidades nominales para las densidades de $1600 kg/m^3$ y $800 kg/m^3$ que se encuentran en la Figura 13 del marco teórico, página 38.
- 2. Conociendo el caudal y la velocidad nominal del fluido, se calculó el área nominal de la tubería (Ver cálculo 26, en anexos, en cálculos de muestra, página 136).
- Al considerar el área de la tubería como un círculo, se calculó el diámetro de la tubería como en el cálculo 27, en anexos, en cálculos de muestra, página 137.
- Se calculó el radio nominal de la tubería como en el cálculo 28, en anexos, en cálculos de muestra, página 137.
- 5. Se ubicó el diámetro nominal en la Figura 126, en anexos, en información adicional, página 298; y se determinó el diámetro interno real, el diámetro exterior y el tamaño de la tubería. Considerar que el diámetro debe estar en pulgadas para poderlo encontrar en la figura.
- Con el díametro interior real, se calculó el área real de la tubería como en el cálculo 29, en anexos, en cálculos de muestra, página 138.
- Con el caudal y el área real, se calculó la velocidad real del agua dentro de la tubería como en el cálculo 30, en anexos, en cálculo de muestra, página 138.
- 8. Se calcuó el número de Reynolds con la ecuación 21 del marco teórico, página 39.
- Se calculó la rugosidad relativa en la tubería como en el cálculo 32, en anexos, en cálculos de muestra, página 139.
- Se determinó el factor de fricción de fanning con la Figura 127, en anexos, en información adicional, página 299.
- 11. Se estableció el tipo y cantidad de accesorios propuestos en el sistema (Ver Cuadros 124 y 128, en anexos, en datos calculados, en las páginas 211 y 212, respectivamente).
- Se calculó el largo asocicado de accesorios como en el cálculo 33, en anexos, en cálculos de muestra, página 140.
- Se calculó el largo total de la tubería como el cálculo 34, en anexos, en cálculos de muestra, página 140.
- 14. Se calculó la caída de presión en la tubería con la ecuación 20 del marco teórico, página 39.
- 15. Se determinó la cabeza dinámica para la bomba como en el cálculo 36, en anexos, en cálculos de muestra, página 141.
- Se determinó la cabeza estática para la bomba como en el cálculo 37, en anexos, en cálculos de muestra, página 142.
- Se calculó la cabeza total de la bomba como en el cálculo 38, en anexos, en cálculos de muestra, página 143.
- 18. Se determinó la potencia y la eficiencia de las bombas mediante las curvas características que se encuentran en las Figuras 128 y 129, en anexos, en información adicional, en las páginas 300 y 301.

- Se realizó un índice de los equipos y accesorios que tendría el diagrama de flujo del escalamiento del sistema (Ver Figura 32, en anexos, en cálculos de muestra, página 205).
- 20. Se realizó un índice del control e instrumentación que tendría el diagrama de flujo del escalamiento del sistema (Ver Figura 33, en anexos, en cálculos de muestra, página 206).
- Se realizó un diagrama en vista planta del escalamiento del sistema (Ver Figura 34, en anexos, en cálculos de muestra, página 207).
- 22. Se realizó un diagrama con las medidas del escalamiento del sistema (Ver Figura 35, en anexos, en cálculos de muestra, página 208).
- Se realizó un diagrama en 3D del escalamiento del sistema (Ver Figura 36, en anexos, en cálculos de muestra, página 209).
- Se realizó una ficha técnica del escalamiento del sistema (Ver Figura 37, en anexos, en cálculos de muestra, página 210).

Cálculo de la Tasa Interna de Retorno (TIR)

- Se realizó la propuesta de los equipos necesarios para la fabricación de la bioresina en presentación de 25kg (Ver Figura 38, en anexos, en datos calculados, página 212).
- 2. Se determinó la capacidad necesaria para cada equipo de acuerdo al balance de masa que se encuentra en la Figura 38, en anexos, en datos calculados, página 212.
 - Es importante mencionar que para el caso del secador, se tomó en consideración que se removía el 82.43% en agua del peso inicial (Ver Figura 38, en anexos, en datos calculados, página 212).
- Se determinó el costo de los equipos mediante el uso de la Figura 136, en anexos, en información adicional, página 308; con SuperPro Designer y cotizando.
 - a. Se hizo uso de una plantilla en Excel tal y como se muestra en la Figura 39, en anexos, en datos calculados, página 213.
- 4. Se determinó el costo de instalación, tubería, electricidad, instrumentación, entre otros, mediante el uso de la Figura 137, en anexos, en información adicional, página 309.
 - Se hizo uso de una plantilla en Excel tal y como se muestra en la Figura 39, en anexos, en datos calculados, páginas 213 y 214.
- 5. Se calculó la inversión total de equipos.
 - Se hizo uso de una plantilla en Excel tal y como se muestra en la Figura 39, en anexos, en datos calculados, páginas 213 y 214.
- 6. Se estableció el tamaño que debería de tener el terreno. Para ello, se investigó el tamaño que tenían los equipos (Ver Figuras 130 a 135, en anexos, en información adicional, páginas 302 a 307), y se hizo una aproximación de las dimensiones que debían tener las oficinas, vestidores, baños, entre otros.

- a. Se hizo uso de una plantilla en Excel tal y como se muestra en la Figura 40, en anexos, en datos calculados, páginas 215 y 216.
- 7. Se estimó el costo total de construcción, terreno y paredes.
 - La tabla con los costos de construcción por metro cuadrado se ubican en la Figura 40, en anexos, en datos calculados, páginas 215 y 216.
- Se calculó la inversión total, donde solo se consideró los equipos, equipos auxiliares y el costo de construcción (Ver Figura 41, en anexos, en datos calculados, página 216).
- Se estableció que tanto operarios como personal administrativo trabajarían ocho horas durante cinco días a la semana al año. Para este cálculo, se hizo uso de una plantilla en Excel (Ver Figura 32 y 33, en anexos, en datos calculados, página 205 y 206).
- 10. Se estableció los salarios anuales tanto de operarios como del personal administrativo. Para el caso de los salarios, se hizo una investigación previa de cuánto debería de ganar cada trabajador según su puesto (Ver Figura 32 y 33, en anexos, en datos calculados, página 205 y 206).
- Se calculó los sueldos de costos variables, los cuales hacen referencia a los operarios, y los sueldos de costos fijos, los cuales corresponden al personal administrativo. Para ello, se tomó en consideración el IGGS, IRTRA, INTECAP, BONO 14, entre otros (Ver Figura 44, en anexos, en datos calculados, página 219).
- 12. Se estimó el costo variable total, tomando en consideración el costo anual de la materia prima y del material de empaque. Es importante mencionar que tanto el costo de la cáscara de banano por quintal, como el del material de empaque, fueron investigados previamente (Ver Figura 45, en anexos, en datos calculados, página 220).
- 13. Se estimó el costo fijo total, tomando en consideración los sueldos anuales del personal administrativo, el consumo de energía por equipos y gastos de internet, teléfono y publicidad. Para ello se hizo uso de una plantilla en Excel (Ver Figura 46, en anexos, en datos calculados, página 221).
- 14. Se realizó el flujo de caja, considerando que el horizonte del proyecto fue de diez años, y se estableció un crecimiento en ventas de 5% durante los primeros cinco años. Para ello se hizo uso de una plantilla en Excel (Ver Figura 47, en anexos, en datos calculados, página 222).
 - a. Se estableció el precio de la bioresina en base al precio cotizado para carbón activado en presentación de 25kg (Q.940.00).
- Se calculó el valor actual neto con la función de Excel "VNA" en una plantilla de Excel (Ver Figura 47, en anexos, en datos calculados, página 222).
- Se calculó la tasa interna de retorno (TIR) con la función de Excel "TIR" en una plantilla de Excel (Ver Figura 47, en anexos, en datos calculados, página 222).
- Se determinó el periodo de recuperación con la función de Excel "Pronóstico" en una plantilla de Excel (Ver Figura 47, en anexos, en datos calculados, página 222).

Análisis de error

Para todos los datos obtenidos (solo los que aplicaban pues eran más de uno) se les calculó tanto la media como la desviación estándar. Donde esta última es la propagación de error de la primera.

Para los cálculos tanto de la media como de la desviación estándar, se hizo uso de las ecuaciones 23 y 24 del marco téorico, página 46. Mientras que para la determinación de la propagación de error, ya sea de una suma/resta o de una multiplicación/división, se hizo uso de las ecuaciones 25 y 26 del marco teórico, página 47.

IX. RESULTADOS

Nota: Para mayor detalle en cuanto a la frecuencia de estiramiento de cada enlace, dirigirse a las Figuras 122 a 125, en anexos, en información adicional, páginas 294 a 297.

Enlaco	Frecuencia de estiramiento (cm^{-1})			
Emace	Teórica	Experimental		
(O - H) de alcohol	3300	3368.41		
(C - H)	3000	2916.24		
(C=0)	1700	1733.80		
(C = C)	1660	1639.46		

Cuadro 3. Enlaces presentes en la Figura 20.

Nota: En este cuadro se encuentran las frecuecnias de estiramiento de los enlaces de los grupos funcionales presentes en la cáscara de banano.

Figura 21. Prototipos de sistema natural a escala laboratorio para llevar a cabo las pruebas de remoción de Plomo II.

Nota: La Figura (a) es el primer prototipo del sistema a escala laboratorio, el cual solo utiliza la bioresina fabricada. Mientras que la Figura (b) es el segurndo prototipo del sistema a escala laboratorio, el cual utiliza tanto la bioresina fabricada como la piedra pómez.

Cuadro 4. Pesaje de bioresina seca para pruebas de remoción de Plomo II.

Columna	Peso (±0.00	Peso $(\pm 0.00005 kg)$		
Columnu	Bioresina	Piedra Pómez		
1	0.080000	0.328000		

Nota: Se hace mención de "una columna", debido a que se construyó un único sistema a escala laboratorio con esa cantidad de bioresina y piedra pómez.

Parámetros	Valor (±0.0005 <i>m</i>)
Diámetro	0.1170
Altura de la columna	0.280
Altura de lecho	0.2280

Cuadro 5. Medidas de la columna del sistema a escala laboratorio.

Nota: Estos valores fueron medidos directamente de la columna del sistema realizado a escala laboratorio. Para el caso de la altura del lecho, se tomó en consideración que debía existir un factor de seguridad del 20%.

Cuadro 6. Volúmenes de los componentes de la columna del sistema tanto a escala laboratorio como su escalamiento con sus respectivas proporciones.

Componentes	Proporciones de	Escala laboratorio	Escalamiento	
componentes	componentes (%)	Volúmenes (m ³)		
Piedra pómez	37.763±0.001	0.00065600±0.00000001	1.3465 <u>±</u> 0.0001	
Bioresina	7.550 ± 0.008	0.00013115 <u>+</u> 0.00009836	0.2692±0.0010	
Agua a tratar	54.687±0.001	0.00095000 <u>±</u> 0.00000006	1.9500	
Capacidad total				
de la columna del	100.000 ± 0.008	0.00173715±0.00009836	3.5657 <u>±</u> 0.0001	
sistema				

Nota: El volumen del escalamiento fue de $3.5657m^3 \pm 0.0001m^3$.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Cuadro 7. Dimensionamiento de la columna del sistema tanto a escala laboratorio como su escalamiento.

Parámetro	Escala laboratorio	Escalamiento
Porcentaje de expansión de bioresina (%)	10.5263±0.0709	10.5263±0.0709
Altura de bioresina (m)	0.0122 <u>+</u> 0.0075	0.1303±0.0061
Expansión de bioresina (m)	0.0013 <u>+</u> 0.9120	0.0137 <u>+</u> 0.6753
Altura del lecho sin expansión de bioresina (<i>m</i>)	0.2280 ± 0.0005	2.4359±0.0048
Altura del lecho con expansión de bioresina (<i>m</i>)	0.2293±0.9120	2.4496±0.6753
Altura de lecho con factor de seguridad (<i>m</i>)	0.2751±0.9120	2.9395±0.6753
Relación de esbeltez (L/D)	2.3516±0.0331	2.3516±0.6753
Área de columna (m^2)	0.1226±0.0046	13.9979±0.0046
Volumen de columna (m^3)	0.0030 ± 0.0331	3.6074 <u>+</u> 0.6753

Nota: Se consideró un factor del 20% para el escalamiento del sistema natural.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Parámetros	Valor (m)
Diámetro	1.2500
Radio de corona	1.2500
Radio de nudillo	0.1250
Espesor	0.0043
Altura de parte recta	0.02305

Cuadro 8. Dimensionamiento de cabezales toriesféricos del tipo ASME FLANGED & DISHED.

Nota: Se hizo uso del espesor calculado en una tesis para una columna catiónica de lecho fijo para la potabilización de agua (Agamez, 2014).

Parámetros	Valor
Caudal (m^3/s)	0.00639
Viscosidad $(kg/m * s)$	0.00250±0.00020
Velocidad nominal (m/s)	2.85000
Área nominal (m^2)	0.00224
Radio nominal (<i>m</i>)	0.02671
Diámatra naminal	0.05343 m
Diametro nominai	2.10335 in
	2.06700 in
Diametro interior real	0.05250 m
	2.37500 in
Diametro exterior	0.06032 m
T ~ ` 11.41.4	2.0000 in
l'amano nominal de tuberia	0.05080 m
Área (m^2)	0.00216
Velocidad real (m/s)	2.95112
Largo (<i>m</i>)	10.00000
Número de Reynolds	62006.95804±0.00020
1	0.00015 ft
K	0.00005 m
Rugosidad relativa (k/D)	0.00087
Factor de fricción Fanning	0.00480

Cuadro 9. Dimensionamiento de tuberías estándar de acero.

Nota: Este dimensionamiento corresponde tanto a la tubería de entrada como de salida del escalamiento de la columna del sistema.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Figura 22. Propuesta de sistema natural.

(Elaboración propia).

Nota: Los detalles del presente diagrama, se pueden ubicar en el anexo, datos calculados, Figuras 32 a 37, páginas 205 a 210.

Tiempo de	contacto	Concentración (ppm)		Concentración	Doncontaio do
Minutos (±0.0008 <i>mins</i> .)	Segundos (±0.05 <i>seg</i> .)	Inicial	Final	de adsorbato (mg/g)	remoción (%)
10.0000	600.00		0.929 <u>+</u> 0.187	0.226±0.201	95.356 <u>+</u> 0.187
20.0000	1200.00		0.800±0.054	0.228±0.233	96.000 <u>+</u> 0.054
30.0000	1800.00		0.738 <u>+</u> 0.068	0.229±0.253	96.309 <u>+</u> 0.068
40.0000	2400.00		0.724 <u>±</u> 0.048	0.229±0.258	96.380±0.048
50.0000	3000.00		0.720±0.050	0.229±0.259	96.399 <u>+</u> 0.050
60.0000	3600.00		0.722±0.072	0.229±0.259	96.392 <u>+</u> 0.072
70.0000	4200.00		0.707±0.042	0.229±0.264	96.467 <u>±</u> 0.042
80.0000	4800.00		0.664±0.040	0.230±0.281	96.682±0.040
90.0000	5400.00		0.657±0.023	0.230±0.284	96.717±0.023
100.0000	6000.00		0.650±0.019	0.230±0.287	96.751 <u>±</u> 0.019
110.0000	6600.00		0.626±0.054	0.230±0.298	96.869 <u>+</u> 0.054
120.0000	7200.00		0.616 <u>+</u> 0.123	0.230±0.303	96.920±0.123
130.0000	7800.00	20	0.559 <u>+</u> 0.009	0.231 <u>+</u> 0.334	97.203±0.009
140.0000	8400.00	20	1.556±0.685	0.219±0.440	92.221±0.685
150.0000	9000.00		2.613±0.317	0.206±0.262	86.936 <u>+</u> 0.317
160.0000	9600.00		2.258±0.537	0.211±0.303	88.712±0.537
170.0000	10200.00		2.039±0.064	0.213±0.336	89.807 <u>±</u> 0.064
180.0000	10800.00		1.792 <u>+</u> 0.110	0.216 <u>+</u> 0.382	91.038 <u>+</u> 0.110
190.0000	11400.00		1.834 <u>+</u> 0.140	0.216 <u>+</u> 0.373	90.828±0.140
200.0000	12000.00		1.991±0.141	0.214±0.344	90.046±0.141
210.0000	12600.00		2.272±0.067	0.211±0.301	88.638±0.067
220.0000	13200.00		2.485±0.127	0.208±0.276	87.573±0.127
230.0000	13800.00		2.831±0.110	0.204 ± 0.242	85.845 <u>+</u> 0.110
240.0000	14400.00		3.238±0.090	0.199 <u>+</u> 0.211	83.811 <u>+</u> 0.090
250.0000	15000.00		3.151±0.535	0.200±0.217	84.246 <u>+</u> 0.535
260.0000	15600.00		3.505+0.081	0.196+0.195	82.476+0.081

Cuadro 10. Concentración de adsorbato en la fase sólida respecto a un determinado tiempo y porcentaje de remoción de plomo (II) cada diez minutos.

Nota: Pruebas de remoción de plomo II en agua contaminada, cada diez minutos.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Cuadro 11. Concentración de adsorbato en la fase sólida respecto a un determinado tiempo y porcentaje de remoción de plomo (II) cada hora.

Tiempo	de contacto	Concentración (ppm)		Concentración	_
Segundos (±0.05 <i>seg</i> .)	Horas (±0.00001 <i>horas</i>)	Inicial	Final	de adsorbato (mg/g)	Porcentaje de remoción (%)
19200.00	5.33300		1.873 <u>+</u> 0.174	0.215 <u>+</u> 0.093	90.637 <u>+</u> 0.174
22800.00	6.33300		1.950 <u>+</u> 0.284	0.214 <u>+</u> 0.089	90.252±0.284
26400.00	7.33300		3.367 <u>+</u> 0.314	0.198 <u>+</u> 0.052	83.163 <u>+</u> 0.314
30000.00	8.33300	20	3.395±0.172	0.197 <u>+</u> 0.051	83.024±0.172
33600.00	9.33300		3.423±0.118	0.197 <u>±</u> 0.051	82.883±0.118
37200.00	10.33300		1.789 <u>±</u> 0.166	0.216 <u>±</u> 0.097	91.054 <u>+</u> 0.166
40800.00	11.33300		2.018±0.504	0.214 <u>±</u> 0.086	89.911 <u>±</u> 0.504
44400.00	12.33300		4.278±0.212	0.187±0.041	78.610±0.212
48000.00	13.33300		5.588±0.193	0.183 <u>+</u> 0.038	77.061±0.193
51600.00	14.33300		5.585±0.153	0.171±0.031	72.073±0.153
55200.00	15.33300		5.874 <u>+</u> 0.230	0.167 <u>+</u> 0.029	70.132±0.230

Nota: Pruebas de remoción de plomo II en agua contaminada, cada hora.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Cuadro 12. Concentración de adsorbato en la fase sólida respecto a un determinado tiempo y porcentaje de remoción de plomo (II) cada once horas.

Tiempo	de contacto	Concentración (ppm)		Concentración	_
Segundos	Horas	Inicial	Final	de adsorbato	Porcentaje de remoción (%)
$(\pm 0.05 seg.)$	$(\pm 0.0001 horas)$			(
94800.00	26.33300		9.303±0.272	0.127 <u>±</u> 0.029	53.485 <u>+</u> 0.272
134400.00	37.33300		10.819 <u>+</u> 0.180	0.109 <u>+</u> 0.025	45.903±0.180
174000.00	48.33300	20	12.034±0.266	0.095 <u>+</u> 0.023	39.830±0.266
213600.00	59.33300		12.623±0.322	0.088 <u>+</u> 0.022	36.883±0.322
253200.00	70.33300		12.588±0.214	0.088±0.022	37.060±0.214

Nota: Pruebas de remoción de plomo II en agua contaminada, cada once horas.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

X. ANÁLISIS DE RESULTADOS

Identificación de grupos funcionales presentes en cáscara de banano

Con el objetivo de establecer los grupos funcionales que son responsables de la adsorción de metales pesados en la bioresina de cáscara de banano, se realizó un análisis por espectroscopía infrarroja con transformada de Fourier (FTIR). Esta técnica se emplea para la identificación de los grupos funcionales superficiales orgánicos, lo cual es fundamental para poder conocer de manera general la estructura química del bioadsorbente.

Como se puede observar en la Figura 20 y en el Cuadro 3 existe una banda ancha e intensa a 3368.41cm-1 en la cáscara de banano maduro. Éste pico representa el estiramiento de los grupos hidroxilo (3500-2500cm-1). Asimismo, en este espectro, también se hace evidente un pico a 2916.24cm-1 al cual se le puede atribuir a las vibraciones C-H de estiramiento metilo, grupos metoxi y metileno. Por otro lado, los picos que se encuentran alrededor de 1733.80cm-1 corresponden al estiramiento carbonilo C=O, lo cual indica la vibración de los grupos carboxilo de pectina, lignina y hemicelulosa en la biomasa en estudio. La banda que se encuentra en 1639.46cm-1 se produce por el estiramiento de C=C como consecuencia de la posible presencia de benceno aromático en la lignina. Mientras que a la sección de picos que tienen un número de onda que va de 600 a 1400cm-1 se le llama comúnmente "región de la huella dactilar" del espectro.

Preparación de bioresina, composición y dimensionamiento de columna del sistema a escala laboratorio

La Figura 24, que se encuentra en la página 147, es la curva experimental de la pérdida de peso de la cáscara de banano. Esta se obtuvo a 95°C y en esta se puede apreciar que la cáscara de banano comienza a perder peso desde el inicio de la operación del secado hasta llegar a un punto en donde el peso permaneció constante que fue hasta después de 16 horas, aproximadamente. Al finalizar la operación de secado, se contabilizó que de los 50.289kg±0.000005kg de cáscara de banano, solo quedaban 6.090kg±0.000005kg; de manera que los 44.199kg corresponden al peso de la humedad total que contenía la biomasa, que fue removida por evaporación (Ver Cuadro 62, en anexos, datos calculados, página 148). Según lo anterior, se puede decir que se obtuvo una reducción en peso de casi el 87.890%, y solo se utilizó el 12.11% del peso inicial de la cáscara de banano.

Por otro lado, se utilizó una licuadora para la reducción de tamaño de la cáscara de banano. Esta operación, se llevó a cabo a una veocidad de II, hasta obtener un tamaño de partícula más o menos homogéneo, lo cual se dio aproximadamente en dos minutos. Una vez hecho esto, se realizó un ensayo granulométrico mediante el tamizador tipo shaker del Laboratorio de Operaciones Unitarias de la Universidad del Valle de Guatemala, lo cual permitió determinar el porcentaje retenido parcial, acumulado y acumulado que pasa para cada tamiz.

Es importante destacar que, según la bibliografía consultada se recomienda un tamaño de partícula en el rango de 300 a $600\mu m$, para la reducción eficiente de plomo en las aguas contaminadas. Debido a lo anterior y a que se obtuvo una mayor cantidad de resina en el tamiz no. 30, se trabajó con un diámetro de partícula de $600\mu m$. Para este, se obtuvo un porcentaje parcial retenido de 17.569787, dicho porcentaje en masa corresponde a la fracción que es retendia en este tamiz. Además, también se determinó que el porcentaje retenido acumulado fue de 40.722496. Este último porcentaje en masa representa a todas las partículas de mayor tamaño que los $600\mu m$, las cuales en este caso corresponden solo al tamiz no. 20. Y finalmente, también se obtuvo que el porcentaje retenido acumulado que pasa fue de 59.277504, este dato representa a todas las partículas de menor tamaño que los $600\mu m$. De lo anterior, se observa que se obtuvo una mayor cantidad de bioresina total para los tamices con diámetro de partícula menores que los $600\mu m$; sin embargo, esta cantidad ya no se aprovechó pues estaba fuera del rango recomendado para la adsorción de plomo II, y además, el tamiz no. 45 tan solo retuvo el 2.134647% del total de la bioresina fabricada (6.090kg) (Ver Cuadro 63 en anexos, datos calculados, página 148).

Las caracterizaciones ejecutadas en el laboratorio tienen como objetivo establecer algunos parámetros físico-químicos de la bioresina, tales como: densidad aparente seca, potencial de hidrógeno, expansión y solubilidad en agua para que, de esta manera, se pueda estudiar el comportamiento de la bioresina en el medio que se va a trabajar.

Las resinas de intercambio iónico son materiales macromoleculares insolubles en agua. Para este parámetro de solubilidad, con el experimento a escala laboratorio que se realizó a temperatura ambiente, se comprobó que la bioresina es insoluble en agua. En el caso del pH, se puede decir que se trata de una bioresina de carácter ácido pues la media del pH en el agua dio como resultado 5.386±0.034 (ver Cuadro 65 en anexos, en datos calculados, página 149). Como se puede observar, la desviación estándar es pequeña; de manera que no existió mayor variación en los datos medidos. Además, cabe destacar que este pH, ligeramente ácido, favorece al proceso de bioadsorción, puesto que la solución está protonada y la cáscara de banano tiende a adsorber una mayor concentración de metales pesados (Castro, 2015).

Para la determinación de la densidad aparente seca, se obtuvo una media 610.000000kg/ m^3 (Ver Cuadro 66 en anexos, en datos calculados, página 150); la cual es relativamente alta, lo cual está bien, pues la densidad aparente de otras resinas catiónicas sintéticas también es alta, como es el caso de la "Lewatit C249", misma que posee una densidad aparente de $832kg/m^3$. En términos físicos, cuando la densidad aparente aumenta, se incrementa la compactación y se da una disminución en el tamaño de poros, lo cual conlleva a un menor hinchamiento (Blanco, 2009).

Otro parámetro importante de evaluación es la expansión que puede llegar a tener la bioresina. Para esto, se realizó una comparación entre la altura de la bioresina seca $(0.085m\pm0.0005m)$ y la misma bioresina pero

mojada ($0.095m\pm0.0005m$). Fue a partir de estas alturas que se obtuvo que la bioresina se expandió $10.5263\%\pm0.0709\%$, porcentaje que deberá ser tomado en consideración tanto para el dimensionamiento de la columna del sistema a escala laboratorio como su escalamiento (Ver Cuadro 67 en anexos, en datos calculados, página 150).

Para poder llevar a cabo la elaboración del sistema natural a escala laboratorio, primero se intentó colocar 0.02kg (20g) de bioresina en una columna cromátográfica de $0.000001m^3$ (100mL) y luego de que esta estuviese acomodada, se le agregó una cantidad conocida de agua. Sin embargo, el agua no logró pasar a través del lecho como se puede ver en la Figura 21 (a); lo cual se debe a que se trata de un medio adsorbente demasiado fino que posee un pequeño tamaño de poro y el área de la columna era muy pequeño. Debido a lo anterior, se decidió fabricar un nuevo sistema el cual estaría conformado por una botella de agua Salvavidas de $0.003m^3$ (3L). A dicha botella se le agregó una malla en la boquilla y se le colocó una válvula en la misma. Una vez hecho esto, se estableció la cantidad de solución madre que se requería para llevar a cabo la remoción de Plomo II en muestras de $0.00001m^3$ (10mL) en quintuplicado durante un lapso de dos horas y diez minutos. Luego, ya se pudo llenar la columna del sistema con una mezcla de $0.08 \text{kg} \pm 0.000005 \text{kg}$ (80g) de bioresina y $0.328 \text{kg} \pm 0.000005 \text{kg}$ (328g) de piedra pómez (Ver Cuadro 4), asegurándose de que la solución quedara justo por encima de la altura del lecho (ver Figura 21 (b)). En esta ocasión, se utilizó piedra pómez con el objetivo de que esta diera lugar a una mejor distribución de la bioresina y no se formara una torta de la misma que impidiera que el agua fluyera libremente a través del lecho. Sin embargo, se recomienda que para futuros trabajos de investigación se estudie si existe alguna posibilidad de que la piedra pómez tenga la capacidad de adsorber metales pesados, en este caso Plomo II.

En el Cuadro 6, se observa que la columna del sistema a escala laboratorio, estaba conformado por $37.763\%\pm0.001\%$ de piedra pómez, $7.550\%\pm0.008\%$ de bioresina y $54.687\%\pm0.001\%$ de agua contaminada. En este caso, la altura medida del lecho seco, conformado por la bioresina y piedra pómez, fue de $0.2280m\pm0.0005m$ (Ver Cuadro 7). No obstante, es importante considerar que al mojar la bioresina, esta se expande $10.5263\%\pm0.0709\%$. De manera que para establecer la altura que tendría esta expansión, primero fue necesario determinar la altura seca que tenía la bioresina dentro de la columna del sistema a escala laboratorio; para ello se tomó en consideración el volumen que se usó de bioresina y que la forma que tenía el la columna del sistema era la de un cilindro. Dicho esto, se obtuvo que la bioresina seca tenía una altura de $0.0122m\pm0.0075m$ y cuando esta se moja, se expandió $0.0013m\pm0.9120m$. Según esto, se puede decir que la altura del lecho mojado fue de $0.2293m\pm0.9120m$ (Ver Cuadro 7). Para este último dato, la desviación estándar estuvo un poco alta, lo cual podría indicar un mayor grado en la variabilidad en los datos calculados.

Para el dimensionamiento de la columna del sistema se consideró un factor de seguridad del 20%, por lo que la altura de la columna del sistema debía ser la altura del lecho mojado aunado a un 20%, lo cual dio como resultado una altura de $0.2751m\pm0.9120m$. Una vez establecida la altura final de la columna del

sistema, se obtuvo que este tenía un área de $0.1226m^2 \pm 0.0046m^2$ y un volumen de $0.0030m^3 \pm 0.0331m^3$ (Ver Cuadro 7). Como se puede observar, el volumen obtenido es suficiente para almacenar los $0.00173715m^3 \pm 0.00009836m^3$ de los dos componentes del lecho como la cantidad de agua a tratar por corrida. Finalmente, se obtuvo una relación de esbeltez de 2.3516 ± 0.0331 , la cual indica la relación entre la longitud de la columna del sistema y la dimensión de su sección transversal.

Escalamiento de la columna del sistema natural

Para el dimensionamiento de la columna del sistema, se tomó como referencia el diámetro y la cantidad de agua a tratar del MOBICON 2000 CUBE, de la empresa DESOTEC, el cual es un filtro móvil de carbón activado, especialmente desarrollado para el tratamiento y purificación de agua y líquidos (Ver Figura 142 en anexos, en información adicional, página 313). A partir de lo anterior, se estableció que el escalamiento de la columna del sistema tendría un diámetro de 1.25m, y una capacidad de tratar 1.95m³ (1,950L) de agua contaminada.

También, se estableció las proporciones de los componentes que tenía la columna del sistema a escala laboratorio, para que a partir de las mismas se pudiera obtener la cantidad necesaria de piedra pómez, bioresina y agua a tratar dentro del escalamiento de la columna del sistema (Ver Cuadro 6). De manera que al mantener las proporciones, se realizó el cálculo correspondiente con el cual se obtuvo que el escalamiento de la columna del sistema debería estar conformada por $1.3465\pm0.0001m^3$ de piedra pómez y $0.2692\pm0.0010m^3$ de bioresina. Según lo anterior, se puede decir que el escalamiento de la columna del sistema debe tener por lo menos una capacidad total de $3.5657\pm0.0001m^3$.

Para poder llevar a cabo el escalamiento de la columna del sistema, se hizo uso de la metodología propuesta por Cuberlo, en la cual se plantea que para el modelo y el prototipo se debe de cumplir: la similitud geométrica, similitud térmica y la similitud cinemática. Teniendo en cuenta lo anterior, se procedió a hacer el cálculo correspondiente para la altura que tendría el lecho seco a escala, la cual fue de $2.4359m\pm0.0048m$. De igual manera, solo que considerando esta vez la altura de la bioresina a escala laboratorio, se determinó la altura de la bioresina a escala, la cual fue de $0.1303m\pm0.0061m$. Por consiguiente, como se mencionó en el apartado de composición y dimensionamiento de la columna del sistema a escala laboratorio, se debe de tomar en cuenta la expansión de la bioresina cuando ésta se moja; que en este caso fue de $0.0137m\pm0.6753m$. A partir de lo anterior, se estableció que la altura del lecho con la expansión de la bioresina fue de $2.4496m\pm0.6753m$ (Ver Cuadro 7).

Además, al considerar también el factor de seguridad del 20%, se obtuvo que la altura de la columna del sistema total era de 2.9395m \pm 0.6753m. Una vez establecida la altura que debería tener la columna del sistema, se determinó que este tendría un área de 13.9979m² \pm 0.0046m² y un volumen de 3.6074m³ \pm 0.6753m³ (Ver Cuadro 7). Y al igual que en la columna del sistema a escala laboratorio, también

se observa que este último volumen es suficiente para almacenar los $3.5657m^3 \pm 0.0001m^3$ de los dos componentes del lecho como la cantidad de agua a tratar. Por último, se obtuvo una relación de esbeltez de 2.3516 ± 0.6753 , la cual es la misma que para la columna del sistema a escala laboratorio. Según esto, se puede concluir que tanto la columna del sistema a escala laboratorio como su escalamiento cumplen con la similitud geométrica puesto que la relación de esbeltez se mantuvo constante en cada sistema.

Para el caso de los cabezales de la columna del sistema a escala, se escogió cabezales toriesféricos del tipo ASME FLANGED & DISHED, debido a que estos son los de mayor aceptación en la industria pues poseen un bajo costo. Su característica principal es que el radio del abombado es aproximadamente igual al diámetro (Agamez, 2014), que en este caso es de 1.25m. Mientras que el radio de nudillo fue de 0.125m, y la altura de la parte recta fue de 0.02305m (Ver Cuadro 8).

Una vez realizada la propuesta de la columna y cabezales de la columna del sistema natural, se procedió a realizar el dimensionamiento de las tuberías y bombas. Primero se realizó la medición de la viscosidad, a temperatura ambiente, del fluido que sale de la columna del sistema natual a escala laboratorio, contaminada de Plomo II, mediante el uso de un viscosímetro, la cual fue de $0.00250kg/m * s \pm 0.00020kg/m * s$. Además, también se estableció que el caudal tanto de entrada como de salida para el la columna del sistema sería de $0.00639m^3$ /s, mismo que se utiliza en el filtro MOBICON 2000 CUBE, de la empresa DESOTEC (Ver Figura 142 en anexos, en información adicional, página 311). Por otro lado, también se determinó que la velocidad nomial del fluido en estudio, por tratarse de agua fue de 2.85000m/s. A partir de estos datos obtenidos, y estableciendo que el material de las tuberías sería de acero acero cédula 40, debido a que el Plomo II puede ser muy abrasivo, se obtuvo que el diámetro interior real de la tubería es de 0.05250m. Fue este diámetro el que dio lugar a que se determinara que el área real de la tubería era de 0.00216m²; y por consiguiente, la velocidad real es de 2.95112m/s. Finalmente, se estableció que e el tamaño nominal de la tubería de acero es de 0.05080m (Ver Cuadro 9).

Para el dimensionamiento de las bomba de entrada, se consideró una bomba centrífuga para este trabajo debido a que el fluido que se está manejando es agua. Para la bomba de entrada, es importante mencionar que esta tiene la función de bombear el fluido contaminado desde un tanque abierto a la atmósfera hasta un tanque pulmón de alimentación que estará por encima de la columna del sistema natural y ahí dejará el fluido, haciendo que este caiga por gavedad. Una vez dicho esto, se estableció que el tanque que iba a estar almacenando el agua contaminada estaría montado sobre una estructura que tendría una altura de 1.60m. Según lo anterior, se obtuvo que la potencia de la bomba de entrada fue de 0.7kW con una eficiencia de 60%.

Porcentaje de reducción de plomo (II) empleando cáscara de banano

Una vez realizado la columna del sistema a escala laboratorio, se realizaron varias mediciones de la cantidad de plomo (II) presente en el agua después de pasar por la columna del sistema cada diez minutos, así durante dos horas y diez minutos. A medida que el agua iba fluyendo a través de la columna del sistema natural, el contaminante de plomo (II) se separó gradualmente, haciendo que el agua que iba saliendo se presentara más limpia con respecto a la concentración inicial (20ppm) del contaminante en estudio. Mientras que la concentración en el adsorbato iba aumentando (Ver Cuadro 10). Lo anterior, tiene mucho sentido debido a que a medida que se va removiendo plomo (II) del agua, la bioresina está aumentando la concentración de este contaminante pues lo está adsorbiendo. En vista que se presentó un aumento rápido de la retención en los primeros minutos de contacto, se llevó a cabo una segunda corrida por dos horas y diez minutos más. Sin embargo, se observó que la concentración del agua después de pasar por la columna del sistema empezó a aumentar comparado con la concentración de salida del agua en las primeras dos horas de operación (Ver Figura 27 en anexos, en datos calculados, página 186).

A pesar de que la bioresina ya no estaba removiendo tanto plomo (II) del agua después de dos horas y diez minutos de operación, esta aún tenía la capacidad de seguir adsorbiendo este contaminante. Fue por esta razón que se decidió prolongar la operación de la columna del sistema natural hasta su agotamiento. De manera que, como la concentración medida cada diez minutos no era del todo significativa, se decidió ejecutar las mediciones de la concentración de plomo (II), presente en el agua después de pasar por la columna del sistema, cada hora. Es por ello que se llevó a cabo una tercera corrida por once horas más de operación. No obstante, aunque se evidenció que las concentraciones de plomo (II) medidas seguían aumentando, no se había llegado al tiempo necesario para que se agotara toda la capacidad de intercambio del lecho, pues se trataba de concentraciones que estaban entre $1.873ppm\pm0.174ppm y 5.874ppm\pm0.230ppm$ (Ver Cuadro 11). Es por ello que, una vez más, se realizó una cuarta corrida por casi 59 horas más de operación; pero esta vez haciendo mediciones cada once horas. Para este tiempo, se observó que la concentración del agua que pasaba por la columna del sistema había aumentado de manera significativa con respecto a las concentraciones de las últimas tres corridas. Es decir, que luego de casi setenta horas de operación, la bioresina aún tenía la capacidad de remover el $37.060\%\pm0.214\%$ de la concentración inicial del contaminante en cuestión (Ver Cuadro 12).

Dicho lo anterior, se demostró que la concentración de plomo (II) iba disminuyendo a medida que iba aumentando tanto el tiempo de contacto entre la bioresina y el agua contaminada (Ver Figura 30 en anexos, en datos calculados, página 189) como la concentración en el adsorbato (Ver Figura 31 en anexos, en datos calculados, página 190), hasta que el sistema alcanzó la concentración mínima de plomo (II), la cual fue de 0.559ppm ± 0.009 ppm, con un porcentaje de remoción de 97.203% ± 0.009 % y una concentración máxima en el adsorbato de 0.231mg/g ± 0.334 mg/g a las dos horas y diez minutos de operación (Ver Cuadro 10), siendo este el tiempo de ruptura del sistema. Según esto, se comprobó que la bioresina adsorbió casi en su totalidad

a este metal en este lapso de tiempo; lo cual representa una mejor eficiencia en el intercambio, mismo que se dio debido a la presencia de los grupos funcionales como carboxil e hidroxil en la cáscara de banano, quienes contribuyeron a enlazar el contaminante (CAI Junxiong, 2009). Luego de este tiempo, la bioresina empezó a saturarse poco a poco tratando de llegar al equilibrio. No obstante, en este trabajo se alcanzó una concentración máxima 12.588ppm±0.214ppm, es por ello que se recomienda prolongar el análisis hasta que la bioresina se sature por completo; es decir, que la concentración en la fase acuosa sea la misma que la concentración adsorbida en la superficie de la bioresina (Ver Figura 26 en anexos, en datos calulados, página 185), y así determinar el tiempo de saturación.

Es importante mencionar que los picos en las gráficas de curva de ruptura, en donde se presenta un aumento y una disminución de la concentración de plomo (II) en el agua, pudieron haber sido ocasionados por el vaciado y llenado de agua contaminada para las nuevas corridas en la columna del sistema. Es decir, que esto pudo haber sido una fuente de error debido a que no se evaluó el efecto que esto podía tener en la capacidad de adsorción de la bioresina.

Tasa interna de retorno (TIR)

Para la determinación de la tasa interna de retorno de la fabricación de la resina, se consideró un 10% de financiamiento del proyecto de la inversión inicial que incluye el terreno, la construcción, maquinaria y otros. Donde la inversión inicial tiene un valor de Q33,151,259. Además, se consideró que la tasa de interés para el capital financiado es del 9%; mientras que la tasa mínima de retorno atractiva (TMAR) se consideró del 12%, de la cual el 3% corresponde al riesgo de la inversión. Es importante mencionar que el horizonte del proyecto fue de diez años, y se estableció un crecimiento en ventas de 5% durante los primeros cinco años.

Como se puede observar en el Cuadro 128, la tasa interna de retorno (TIR) del proyecto fue del 28%, lo cual indica que llevar a cabo la realización del proyecto de fabricación de bioresina es más rentable que las condiciones establecidas para la TMAR. Por otro lado, es importante destacar que la VAN fue de Q35,490,744.78, lo cual al ser mayor a cero se comprueba con otro criterio económico la prefactibilidad de la inversión; por lo que se recomienda realizar un análisis del proyecto de una forma más detallada para disminuir la incertidumbre de los resultados.

XI. CONCLUSIONES

- Se comprobó que la bioresina fabricada a partir de la cáscara de banano posee un gran potencial para la reducción de Plomo (II) de disoluciones acuosas debido a los grupos funcionales tales como carboxilos, hidroxilos y alquilo que se encuentran en su estructura molecular; es por ello que este material puede considerarse como una alternativa para el tratamiento de aguas contaminadas con contenido de este ión metálico.
- 2. El segundo prototipo de la columna del sistema natural a escala laboratorio, hecho con una botella de agua salvavidas de $0.003m^3$ (3L), sí se logró hacer pasar el agua contaminada a travez del lecho. Lo anterior, debido a que la columna del sistema tenía más área por lo que daba lugar a que el agua fluyera de una mejor manera.
- La columna del sistema a escala laboratorio, estaba conformado por 37.763%±0.001% de piedra pómez, 7.550%±0.008% de bioresina y 54.687%±0.001% de agua contaminada.
- 4. La piedra pómez dio lugar a una mejor distribución de la bioresina, y evitó que se formara una torta de la bioresina que impidiera que el agua fluyera libremente a través del lecho.
- 5. Se comprobó que la bioresina posee un alto potencial para la reducción de plomo (II) en agua contaminada, debido a que removió aproximadamente el 97.203% de este metal pesado en durante un tiempo de contacto de 130 minutos.
- 6. El contaminante de plomo (II) se separó gradualmente, haciendo que el agua que iba saliendo se presentara más limpia con respecto a la concentración inicial (20ppm) del contaminante en estudio; mientras que la concentración en el adsorbato iba aumentando.
- El sistema alcanzó la concentración mínima de plomo (II), la cual fue de 0.559ppm±0.009ppm, con un porcentaje de remoción de 97.203%±0.009% y una concentración máxima en el adsorbato de 0.231mg/g±0.334mg/g a las dos horas y diez minutos de operación.
- Manteniendo las proporciones de los componentes de la columna del sistema a escala laboratorio, se estableció que la columna del sistema a escala estará conformado por 1.3465±0.0001m³ de piedra pómez y 0.2692±0.0010m³ de bioresina.
- 9. Se obtuvo una relación de esbeltez de 2.3516±0.6753, la cual es la misma que para la columna del sistema a escala laboratorio. Según esto, se concluye que tanto el modelo a escala laboratorio como su escalamiento cumplen con la similitud geométrica puesto que la relación de esbeltez se mantuvo constante en cada sistema.
- La tasa interna de retorno (TIR) del proyecto fue del 28%, lo cual indica que llevar a cabo la realización del proyecto de fabricación de bioresina es más rentable que las condiciones establecidas para la tasa mínima de retorno atractiva (TMAR) (12%).

XII. RECOMENDACIONES

- Realizar un análisis por espectroscopía infrarroja con transformada de Fourier (FTIR) a la biorresina fabricada para determinar si hubo algún cambio en los grupos funcionales orgánicos de la cáscara de banano, luego de ser sometida a una temperatura de 95°C.
- Obtener una muestra de la cáscara de banano cada hora y medir la humedad de la misma haciendo uso de una balanza de humedad para que los datos sean más exactos y se pueda construir una curva de humedad.
- Para llevar a cabo la reducción de tamaño de la cáscara de banano seca, hacer uso de un molino de martillos para obtener mejores resultados en cuanto al tamaño de partícula.
- 4. Estudiar diferentes parámetros que pueden afectar la capacidad de adsorción de la bioresina, para así obtener diferentes concentraciones en el equilibrio que den paso a la realización de las curvas de Langmuir y así poder determinar la capacidad máxima adsorción de la bioresina y establecer si es o no favorable.
- 5. Realizar un estudio del retrolavado para la bioresina luego de que esta se sature por completo.
- 6. Recolectar y realizar un análisis de los flóculos que se formaron luego de que el agua atravesó el lecho para comprobar o descartar que es aluminio, producto de la lixiviación de la piedra pómez. Y si no se descarta, llevar a cabo un tratamiento posterior para la remoción de los mismos.
- 7. Realizar un análisis de los compuestos orgánicos que se puedan ir junto con el agua tratada, como producto del uso de la bioresina fabricada a partir de la cáscara de banano.

XIII. BIBLIOGRAFÍA

- Agamez, C. (2014). Diseño de un sistema de intercambio catiónico de lecho fijo para la potabilización de agua en el corregimiento de Malaga (Bolívar). Universidad de San Buenaventura Seccional Cartagena, Cartagena de Indias.
- [2] Aguamarket. (2019). *Definición de Efluente*. Extraído de: https://www.aguamarket.com/diccionario/terminos.asp?Id=864&termino=efluente
- [3] Aingetherm. (2018). *Hornos industriales/ Deshidratadores*. Extraído de: https://www.aingetherm.cl/deshidratadores.htm
- [4] Ahmad, T. y Danish, M. (2017). Prospects of banana waste utilization in wastewater treatmeant: A review. Journal of Environmental Management 206 (2018) 330e348
- [5] Arias, P., Dankers, C., Liu, P., & Pilkauskas, P. (2004). La economía mundial del banano 1985-2002. Roma: Fao.
- [6] Arroyo, R. (2018). Formas de relieve derivadas de las acciones fluviales. Extraído de: https://previa.uclm.es/profesorado/egcardenas/fluvial.pdf
- [7] Asenjo López, C. (2015). Tratamiento de aguas grises. Extraído de: https://www.iagua.es/blogs/cristina-asenjo-lopez/tratamiento-aguas-grises
- [8] Anwar, J., Shafique, U., Zaman, W., Salman, M., Dar, A. y Anwa, S. (2009). Removal of Pb (II) and Cd(II) from water by adsorption on peels of banana. Bioresource Technology, 101 (2010) 1752–1755
- [9] CAI Junxiong, C. L. (2009). Effect of functional groups on sludge for biosorption of reactive dyes. Journal of Environmental Sciences, Págs. 534–538.
- [10] Castro, B. (2015). Uso de la cáscara de banano (Musa paradisiaca) maduro deshidratada (seca) como proceso de bioadsorción para la retención de metales pesados, plomo y cromo en aguas contaminadas.
 Extraído
 http://repositorio.ug.edu.ec/bitstream/redug/8641/1/Uso%20de%20cascara%20de%20banano_Dr. %20Castro.pdf
- [11] Cerón Elías, V. (2016). Línea base para la determinación de arsénico en el agua de pozo de la ciudad de Chiquimula, municipio de Chiquimula, departamento de Chiquimula, Guatemala 2015.
 Extraído de:

http://cunori.edu.gt/descargas/Linea_base_para_la_determinacion_de_arsenico_en_el_agua_de_p ozo_de_la_ciudad_de_chiquimula_municipio_de_chiquimula_departamento_de_chiquimula_guat emala_2015.pdf

- [12] Contyquim. (2019). Resinas de intercambio iónico, su función química en el tratamiento del agua.
 Extraído de: https://contyquim.com/blog/resinas-de-intercambio-iónico-su-funciónqu%C3%ADmica-en-el-tratamiento-del-agua
- [13] Connors, K. (1981). Curso de análisis farmacéutico, Barcelona, España: Editorial Reverté
- [14] Construmatica. (2017). *Aguas Negras* | *Construpedia, enciclopedia construcción*. Extraído de: https://www.construmatica.com/construpedia/Aguas_Negras
- [15]Construmatica. (2016). *Densidad aparente*. Extraído de: https://www.construmatica.com/construpedia/Densidad_Aparente
- [16] Crespo, C. (2004). Mecánica de suelos y cimentaciones. Ciudad de México, México: Editorial Limusa.
- [17] Cruz, A. (2013). Evaluación de la influencia del número de Reynolds y el tipo de material poroso en la pérdida de carga a través de lechos porosos. Extraído de: http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/1490/TESIS.pdf?sequence=1&isAllowed= y
- [18] DESOTEC. (2019). MOBICON 2000 CUBE. Extraído de: https://www.desotec.com/en/solutions/filter-solutions/mobicon-2000-cube
- [19] Encyclopaedia Britannica. (2012). *Ion-Exchange resin*. Extraído de: https://www.britannica.com/science/resin
- [20] Engineers & Consultants. (2019). *Vegetable Washer*. Extraído de: http://www.ssdairyequipments.com/vegetable-washer.html
- [21]Espigares García, M. y Pérez López, J. (1985). Aspectos sanitarios del estudio de las aguas. Universidad de Granada. Servicio de Publicaciones. Granada. http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_c omposicion.pdf
- [22] FAO. (2019). Banana Statistical Compendium 2018. Rome. Extraído de: http://www.fao.org/3/ca5625en/CA5625EN.pdf
- [23] Ferré-Huguet, N., Schuhmacher, M., Llobet, J. y Domingo, J. (2007). Metales pesados y salud. Extraído de: https://www.mapfre.com/ccm/content/documentos/fundacion/prev-ma/revistaseguridad/n108-programa-hra-metales-pesados.pdf
- [24] Figueredo, M., González, R. (2017). Evaluación del secado de la musa paradisiaca (plátano) utilizando el aparato de laboratorio SBAN. Extraído de: http://scielo.sld.cu/pdf/rtq/v37n2/rtq11217.pdf

- [25] Filtra Vibración. (2019). Tamizadora Industrial FTI-0550. Extraído de: http://filtra.com/wpcontent/uploads/2015/06/FLT-ZEUS-FTI0550.pdf
- [26] Food-Info. (2017). Definición de Pectina. Extraído de: http://www.food-info.net/es/qa/qa-wi6.htm
- [27] Fraga, S. (1991). Química teórica. Tomo III: Estructura, interacciones y reactividad. Departamento de Química, Universidad de Alberta, Edmonton, Alberta, Canadá.
- [28]García, C., Saval, J. (2009). Determinación de la granulometría de un árido. Extraído de: https://rua.ua.es/dspace/bitstream/10045/10998/3/Práctica%20N%203%20_Granulometria%20I_ .pdf
- [29] García, C. (2009). Determinación de la granulometría de un árido. Extraído de: https://rua.ua.es/dspace/bitstream/10045/10998/3/Práctica%20N%203%20_Granulometria%20I_ .pdf
- [30] García, V. (2016). Elaboración de Bio-resina intercambiadora de cationes a partir de cáscara de plátano o guineo para eliminar metales pesados en agua contaminada. Revista Tecnológica no. 9
- [31]Geominero. (1999). Minería Química. España. Editorial: Instituto Tecnológico GeoMinero de España.
- [32] Gobierno de México (2016). *Atlas del Agua en México*. Extraído : https://www.gob.mx/conagua/articulos/sabes-que-es-una-estacionhidrometrica?idiom=es
- [33] GreenFacts. (2020). *Bioacumulación*. Extraído de: https://www.greenfacts.org/es/glosario/abc/bioacumulacion-bioacumular.htm
- [34] Guevara-Bravo, C. (2016). Biorrefinería a partir de banano de rechazo: Un sistema integrado para la co-producción de etanol, proteína unicelular, biogás y compost. Biotecnología en el Sector Agropecuario y Agroindustrial. doi: 10.18684/BSAA(14)78-86
- [35]IARC. (2012). Agents Classified by the IARC Monographs. Obtenido de http://monographs.iarc.fr/ENG/Classification/ClassificationsGroupOrder.pdf
- [36] IARNA. (2004). Perfil Ambiental de Guatemala: Informe sobre el estado del ambiente y bases para su evaluación sistemática. Extraído de: http://www.infoiarna.org.gt/wpcontent/uploads/2017/10/Perfilambiental2004DocumentoCompleto.pdf
- [37] IARNA. (2011). *Compendio estadístico ambiental*. Extraído de: http://www.infoiarna.org.gt/wpcontent/uploads/2017/11/Coedicin47.Compendioestadsticoambiental2011.pdf
- [38] IGME.(2003).Piedrapómez.Extraídode:http://www.igme.es/panoramaminero/historico/2003_04/ppomez03.pdf
- [39] Imarca (2017). *Catálogo de máquinas lavadoras de alimentos*. Extraído de: http://www.imarca.com.ve/Lavadora-general-de-Alimentos.php

- [40] Jilguan, B. (2019). Guatemala es el tercer exportador de banano. Guatemala: Diario de Centro América. Extraído de: https://dca.gob.gt/noticias-guatemala-diario-centro-america/guatemala-esel-tercer-exportador-de-banano/
- [41] Joseph, L., Jun, B., Flora, J., Park, C. y Yoon, Y. (2019). *Removal of heavy metals from water* sources in the developing world using low-cost materials: A review. *Elsevier Ltd.*
- [42] Junxiong, C., Longzhe, C., Yanxin, W. y Chengfur, L. (2009). Effect of functional grpups on sludge for biosorption of reactive dyes. Journal of Environmental Sciences, 21(2009), 534-538
- [43]Kronen. (2019). Innovación para la industria alimenticia. Extraído de: https://www.kronen.eu/es/maschinen/gewa-xl/maschinen-downloads
- [44] Leiva-Mas. (2012). Absorción de hidrocarburos en columnas rellenas con bagazo: una solución sostenible. Extraído de: https://www.redalyc.org/pdf/2231/223124988005.pdf
- [45]MAGA. (2016). El Agro en Cifras. Extraído de: https://precios.maga.gob.gt/archivos/agro-encifras/El%20Agro%20En%20Cifras%20-%202016.pdf
- [46] Mahindrakar, K. y Rathod, V. (2018). Utilization of banana peels for removal of strontium (II) from water. Environmental Technology and Innovation, 11(2018), 371-383
- [47] Manuel Riesgo, S.A. (2011). Ficha de datos de seguridad de piedra pómez. Extraído de: http://manuelriesgo.com/docstecnicas/seguridad/FS PP026 1000.pdf
- [48] MARN. (2013). Manual de educación ambiental sobre el recurso hídrico en Guatemala. Extraído de: http://www.marn.gob.gt/Multimedios/7419.pdf
- [49] McCabe, W., Smith, J. y Harriot, P. (2007). Operaciones unitarias en ingeniería química séptima edición, Ciudad de México, México: Mc Graw Hill.
- [50] Medina, C. (2015). Estudio del proceso de deshidratación de alimentos frutihortícolas: Empleo de microondas y energía solar. Extraído de: http://sedici.unlp.edu.ar/bitstream/handle/10915/46496/Documento_completo.pdf?sequence=3&i sAllowed=y
- [51]Morom, E. (2019). La cascara de plátano como adsorbente de metales pesados. Extraído de: https://steemit.com/stem-espanol/@emiliomoron/la-cascara-de-platano-como-adsorbente-demetales-pesados
- [52] Morales, L. (2018). Estudio exploratorio de los niveles de metales pesados (As, Cd, Cr, Pb, Se) en el río Guastatoya, departamento de El Progreso. Extraído de: https://bibliotecafarmacia.usac.edu.gt/Tesis/Q237.pdf
- [53]Norma COGUANOR NGO 29 001. (1985). Agua Potable, Especificaciones. Extraído de: http://www.ada2.org/sala-prensa/publicaciones/doc_view/28-coguanor-29001-99

- [54] Ottevanger, Milling Engineers. (2020). *Molino de martillos*. Extraído de: https://www.ottevanger.com/es/products/prensado/molinos-de-martillos-serie-650/?dl=ok
- [55] Perry, R. H., Green, D. W., & Maloney, J. O. (Eds.). (1997). Perry's chemical engineers' handbook (7th ed). McGraw-Hill.
- [56] Pimienta, J. (1980). La captación de guas subterraneas. Barcelona, España. Editores técnicos asociados, S. A.
- [57] Porto, J. (2020). Definición de coliformes. Extraído de: https://definicion.de/coliformes/
- [58] Ramos Olmos, R., Sepúlveda Marqués, R., & Villalobos Moreto, F. (2003). El agua en el medio ambiente: Muestreo y análisis. Ciudad de México, México. Editorial: Plaza y Valdes
- [59] Real Academia Española. (2014). Definición Antrópico. Extraído de: https://dle.rae.es/antrópico
- [60]Real Academia de Ingeniería. (2018). Definición de Interferograma. Extraído de: http://diccionario.raing.es/es/lema/interferograma
- [61]Registro cdt. (1977). *Glosario técnico del sector construcción*. Extraído de: http://glosario.registrocdt.cl/word/porcentaje-acumulado-retenido-en-un-tamiz
- [62] Reyes, G. (2004). Evaluación del proceso de filtración de la planta rehabilitada de agua potable Santa Luisa de la empresa municipal de agua (EMPAGUA) de la ciudad de Guatemala. Extraído de: http://biblioteca.usac.edu.gt/tesis/08/08 2493 C.pdf
- [63] Rubio, D., Calderón, R., Gualtero, A., Acosta, D. y Rojas, I. (2015). Tratamientos para la remoción de metales pesados comúnmente presentes en aguas residuales industriales: Una revisión. Revista Ingeniería y Región, 13(2015), 73-90
- [64] Ruiz, M. (1990). El uso de subproductos en la alimentación de bovinos en el trópico. San José, Costa Rica: Instituto Interamericano de Ciencias Agrícolas.
- [65] Sapag, Nassir. (2011). Proyectos de inversión: Formulación y evaluación. Segunda edición, Chile: Pearson Education.
- [66] SEGEPLAN. (2011). Política nacional del agua de Guatemala y su estrategia. Extraído de: http://www.segeplan.gob.gt/downloads/clearinghouse/politicas_publicas/Recursos%20Naturales/ Pol%C3%ADtica%20Nacional%20del%20Agua%20de%20Guatemala.pdf
- [67] Sharma, S. (2015). Heavy metals in water: Presence, removal and safety, India, Jaipur: Royal Society of Chemistry.
- [68] Silva, C., Gomes, T., Andrade, G., Monteiro, S., Dias, A., Zagatto, E., Tornisielo, V. (2013). Banana peel as an adsorbent for removing atrazine and ametrine from waters. Journal of Agricultural and Food Chemistry, 61(10), 2358-2363. doi: 10.1021/jf4019118.

- [69] Skoog, D., West, D., Holler, J. y Crouch, S. (2015). Fundamentos de Química Analítica. Novena edición, México DF, México: Cengage Learning.
- [70] Sommerfeld, J. (1999). Tracking the Marshall & Swift equipment cost index. Cost Engineering. Extraído de: https://search.proquest.com/openview/9352e8c2d3ad6111bc4feb8aea5bf394/1?pqorigsite=gscholar&cbl=49080
- [71]Soto, J. (2020). *Green Peace*. Extraído de: https://www.greenpeace.org/mexico/blog/4074/deforestacion-que-es-quien-la-causa-y-por-quedeberia-importarnos/
- [72] Spillman, T., Buckalew, J. (2000). Evaluación de Recursos de Agua de Guatemala. Extraído de: https://www.sam.usace.army.mil/Portals/46/docs/military/engineering/docs/WRA/Guatemala/Gu atemala%20WRA%20Spanish.pdf
- [73] Timpal. (2019). Líneas completes de ensacado. Extraído de: https://www.tmipal.com/es/ensacadora-automatica-colocador-sacos-ilersac-a
- [74] Tovar, C., Ortíz, A. y Jaraba, L. (2015). Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. Tecnológicas, vol. 18, no. 34, pp. 109-123
- [75] Towler, G. P., & Sinnott, R. K. (2008). *Chemical engineering design: Principles, practice and economics of plant and process design.* Elsevier/Butterworth-Heinemann.
- [76] Treybal, R. (2005). Operaciones de transferencia de masa, 2da. Edición, Ciudad de México, México: Mc Graw Hill.
- [77] UN-Water. (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. UNESCO, Paris, France.
- [78] Valencia, J., Castellar, G. (2013). Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Facultad de Ingeniería, Universidad de Antioquia, Bogotá, D.C., Colombia.
- [79] Vilardi, G., Di Palma, L. y Verdone, N. (2017). Heavy metals adsorption by banana peels micropowder: Equilibrium modeling by non-linear models. Chinese Journal of Chemical Engineering, 26 (2018) 455–464
- [80] Volk, T. (2010). Suelos contaminados por metales y metaloides: Muestreo y alternativas para su remediación. Secretaría de Medio Ambiente y Recursos Naturales.
- [81] Wade, L., Simekm J. (2017). Química Orgánica, Volumen 1. Ciudad de México, México: Pearson Educación de México.
- [82] Wet. (2020). *Resinas de intercambio iónico*. Extraído de: https://www.wetcorp.com/soluciones/resinas-de-intercambio-ionico/

- [83] Xuan, G., Jianlong, W. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296 (2019), 0167-7322. doi: 10.1016/j.molliq
- [84] Yu, D., Wang, L. y Wu, M. (2018). Simultaneous removal of dye and heavy metal by banana peels derived hierarchically porous carbons. Journal of the Taiwan Institute of Chemical Engineers, 93 (2018) 543–553

XIV. ANEXOS

A. Datos originales

Na de banana	Peso $(\pm 0.00005 kg)$				
ivo. ut banano	Sin pelar	Cáscara			
1	0.087000	0.026000			
2	0.076000	0.030000			
3	0.072000	0.028000			
4	0.063000	0.024000			
5	0.070000	0.027000			
6	0.065000	0.026000			
7	0.067000	0.026000			
8	0.061000	0.023000			
9	0.064000	0.025000			
10	0.057000	0.021000			
11	0.052000	0.018000			
12	0.057000	0.021000			

Cuadro 13. Pesaje de banano sin pelar y solo de la cáscara.

Nota: Se pesó doce bananos maduros con cáscara y luego de pelarlos, se pesó la cáscara de cada uno.

Т	iempo	Peso de cáscara de		
Horas	Segundos	banano (±0.000005kg)		
0	0	50.289000		
1	3600	43.369000		
2	7200	39.419000		
3	10800	35.506000		
4	14400	30.652000		
5	18000	27.028000		
6	21600	24.022000		
7	25200	21.228000		
8	28800	18.116000		
9	32400	15.362000		
10	36000	12.102000		
11	39600	9.999000		
12	43200	7.065000		
13	46800	6.123000		
14	50400	6.090000		
15	54000	6.090000		
16	57600	6.090000		

Cuadro 14. Variación en peso de cáscara de banano a lo largo del tiempo de secado.

Nota: En este cuadro, se tabularon los pesos que iba teniendo la cáscara de banano cada hora durante el secado hasta que su peso fue constante.
Número de tamiz	Diámetro de partícula (µm)	Peso de tamiz junto con resina (±0.000005kg)	Peso de tamiz (±0. 000005kg)
20	850	1.790000	0.380000
30	600	1.440000	0.370000
45	355	0.460000	0.330000
60	250	1.110000	0.330000
80	180	1.130000	0.330000
100	150	1.040000	0.320000
Base	N/A	1.640000	0.460000

Cuadro 15. Cantidad de resina retenida en cada tamiz del tamizador tipo shaker.

Nota: En este cuadro se encuentra el número de tamiz con su respectivo tamaño de partícula. Asimismo, se toma en consideración tanto el peso que tiene cada tamiz, como el que tiene cada tamiz junto con la bioresina que quedó en cada uno de ellos.

Cuadro 16. Pesaje de nitrato de plomo $(Pb (NO_3)_2)$ para la preparación de la solución madre a 20*ppm* de plomo II (*Pb*).

	$\operatorname{Peso}\left(\pm 0.000005 kg\right)$
Nitrato de plomo $(Pb (NO_3)_2)$	0.0000639

Nota: Este peso, representa la cantidad de nitrato de plomo $(Pb (NO_3)_2)$ que se necesitaba para preparar un litro de solución madre a 20*ppm* de plomo II (*Pb*).

Corrida	Peso $(\pm 0.00005 kg)$
1	0.002000
2	0.002000
3	0.002000
4	0.002000
5	0.002000

Cuadro 17. Pesaje de bioresina seca para pruebas de solubilidad y pH en agua destilada.

Nota: En este cuadro, se encuentra la cantidad de bioresina utilizada para cada prueba de solubilidad y pH en agua destilada.

Corrida	Тієтро		nH	Tomporatura (°C)
	$(\pm 0.0008 mins.)$	$(\pm 0.05 seg.)$	pn	
1	0.0000	0.00	5.29	25.3
1	10.0000	600.00	5.34	25
2	0.0000	0.00	5.38	25.8
	10.0000	600.00	5.43	25.6
3	0.0000	0.00	5.42	26.2
	10.0000	600.00	5.37	25.8
4	0.0000	0.00	5.40	25.9
	10.0000	600.00	5.40	25.9
5	0.0000	0.00	5.44	25.8
	10.0000	600.00	5.39	26

Cuadro 18. Determinación de pH de bioresina en agua destilada.

Nota: Para la determinación de pH de bioresina en agua destilada, se medía el pH y temperatura al inicio de la agitación. Luego, se dejaba pasar un lapso de diez minutos en lo que la bioresina se asentaba. Al cumplir este tiempo, se medía nuevamente el pH y la temperatura.

Corrida	Probeta		
Corrida	Sin resina $(\pm 0.00005kg)$	Con resina (±0.000005kg)	
1	0.070100	0.076200	
2	0.070100	0.076200	
3	0.070100	0.076200	
4	0.070100	0.076200	
5	0.070100	0.076200	

Cuadro 19. Pesaje de probeta de 100mL con y sin resina seca.

Nota: Este cuadro, contiene información del peso que tenía una probeta de $0.0001m^3$ (100mL) vacía y cuando estaba tenía resina hasta un volumen conocido. Estos datos fueron utilizados para el cálculo de la densidad aparente seca de la bioresina.

Por otro lado, es importante destacar que las "corridas" hacen referencia a cuántas veces se realizó el mismo procedimiento.

Corrido	Altura de lecho $(\pm 0.0005m)$		
Corrida	Seco	Mojado	
1	0.0850	0.0950	
2	0.0850	0.0950	
3	0.0850	0.0950	
4	0.0850	0.0950	
5	0.0850	0.0950	

Cuadro 20. Prueba para determinación de expansión de lecho.

Nota: Este cuadro, contiene información de la altura que tenía la bioresina tanto seca como mojada dentro de una probeta. Estos datos fueron utilizados para determinar el factor de expansión que tenía la bioresina. Por otro lado, es importante destacar que las "corridas" hacen referencia a cuántas veces se realizó el mismo procedimiento.

Prueba	Volumen	Tiompo $(\pm 0.05 cag)$	
	$(\pm 0.00006 L)$	$(\pm 0.0000006 m^3)$	Tempo (<u>+</u> 0.053eg.)
1	0.95000	0.00095000	22.00
2	0.95000	0.00095000	19.00

Cuadro 21. Volumen de agua a tratar y tiempo de llenado.

Nota: En este cuadro se presenta la cantidad de agua, contaminada, utilizada para realizar las pruebas de remoción de Plomo II. La "Prueba" hace referencia a cuántas veces se preparó la solución.

Por otro lado, el "tiempo" hace referencia a cuánto tardó en llenarse la columna del sistema a escala laboratorio con la solución preparada.

Cuadro 22. Pesaje de bioresina seca para pruebas de adsorción.

Columna	$\operatorname{Peso}\left(\pm 0.00005 kg\right)$		
	Bioresina	Piedra pómez	
1	0.080000	0.328000	

Nota: Se hace mención de "una columna", debido a que se construyó una única columna a escala laboratorio con esa cantidad de bioresina y piedra pómez.

Cuadro 23. Medidas de columna a escala laboratorio.

Parámetros	Valor (±0.0005 <i>m</i>)	
Diámetro	0.1170	
Altura de columna	0.280	
Altura de lecho	0.2280	

Nota: Estos valores fueron medidos directamente de la columna realizada a escala laboratorio. Para el caso de la altura del lecho, se tomó en consideración que debía existir un factor de seguridad del 20%.

Tiempo de contacto		Corrido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	(±0.05seg.)	Corriga	(±0.001 <i>ppm</i>)
			0.793
		M11	0.847
			0.922
			0.756
		M12	0.778
			0.769
			0.931
10.0000	600.00	M13	0.726
			0.662
			1.217
		M14	1.147
			1.183
			0.954
		M15	0.904
			1.344
		1.183 0.954 M15 0.904 1.344 0.760 M21 0.832 0.728 0.784 M22 0.833	0.760
			0.832
			0.728
			0.784
		M22	0.833
20.0000	1200.00		0.774
20.0000	1200.00		0.806
		M23	0.885
			0.746
			0.966
		M24	0.863
			0.815

Cuadro 24. Determinación de plomo en muestras cada diez minutos.

Nota: Este cuadro, contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada diez minutos.

Tiempo de contacto		Convido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	$(\pm 0.05 seg.)$	Corriga	(±0.001 <i>ppm</i>)
	1200.00	M25	0.743
20.0000			0.732
			0.734
			0.998
		M31	0.798
			0.763
			0.687
		M32	0.73
		0.7	0.724
			0.719
30.0000	1800.00	M33	0.711
			0.729
	M34		0.722
		M34	0.733
		0.741	
		M35	0.699
			0.651
			0.669
		1800.00 M33 0.719 M33 0.711 0.729 0.722 M34 0.733 0.741 0.741 0.669 0.669 M41 0.707 0.698 0.608 M41 0.707 0.663 0.663	0.698
			0.707
			0.709
			0.663
40.0000	2400.00		0.696
			0.777
			0.732
		M43	0.704
			0.719

Cuadro 25. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Convido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	(±0.05seg.)	Corrida	(±0.001 <i>ppm</i>)
			0.822
		M44	0.764
40,0000	2400.00		0.832
40.0000	2400.00		0.648
		M45	0.694
			0.695
			0.692
		M71	0.698
			0.713
	_		0.677
	M72 3000.00 M73 M74	M72	0.665
			0.678
			0.723
50.0000		M73	0.716
			0.653
		M74 0.850 0.731	0.850
			0.828
			0.731
		M75	0.666
			0.797
			0.716
			0.661
		M81	0.746
60.0000	3600.00		0.772
00.0000	5000.00		0.679
		M82	0.635
			0.749

Cuadro 26. Determinación de plomo en muestras cada diez minutos, continuación.

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada diez minutos.

Tiempo de contacto		Consido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	(±0.05 <i>seg</i> .)	Corrida	(±0.001 <i>ppm</i>)
			0.650
		M83	0.605
			0.660
			0.743
60.0000	3600.00	M84	0.750
			0.669
			0.610
		M85	0.878
			1.016
	4200.00		0.685
		M61	0.699
			0.722
		M62	0.754
			0.729
			0.722
		M63	0.694
70.0000			0.694
			0.694
		M64	0.617
			0.642
			0.681
			0.749
		M65	0.757
			0.760
			0.651
80.0000	4800.00	M101	0.669
			0.674

Cuadro 27. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Convido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	$(\pm 0.05 seg.)$	Corriga	(±0.001 <i>ppm</i>)
			0.641
		M102	0.740
			0.620
			0.623
		M103	0.628
80.0000	4800.00		0.638
80.0000	4000.00		0.680
		M104	0.870
			0.630
			0.621
		M105	0.640
			0.628
			0.690
		M51	0.675
			0.650
		M52	0.671
			0.651
			0.643
		M53	0.683
90.0000	5400.00		0.667
			0.683
			0.674
		M54	0.530
			0.653
			0.693
		M55	0.645
			0.641

Cuadro 28. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Convido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	$(\pm 0.05 seg.)$	Corrida	(±0.001 <i>ppm</i>)
			0.641
		M91	0.670
			0.670
			0.678
		M92	0.680
			0.672
			0.639
100.0000	6000.00	M93	0.620
			0.663
			0.618
	-	M94	0.608
			0.665
		M95	0.647
			0.627
			0.648
			0.584
		M111	0.637
			0.645
		M112	0.561
			0.545
110.0000	6600.00		0.576
110.0000	0000.00		0.602
		M113	0.840
			0.63
		M114	0.654
			0.610
			0.744

Cuadro 29. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Constitu	Concentración de Plomo
(±0.0008 <i>mins</i> .)	(±0.05 <i>seg</i> .)	Corrida	(±0.001 <i>ppm</i>)
	6600.00		0.586
110.0000		M115	0.595
			0.583
			0.583
		M121	0.593
			0.794
			0.549
		M122	0.562
			0.546
			0.547
120.0000	7200.00	M123	0.513
			0.546
		M124	0.518
			0.552
			0.494
		M125	0.779
			0.778
			0.885
		M131	0.524
			0.589
130,0000	7800.00		0.546
150.0000	7000.00		0.560
		M132	0.524
			0.613
			1.161
140.0000	8400.00	N11	1.093
			1.011

Cuadro 30. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Corrido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	$(\pm 0.05 seg.)$	Corrida	(±0.001 <i>ppm</i>)
			2.368
		N12	2.413
			2.359
			2.109
		N13	2.139
140 0000	8400.00		2.132
140.0000	0+00.00		1.419
		N14	1.425
			1.382
			0.742
		N15	0.739
			0.752
			2.092
		N21	2.083
			2.082
		N22	2.796
			2.812
			2.880
		N23	2.824
150.0000	9000.00		2.863
			2.873
			2.513
		N24	2.540
			2.606
			2.779
		N25	2.712
			2.737

Cuadro 31. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Corrido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	$(\pm 0.05 seg.)$	Corrida	(±0.001 <i>ppm</i>)
			1.971
		N31	1.925
			1.996
			1.806
		N32	1.866
			1.847
			3.186
160.0000	9600.00	N33	3.182
			3.173
			2.049
		N34	2.074
			2.052
		N35	2.236
			2.251
			2.250
			2.063
		N41	2.028
			2.023
		N42	2.060
			2.068
170.0000	10200.00		2.055
170.0000	10200.00		2.057
		N43	2.126
			2.011
		N44	1.930
			1.912
			1.951

Cuadro 32. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Courido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	$(\pm 0.05 seg.)$	Corrida	(±0.001 <i>ppm</i>)
			2.101
170.0000	10200.00	N45	2.075
			2.118
			1.630
		N51	1.706
			1.661
			1.639
		N52	1.706
			1.726
			1.911
180.0000	10800.00	N53	1.959
			1.892
		N54	1.813
			1.853
			1.838
		N55	1.929
			1.821
			1.802
		N61	1.606
			1.577
			1.614
			1.947
190.0000	11400.00	N62	1.977
			1.982
		N63	1.896
			1.908
			1.874

Cuadro 33. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Consido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	(±0.05 <i>seg</i> .)	Corrida	(±0.001 <i>ppm</i>)
			1.812
		N64	1.851
100.0000	11400.00		1.857
190.0000	11400.00		1.920
		N65	1.869
			1.825
			1.979
		N71	1.933
			1.975
			1.984
	12000.00	N72	2.039
			1.944
			1.863
200.0000		N73	1.898
			1.810
		N74	2.212
			2.197
			2.269
			1.938
		N75	1.909
			1.913
			2.236
210 0000		N81	2.223
	12600.00		2.266
210.0000	12000.00		2.196
		N82	2.161
			2.204

Cuadro 34. Determinación de plomo en muestras cada diez minutos, continuación.

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada diez minutos.

Tiempo de contacto		Conrido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	$(\pm 0.05 seg.)$	Corriua	(±0.001 <i>ppm</i>)
			2.323
		N83	2.355
			2.409
			2.313
210.0000	12600.00	N84	2.287
			2.340
			2.260
		N85	2.290
			2.223
			2.440
	13200.00	N91	2.450
			2.486
		N92	2.272
			2.307
			2.251
		N93	2.577
220.0000			2.570
			2.591
		N94	2.518
			2.581
			2.499
			2.553
		N95	2.571
			2.614
			2.793
230.0000	13800.00	N101	2.749
			2.809

Cuadro 35. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Corrido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	(±0.05 <i>seg</i> .)	Corriga	(±0.001 <i>ppm</i>)
			3.041
		N102	2.055
			2.984
			3.042
		N103	2.959
230 0000	13800.00		2.916
250.0000	13800.00		2.883
		N104	2.903
			2.940
			2.830
		N105	2.805
			2.755
			3.323
		N111	3.319
			3.297
			3.356
		N112	3.363
			3.333
		N113	3.172
240.0000	14400.00		3.139
			3.119
			3.126
		N114	3.191
			3.200
			3.188
		N115	3.249
			3.193

Cuadro 36. Determinación de plomo en muestras cada diez minutos, continuación.

Tiempo de contacto		Contido	Concentración de Plomo
(±0.0008 <i>mins</i> .)	(±0.05 <i>seg</i> .)	Corrida	(±0.001 <i>ppm</i>)
			3.502
		N121	3.403
			3.394
			2.208
		N122	2.246
			2.170
			3.187
250.0000	15000.00	N123	3.241
			3.270
		N124	3.463
			3.495
			3.482
		N125	3.396
			3.417
			3.3889
			3.425
		N131	3.446
260.0000	15600.00		3.471
	13000.00		3.535
		N132	3.603
			3.549

Cuadro 37. Determinación de plomo en muestras cada diez minutos, continuación.

	Tiempo de contact	0		Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	$(\pm 0.0008 mins.)$	(±0.00001 <i>horas</i>)		(±0.001 <i>ppm</i>)
				1.690
			011	1.657
				1.679
				1.947
			012	1.945
				1.974
				1.717
19200.00	320.0000	5.33300	013	1.748
				1.737
				2.120
			O14	2.111
				2.098
			015	1.903
				1.890
				1.872
			O21	2.092
				2.011
				2.026
			O22	2.360
				2.395
22800.00		6 22200		2.405
22800.00	380.0000	0.55500		1.919
			O23	1.905
				1.917
				1.727
			O24	1.663
				1.698

Cuadro 38. Determinación de plomo en muestras cada hora.

Nota: Este cuadro, contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo de contacto		0		Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	$(\pm 0.0008 mins.)$	$(\pm 0.00001 horas)$		(±0.001 <i>ppm</i>)
) 025	1.723
22800.00	380.0000	6.33300		1.683
				1.720
				3.775
			O31	3.854
				3.892
				3.399
			O32	3.423
				3.356
		-		3.235
26400.00	440.0000	7.33300	O33	3.290
				3.337
				3.323
			O34	3.357
				3.392
		-		2.943
			O35	(±0.001ppm) 1.723 1.683 1.720 3.775 3.854 3.892 3.399 3.423 3.356 3.235 3.235 3.235 3.230 3.371 3.323 3.323 3.357 3.392 2.943 3.000 2.944 3.160 3.197 3.207 3.221 3.242 3.242 3.427 3.512 3.494
				3.160
			O41	3.197
				3.207
				3.221
30000.00	500.0000	8.33300	O42	3.282
				3.242
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
			O43	$\begin{array}{c cccc} & 1.723 \\ \hline 1.723 \\ \hline 1.720 \\ \hline 3.775 \\ \hline 031 & \hline 3.854 \\ \hline 3.892 \\ \hline 3.399 \\ \hline 032 & \hline 3.423 \\ \hline 3.356 \\ \hline 033 & \hline 3.235 \\ \hline 034 & \hline 3.323 \\ \hline 034 & \hline 3.357 \\ \hline 3.392 \\ \hline 035 & \hline 3.000 \\ \hline 2.944 \\ \hline 3.197 \\ \hline 3.207 \\ \hline 041 & \hline 3.197 \\ \hline 3.207 \\ \hline 042 & \hline 3.282 \\ \hline 3.242 \\ \hline 043 & \hline 3.512 \\ \hline 043 & \hline 3.512 \\ \hline 043 & \hline 3.512 \\ \hline 043 & \hline 3.194 \\ \end{array}$
				3.494

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

	Tiempo de contacto			Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	(±0.0008 <i>mins</i> .)	$(\pm 0.0001 horas)$		(±0.001 <i>ppm</i>)
				3.441
			O44	3.441
30000.00	500.0000	8 33300		3.493
50000.00	500.0000	0.55500		3.612
			O45	3.603
				3.596
				3.248
			O51	3.287
				3.271
				3.371
			O52	3.287
				3.443
				3.449
33600.00	560,0000	9.33300	O53	3.519
	500.0000			3.475
				3.594
			O54	3.560
				3.604
				3.440
			O55	3.305
			3.443 3.449 053 3.519 3.475 3.594 054 3.560 3.604 055 3.305 3.402	3.402
				2.029
			O61	2.019
37200.00	620,0000	10 33300		2.034
57200.00	020.0000	10.33300		1.663
			$\begin{array}{c c} & 3.441 \\ \hline 3.493 \\ \hline 3.493 \\ \hline 3.612 \\ \hline 045 & 3.603 \\ \hline 3.596 \\ \hline 3.596 \\ \hline 3.287 \\ \hline 3.287 \\ \hline 3.271 \\ \hline 052 & 3.287 \\ \hline 3.371 \\ \hline 052 & 3.287 \\ \hline 3.443 \\ \hline 053 & 3.519 \\ \hline 3.443 \\ \hline 053 & 3.519 \\ \hline 3.449 \\ \hline 053 & 3.519 \\ \hline 3.475 \\ \hline 3.594 \\ \hline 054 & 3.594 \\ \hline 054 & 3.560 \\ \hline 3.604 \\ \hline 3.604 \\ \hline 055 & 3.305 \\ \hline 3.402 \\ \hline 061 & 2.029 \\ \hline 061 & 2.019 \\ \hline 2.034 \\ \hline 062 & 1.697 \\ \hline 1.715 \\ \hline \end{array}$	
				1.715

Cuadro 40. Determinación o	de plomo en	muestras cada hor	a, continuación.
----------------------------	-------------	-------------------	------------------

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo de contacto			Concentración de	
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	$(\pm 0.0008 mins.)$	(±0.00001 <i>horas</i>)		$(\pm 0.001 ppm)$
				1.594
			O63	1.582
				1.575
				1.770
37200.00	620.0000	10.33300	O64	1.840
				1.830
				1.852
			O65	Concentración de Plomo (±0.001ppm) 1.594 1.582 1.575 1.770 1.840 1.830 1.852 1.813 2.205 2.186 2.171 1.137 1.111 1.147 2.238 2.171 2.186 2.171 1.137 1.147 2.238 2.171 2.369 2.376 2.423 4.373 4.466 4.547
				1.813
				2.205
			$\begin{tabular}{ c c c c } \hline Concentración de Plomo (±0.001ppm) \\ \hline Corrida 1.594 ($	
				2.171
				1.137
			O72	1.111
				1.147
				2.238
40800.00	680.0000	11.33300	073	2.171
				Plomo Plomo $(\pm 0.001ppm)$ 1.594 53 1.582 1.575 1.770 54 1.840 1.830 1.852 55 1.826 1.813 2.205 71 2.186 2.171 1.137 72 1.111 1.147 2.238 73 2.171 2.281 2.078 74 2.228 2.147 2.369 75 2.376 2.376 2.423 4.373 4.373 81 4.466
				2.078
			O74	2.228
				2.147
				2.369
			O75	2.376
				2.423
				4.373
44400.00	740.0000	12.33300	O81	4.466
				4.547

Cuadro 41. Determinación de plomo en muestras cada hora, continuación.

	Tiempo de contact	0		Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	$(\pm 0.0008 mins.)$	(±0.00001 <i>horas</i>)		(±0.001 <i>ppm</i>)
				4.115
			O82	4.186
				4.191
				4.447
			O83	4.438
44400.00	740.0000	12 22200		4.445
44400.00	740.0000	12.35500		4.386
			$\begin{tabular}{ c c c c c } \hline Corrida & Plomo \\ (\pm 0.001ppm) & (\pm 0.001ppm) & \\ & & & & & & & & & & & & & & & & & $	
				4.338
				3.978
			O85	Concentración de Plomo (±0.001ppm) 4.115 4.186 4.191 4.447 4.438 4.445 4.386 4.347 4.386 4.347 4.338 3.978 3.978 3.979 4.265 4.394 4.373 4.707 4.707 4.694 4.707 4.694 4.707 4.694 4.715 4.707 4.694 4.707 4.694 4.707 4.694 4.729 4.416 4.395
				3.979
				4.265
			091 4.265 4.394 4.373	4.394
				4.373
				4.715
			O92	4.707
				4.764
				4.707
48000.00	800.0000	13.33300	O93	4.694
			$(\pm 0.001 ppm)$ $(\pm 0.001 ppm)$ 4.115 082 4.186 4.191 4.447 083 4.445 4.386 084 4.347 4.386 084 4.347 4.338 085 3.978 085 3.978 085 3.979 4.265 091 4.265 091 4.265 091 4.265 091 4.265 091 4.715 092 4.707 4.707 093 4.694 4.707 093 4.694 4.707 094 4.711 4.716 4.429 095 4.416 4.395	
				4.772
			O94	4.711
				4.447 083 4.438 4.445 4.386 084 4.347 4.338 4.338 085 3.978 085 3.978 085 3.979 4.265 091 4.373 4.715 092 4.707 093 4.694 4.759 4.759 094 4.711 095 4.416 4.395 4.395
				4.429
			O95	4.416
				4.395

Cuadro 42. Determinación de plomo en muestras cada hora, continuación.

	Tiempo de contact	0		Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	$(\pm 0.0008 mins.)$	(±0.00001 <i>horas</i>)		(±0.001 <i>ppm</i>)
				5.324
			O101	5.460
				5.393
				5.776
			O102	5.818
				5.862
				5.585
51600.00	860.0000	14.33300	$\begin{tabular}{ c c c c c } \hline Corrida & Concentración de Plomo (±0.001ppm) (±0.001ppm) (±0.001ppm) 5.324 0101 5.460 5.393 5.776 0102 5.818 5.862 5.862 5.862 5.585 0103 5.600 5.605 5.605 0104 5.554 5.615 0104 5.554 5.615 5.584 0105 5.548 5.598 0111 5.556 5.584 0111 5.556 5.584 0111 5.556 5.598 0112 6.106 6.148 0113 6.144 6.021 0113 6.144 6.021 0114 5.0$	
				5.605
				5.576
			O104	5.554
				5.615
				5.481
			O105	Plomo $(\pm 0.001ppm)$ 5.324 5.460 5.393 5.776 5.818 5.862 5.585 5.600 5.605 5.605 5.576 5.576 5.554 5.615 5.481 5.584 5.598 5.556 5.561 5.981 6.106 6.148 6.104 6.177 5.951 6.021 6.029
				5.584
				5.598
			0111	5.556
				5.561
				5.981
			0112	6.106
55200.00	920 0000	15 33300		6.148
55200.00	920.0000	15.55500		6.104
			0113	6.144
				6.177
				$(\pm 0.001ppm)$ 5.324 5.460 5.393 5.776 5.818 5.862 5.585 5.600 5.605 5.560 5.554 5.554 5.554 5.554 5.548 5.584 5.584 5.584 5.598 5.556 5.556 5.556 5.556 5.556 5.561 6.104 6.148 6.104 6.144 6.177 5.951 6.021 6.029
			O114	
				6.029

Cuadro 43. Determinación de plomo en muestras cada hora, continuación.

Tiempo de contacto				Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
(±0.05 <i>seg</i> .)	(±0.0008 <i>mins</i> .)	$(\pm 0.00001 horas)$		(±0.001 <i>ppm</i>)
				6.023
55200.00	920.0000	15.33300	O115	6.071
				6.133

Cuadro 44. Determinación de plomo en muestras cada hora, continuación.

	Tiempo de contacto			Concentración de	
Segundos	Minutos	Horas	Corrida	Plomo	
$(\pm 0.05 seg.)$	(±0.0008 <i>mins</i> .)	(±0.00001 <i>horas</i>)		(±0.001 <i>ppm</i>)	
				9.699	
			P11	9.707	
				9.571	
				8.860	
			P12	9.001	
				8.901	
			P13	9.326	
94800.00	1580.0000	26.33300		9.220	
				9.127	
				9.267	
			P14	Plomo $(\pm 0.001 ppm)$ 9.699 9.707 9.571 8.860 9.001 8.901 9.326 9.220 9.127 9.267 9.270 9.303 9.412 9.460 9.420 10.460 10.520 10.560	
				9.303	
				9.412	
			P15	9.460	
					9.420
				10.460	
134400.00	2240.0000	37.33300	P21	10.520	
				10.560	

Cuadro 45. Determinación de plomo en muestras cada once horas.

Nota: Este cuadro, contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada once horas.

	Tiempo de contacto			Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	$(\pm 0.0008 mins.)$	$(\pm 0.0001 horas)$		(±0.001 <i>ppm</i>)
				10.840
			P22	10.820
				10.780
				10.750
			P23	10.860
134400.00	2240 0000	37 33300		11.030
134400.00	2240.0000	57.55500		10.860
			P24	10.910
				11.060
		-		10.900
			P25	10.970
				10.970
				11.500
			P31	Plomo $(\pm 0.001ppm)$ 10.840 10.820 10.780 10.750 10.760 10.860 11.030 10.910 11.060 10.970 10.970 10.970 11.500 11.500 11.500 11.500 11.500 11.500 11.500 11.500 11.500 11.500 12.070 12.070 11.990 12.150 12.370 12.370 12.130 12.120
				11.750
		-		12.050
			P32	12.070
				11.990
			$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	12.010
174000.00	2900.0000	48.33300		
				12.150
		-		12.370
			P34	12.370
				12.130
			P23 10.750 P23 10.860 11.030 10.860 P24 10.910 11.060 11.060 P25 10.970 P31 11.500 P31 11.500 P32 12.050 P32 12.070 P33 11.990 P34 12.370 P34 12.370 P35 12.240 P35 12.200	
			P35	12.240
				12.200

Cuadro 46. Determinación de plomo en muestras cada once horas, continuación.

	Tiempo de contacto			Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
(±0.05 <i>seg</i> .)	$(\pm 0.0008 mins.)$	$(\pm 0.0001 horas)$		(±0.001 <i>ppm</i>)
				11.960
			P41	12.000
				12.190
				12.820
			P42	12.820
				12.710
				12.600
213600.00	3560.0000	59.33300	P43	12.780
				12.800
				12.570
			P44	12.790
				12.880
				12.770
			P45	12.770
				12.890
				12.240
			P51	12.260
				12.240
				12.570
			P52	12.520
	4220 0000	70 33300		12.510
	4220.0000	70.35500		12.670
			P53	12.630
				12.610
253200.00				12.710
200200.00			P54	12.770
				12.880

Cuadro 47. Determinación de plomo en muestras cada once horas, continuación.

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada once horas.

Tiempo de contacto				Concentración de
Segundos	Minutos	Horas	Corrida	Plomo
$(\pm 0.05 seg.)$	$(\pm 0.0008 mins.)$	$(\pm 0.00001 horas)$		(±0.001 <i>ppm</i>)
				12.750
253200.00	4220.0000	70.33300	P55	12.770
				12.690

Cuadro 48. Determinación de plomo en muestras cada once horas, continuación.

Tiempo de contacto				Volumen	Tiempo de
(±0.0008 <i>min</i> .)	(±0.05seg.)	Corrida	(±0.06 <i>mL</i>)	$(\pm 0.0000006m^3)$	llenado (±0.05 <i>seg</i> .)
		M11	10.00		11.20
		M12	10.00		12.00
10.0000	600.00	M13	10.00	0.00001000	10.30
		M14	10.00		11.00
		M15	10.00		10.50
		M21	10.00		20.60
	1200.00	M22	10.00	0.00001000	18.50
20.0000		M23	10.00		22.00
		M24	10.00		17.40
		M25	10.00		23.00
	1800.00	M31	10.00	0.00001000	13.30
		M32	10.00		10.00
30.0000		M33	10.00		11.70
		M34	10.00		14.40
		M35	10.00		18.00
		M41	10.00	0.00001000	18.00
40.0000	2400.00	M42	10.00		10.11
		M43	10.00		14.00

Cuadro 49. Volumen de muestra y tiempo de llenado cada diez minutos.

Nota: Aquí, se presenta el volumen de cada muestra con su respectivo tiempo de llenado para cada 10 mins.

Tiempo de contacto				Volumen	
(±0.0008 <i>min</i> .)	(±0.05 <i>seg</i> .)	Corrida	(±0.06 <i>mL</i>)	$(\pm 0.0000006m^3)$	llenado (±0.05 <i>seg</i> .)
40,0000	2400.00	M44	10.00	0.00001000	13.20
40.0000	2400.00	M45	10.00	0.0001000	11.60
		M71	10.00		16.00
		M72	10.00		15.00
50.0000	3000.00	M73	10.00	0.00001000	19.80
		M74	10.00		14.80
		M75	10.00		13.00
		M81	10.00		10.00
		M82	10.00		11.00
60.0000	3600.00	M83	10.00	0.00001000	11.60
		M84	10.00		15.00
		M85	10.00		12.30
	4200.00	M61	10.00	0.00001000	13.80
		M62	10.00		14.00
70.0000		M63	10.00		12.50
		M64	10.00		10.00
		M65	10.00		13.20
		M101	10.00	0.00001000	13.60
		M102	10.00		14.00
80.0000	4800.00	M103	10.00		12.00
		M104	10.00		15.70
		M105	10.00		16.00
		M51	10.00		14.50
		M52	10.00	0.00001000	12.22
90.0000	5400.00	M53	10.00		10.00
		M54	10.00		11.00
		M55	10.00		11.60

Cuadro 50. Volumen de muestra y tiempo de lle	enado cada diez minutos, continuación.
---	--

Nota: Aquí, se presenta la continuación del cuadro anterior del volumen de cada muestra con su respectivo tiempo de llenado para cada 10 mins.

Tiempo de contacto			Volumen		Tiempo de
(±0.0008 <i>min</i> .)	(±0.05seg.)	Corrida	(±0.06mL)	$(\pm 0.0000006m^3)$	llenado (±0.05 <i>seg</i> .)
		M91	10.00		10.11
		M92	10.00	-	14.00
100.0000	6000.00	M93	10.00	0.00001000	12.50
		M94	10.00		10.00
		M95	10.00		13.66
		M111	10.00		12.30
		M112	10.00		13.80
110.0000	6600.00	M113	10.00	0.00001000	14.00
		M114	10.00		12.00
		M115	10.00		10.30
	7200.00	M121	10.00	0.00001000	14.50
		M122	10.00		11.20
120.0000		M123	10.00		12.00
		M124	10.00		10.30
		M125	10.00		13.80
130,0000	7800.00	M131	10.00		14.00
150.0000		M132	10.00		12.50
	8400.00	N11	10.00	0.00001000	17.60
		N12	10.00		14.55
140.0000		N13	10.00		16.90
		N14	10.00		15.55
		N15	10.00		18.80
		N21	10.00		8.60
		N22	10.00	0.00001000	10.11
150.0000	9000.00	N23	10.00		9.50
		N24	10.00		11.05
		N25	10.00		11.50

Cuadro 51. Volumen de muestra y tiempo de llenado cada diez minutos, continuación.

Nota: Aquí, se presenta la continuación del cuadro anterior del volumen de cada muestra con su respectivo tiempo de llenado para cada 10 mins.

Tiempo de contacto			Volumen		Tiempo de
(±0.0008 <i>min</i> .)	(±0.05seg.)	Corrida	(±0.06mL)	$(\pm 0.0000006m^3)$	llenado (±0.05 <i>seg</i> .)
		N31	10.00		15.00
		N32	10.00		15.50
160.0000	9600.00	N33	10.00	0.00001000	12.45
		N34	10.00		13.40
		N35	10.00		13.55
		N41	10.00		12.45
		N42	10.00		8.60
170.0000	10200.00	N43	10.00	0.00001000	10.11
		N44	10.00		14.55
		N45	10.00		17.60
	10800.00	N51	10.00	0.00001000	5.20
		N52	10.00		6.55
180.0000		N53	10.00		5.23
		N54	10.00		5.48
		N55	10.00		6.00
	11400.00	N61	10.00	0.00001000	7.00
		N62	10.00		6.55
190.0000		N63	10.00		6.30
		N64	10.00		7.58
		N65	10.00		7.23
		N71	10.00		6.25
		N72	10.00		6.56
200.0000	12000.00	N73	10.00	0.00001000	7.06
		N74	10.00		7.24
		N75	10.00		6.13
210,0000	12600.00	N81	10.00	0.00001000	5.20
210.0000	12000.00	N82	10.00	0.00001000	7.05

Cuadro 52.	Volumen de	e muestra y tiempo	de llenado	cada diez minutos	, continuación.
------------	------------	--------------------	------------	-------------------	-----------------

Nota: Aquí, se presenta la continuación del cuadro anterior del volumen de cada muestra con su respectivo tiempo de llenado para cada 10 mins.

Tiempo de contacto				Tiempo de	
(±0.0008 <i>min</i> .)	(±0.05seg.)	Corrida	(±0.06mL)	$(\pm 0.0000006m^3)$	llenado (±0.05 <i>seg</i> .)
		N83	10.00		5.55
210.0000	12600.00	N84	10.00	0.00001000	6.93
		N85	10.00		5.00
		N91	10.00		8.80
		N92	10.00		5.65
220.0000	13200.00	N93	10.00	0.00001000	7.82
		N94	10.00		6.87
		N95	10.00	•	7.24
		N101	10.00		4.50
	13800.00	N102	10.00	0.00001000	6.78
230.0000		N103	10.00		7.00
		N104	10.00		5.56
		N105	10.00		6.87
	14400.00	N111	10.00	0.00001000	5.65
		N112	10.00		6.43
240.0000		N113	10.00		7.00
		N114	10.00		6.12
		N115	10.00		7.33
		N121	10.00		6.56
		N122	10.00		7.58
250.0000	15000.00	N123	10.00	0.00001000	5.23
		N124	10.00		7.05
		N125	10.00		5.55
260.0000	15600.00	N131	10.00	0.00001000	6.44
200.0000	13000.00	N132	10.00	0.00001000	5.56

Cuadro 53. Volumen de muestra y tiempo de llenado cada diez minutos, continuación.

Nota: Aquí, se presenta la continuación del cuadro anterior del volumen de cada muestra con su respectivo tiempo de llenado para cada 10 mins.

Tiempo de contacto			Volumen		Tiempo de
Segundos (±0.05 <i>seg</i> .)	Horas (±0.00001 <i>hrs</i> .)	Corrida	(±0.06 <i>mL</i>)	$(\pm 0.0000006m^3)$	llenado (±0.05 <i>seg</i> .)
		011	10.00		10.00
		012	10.00		11.00
19200.00	5.3330	013	10.00	0.00001000	11.60
		014	10.00		15.00
		015	10.00		12.30
		O21	10.00		12.30
		O22	10.00	•	13.80
22800.00	6.3330	O23	10.00	0.00001000	14.00
		O24	10.00		12.00
		O25	10.00		10.30
	7.3330	O31	10.00	0.00001000	15.00
		O32	10.00		15.50
26400.00		O33	10.00		12.45
		O34	10.00		13.40
		O35	10.00		13.55
	8.3330	O41	10.00	0.00001000	13.40
		O42	10.00		13.55
30000.00		O43	10.00		12.45
		O44	10.00		8.60
		O45	10.00		10.11
		O51	10.00	-	16.23
		O52	10.00		8.40
33600.00	9.3330	O53	10.00	0.00001000	12.45
		O54	10.00		11.55
		O55	10.00		12.00
37200.00	10 3330	O61	10.00	0.00001000	7.00
37200.00	10.3330	O62	10.00	0.00001000	6.55

Nota: Aquí, se presenta el volumen de cada muestra con su respectivo tiempo de llenado para cada hora.

Tiempo de contacto				Tiempo de	
Segundos	Horas	Corrida	(+0.06mL)	$(+0,0000006m^3)$	llenado
$(\pm 0.05 seg.)$	$(\pm 0.0001 hrs.)$		(1000000)	(±0.00000000000000000000000000000000000	$(\pm 0.05 seg.)$
		O63	10.00		6.30
37200.00	10.3330	O64	10.00	0.00001000	7.58
		O65	10.00		7.23
		071	10.00		10.30
		072	10.00		15.00
40800.00	11.3330	073	10.00	0.00001000	15.50
		074	10.00		12.45
		075	10.00		13.40
		O81	10.00		13.20
	12.3330	082	10.00	•	13.60
44400.00		083	10.00	0.00001000	14.00
		084	10.00		12.00
		085	10.00		15.70
	13.3330	O91	10.00	0.00001000	8.80
		O92	10.00		5.65
48000.00		O93	10.00		7.82
		O94	10.00		6.87
		095	10.00		7.24
		O101	10.00		4.50
		O102	10.00		6.78
51600.00	14.3330	O103	10.00	0.00001000	7.00
		O104	10.00		5.56
		O105	10.00		6.87
		0111	10.00		14.00
55200.00	15 2220	0112	10.00	0.00001000	12.00
55200.00	13.3330	0113	10.00	0.0001000	10.30
		0114	10.00		15.00

Cuadro 55. Volumen de muestra y tiempo de llenado cada hora, continuación.

Nota: Aquí, se presenta la continuación del cuadro anterior del volumen de cada muestra con su respectivo tiempo de llenado para cada hora.

Tiempo de contacto			Volumen		Tiempo de
Segundos	Horas	Corrida	$(\pm 0.06mI)$	$(\pm 0, 0000006m^3)$	llenado
(±0.05seg.)	$(\pm 0.0001 hrs.)$		(±0.00mL)	(±0.00000000m [*])	(±0.05 <i>seg</i> .)
55200.00	15.3330	0115	10.00	0.00001000	15.50

Cuadro 56. Volumen de muestra y tiempo de llenado cada hora, continuación.

Nota: Aquí, se presenta la continuación del cuadro anterior del volumen de cada muestra con su respectivo tiempo de llenado para cada hora.

Tiempo de contacto				Volumen	Tiempo de
Segundos	Horas	Corrida	(10.0(1)	(10,00000000003)	llenado
$(\pm 0.05 seg.)$	$(\pm 0.00001 hrs.)$		(±0.00 <i>mL)</i>	$(\pm 0.0000000m^2)$	$(\pm 0.05 seg.)$
		P11	10.00		13.50
		P12	10.00		10.27
94800.00	26.3330	P13	10.00	0.00001000	12.35
		P14	10.00	-	15.00
		P15	10.00	•	13.55
		P21	10.00		11.43
	37.3330	P22	10.00		13.55
134400.00		P23	10.00	0.00001000	12.55
		P24	10.00		10.65
		P25	10.00		9.67
	48.3330	P31	10.00	0.00001000	15.23
		P32	10.00		11.86
174000.00		P33	10.00		11.24
		P34	10.00		10.80
		P35	10.00		9.45
		P41	10.00		12.43
		P42	10.00		11.96
213600.00	59.3330	P43	10.00	0.00001000	11.54
		P44	10.00	1	10.36
		P45	10.00		10.72

Cuadro 57. Volumen de muestra y tiempo de llenado cada once horas.

Nota: Aquí, se presenta el volumen de cada muestra con su respectivo tiempo de llenado para cada once hrs.

Tiempo de contacto			Volumen		Tiempo de
Segundos	Horas	Corrida	(±0.06mL)	$(\pm 0.0000006m^3)$	llenado
$(\pm 0.05 seg.)$	$(\pm 0.0001 hrs.)$				$(\pm 0.05 seg.)$
253200.00	70.3330	P51	10.00	0.00001000	15.78
		P52	10.00		13.28
		P53	10.00		11.37
		P54	10.00		10.34
		P55	10.00		11.06

Cuadro 58. Volumen de muestra y tiempo de llenado cada once horas, continuación.

Nota: Aquí, se presenta la continuación del cuadro anterior del volumen de cada muestra con su respectivo tiempo de llenado para cada hora.

Cuadro 59. Tiempo que le toma tanto al agua destilada sin contaminar como a la contaminada de plomo II, ir de la marca "D" a "E" del viscosímetro.

Fluido	Prueba	Tiempo (±0.05 <i>seg</i> .)
Agua destilada sin	1	268.00
contaminar	2	292.00
Agua destilada	1	248.00
contaminada con plomo II	2	257.00

Nota: Para ver la marca "D" y "E" del viscosímetro, ir a la sección de metodología, la Figura 19, página 58.
B. Cálculos de muestra

Cálculo 1. Kilogramos de nitrato de plomo (Pb (NO_3)₂) necesarios para la preparación de 0.002 m^3 (2L) de solución madre a 20ppm de plomo (Pb).

$$\frac{0.02g \, de \, Pb}{1L} * \frac{1 \, mol \, de \, Pb}{207.2 \, g \, de \, Pb} * \frac{1 \, mol \, de \, Pb(NO_3)_2}{1 \, mol \, de \, Pb} * \frac{331.2 \, g \, de \, Pb(NO_3)_2}{1 \, mol \, de \, Pb(NO_3)_2} * 2L \, de \, solución = 0.06392g \, de \, Pb(NO_3)_2$$

$$0.06392g \ de \ Pb(NO_3)_2 * \frac{1kg}{1000g} = 0.\ 00006392kg \ de \ Pb(NO_3)_2$$

Para el presente cálculo, se partió de la concentración a la que se deseaba llegar (20*ppm* de plomo *Pb*). Este peso se puede encontrar en el cuadro 17, página 89.

Cálculo 2. Preparación de dilución a 18*ppm* de plomo (*Pb*) a partir de la solución madre que está a 20*ppm* de plomo (*Pb*).

$$C_1 V_1 = C_2 V_2$$
$$V_1 = \frac{C_2 V_2}{C_1}$$
$$V_1 = \frac{(18ppm)(25mL)}{(20ppm)}$$

 $V_1 = 22.5mL de solución madre.$

22.5mL de solución madre *
$$\frac{0.000001m^3}{1} = 0.0000225m^3$$
 de solución madre

Donde C_1 es la concentración inicial de la solución madre; V_1 es el volumen que se debe de tomar de la solución madre; C_2 es la concentración a la que se desea llegar; y V_2 es el volumen que tendrá la disolución. Es importante mencionar que a este volumen calculado se le sume la cantidad de agua destilada necesaria para completar el volumen final; que en este caso son $0.0000225m^3$ (25mL). Se ejecutó el mismo cálculo para la preparación de las demás disoluciones a concentraciones de: 20, 14, 12, 8 y 2 ppm de plomo (Pb). Estos resultados se encuentran en el Cuadro 67, página 150.

Cálculo 3. Porcentaje que representa la cáscara de banano en el fruto.

Se llevó a cabo el mismo cálculo para determinar el porcentaje que representa la cáscara de banano en los doce frutos que se estudiaron. Los pesos utilizados se encuentran en el Cuadro 13, página 86. Los resultados de este cálculo se ubican en el Cuadro 60, página 145. Es importante mencionar que para este procedimiento, se aplicó una regla de tres en la que se conocían tres valores y solo existía una incógnita.

Cálculo 4. Porcentaje de reducción en peso de la cáscara de banano luego de dos horas de secado.

100% - 86.239% = 13.761%

Porcentaje de reducción en peso = 13.761%

Se llevó a cabo el mismo cálculo para determinar el porcentaje de reducción en peso de la cáscara de banano para los demás tiempos de secado. Los pesos utilizados se encuentran en el Cuadro 14, página 87. Los resultados de este cálculo se ubican en el Cuadro 61, página 146. Es importante mencionar que para este procedimiento, se aplicó una regla de tres en la que se conocían tres valores y solo existía una incógnita.

Cálculo 5. Porcentaje retenido parcial en el tamiz 20. Se aplicó la ecuación 5 del marco teórico, página 27.

Retenido Parcial (%) =
$$\frac{Retenido parcial}{\sum Retenidos parciales} * 100$$

 $Retenido \ Parcial \ (\%) = \frac{1.410000 kg \pm 0.000005 kg \ de \ resina \ en \ tamiz \ 1}{6.090000 kg \pm 0.000005 kg \ de \ resina \ totales} * 100$

Retenido Parcial = 23.15%

Se ralizó el mismo cálculo para determinar el porcentaje retenido parcial en los tamices del No. 20-100. Dichos porcentajes se encuentran en el Cuadro 62, página 148. Además, los valores que se utilizan para estos cálculos se sitúan en el Cuadro 15, página 88.

Cálculo 6. Porcentaje retenido acumulado en el tamiz 30. Se aplicó la ecuación 4 del marco teórico, página 27.

Retenido Acumulado (%) =
$$\frac{Retenido acumulado}{\sum Retenidos parciales} * 100$$

 $Retenido \ Acumulado \ (\%) = \frac{1.410000 kg \pm 0.000005 kg \ en \ tamiz \ 1 + 1.070000 kg \pm 0.000005 kg \ en \ tamiz \ 2}{6.090000 kg \pm 0.000005 kg \ de \ resina \ totales} * 100$

Retenido Acumulado = 40.722%

Se ralizó el mismo cálculo para determinar el porcentaje retenido acumulado en los tamices del 20, 45, 60, 80, 100 y base. Dichos porcentajes se encuentran en el Cuadro 62, página 148. Además, los valores que se utilizan para estos cálculos se sitúan en el Cuadro 15, página 88.

Cálculo 7. Porcentaje retenido acumulado que pasa en el tamiz 30. Se aplicó la ecuación 6 del marco teórico, página 27.

Retenido que Pasa (%) = 100 - % Retenido acumulado

Retenido que Pasa (%) = 100 - 40.722%

Retenido que Pasa = 59.28%

Se llevó a cabo el mismo procedimiento para determinar el porcentaje retenido acumulado que pasa en los tamices del 20, 45, 60, 80, 100 y base. Dichos porcentajes se encuentran en el Cuadro 62, página 148. Además, los valores que se utilizan para estos cálculos se sitúan en el Cuadro 15, página 88.

Cálculo 8. Densidad aparente seca de la bioresina.

$$\rho_{aparente \ seca} = m/v$$

$$\rho_{aparente\ seca} = \frac{0.006100 kg \pm 0.000005 kg}{0.00001 m^3 \pm 0.0000006 m^3}$$

$ho_{aparente\,seca} = 610.00000 kg/m^3 \pm 0.000006 kg/m^3$

Donde m (kg) es la cantidad de bioresina, y m (m^3) es el volumen que ocupa la bioresina. Se tomó como volumen de referencia en la probeta $0.00001m^3$ (10mL). Por otro lado, los datos empleados para este cálculo se pueden encontrar en el Cuadro 19, página 90. Mientras que el resultado del mismo se sitúa en el Cuadro 66, página 150.

Cálculo 9. Concentración de adsorbato en la fase sólida en un tiempo determinado (q_t) . Se hizo uso de la ecuación 2 del marco teórico, página 15.

$$q_t = \frac{V}{m}(C_o - C_t)$$

$$q_t = \frac{0.95L \pm 0.00006 \, L}{80g \pm 0.0005g} (20 - 0.929) ppm \pm 0.187 ppm$$

$q_t = 0.226mg/g \pm 0.201mg/g$

Se llevó a cabo el mismo procedimiento para determinar la concentración de adsorbato en la fase sólida en un tiempo determinado (q_t) para los demás tiempos de contacto que están en los Cuadros 95 a 101, páginas 174 a 179. Estos resultados se ubican en los Cuadros 102 a 104, páginas 180 a 181. Es importante mencionar que los valores del volumen de solución y de la masa de la bioresina utilizada, se encuentran en los Cuadros 21 y 22, respectivamente, página 91.

Cálculo 10. Porcentaje de remoción de plomo (II) en la muestra de agua contaminada. Se aplicó la ecuación 3 del marco teórico, página 15.

% de remoción =
$$\frac{C_o - C_t}{C_o} * 100$$

% de remoción =
$$\frac{(20 - 0.226)ppm \pm 0.187ppm}{20ppm} * 100$$

% de remoción = 95.356 \pm 0.187

Se ejecutó el mismo cálculo del porcentaje de remoción de plomo (II) para los demás tiempos de contacto que están en los Cuadros 103 a 105, páginas 180 a 181; al igual que los resultados del presente cálculo.

Cálculo 11. Determinación de la viscosidad del agua destilada contaminada con plomo II. Se aplicó la ecuación 22 del marco teórico, páginas 39 y 40.

$$\mu = t_s C_v \rho$$

$$\mu = (252.5s \pm 0.05s)(0.009896mm^2/s^2)(1000.00000kg/m^3)\left(\frac{0.000001m^2}{1mm^2}\right)$$

Viscosidad = 0.00250kg/m * s

Para este procedimiento, se consideró el tiempo que le toma al fluido bajar desde la marca "D" a la marca "E" del viscosímetro (Ver Figura 19, página 58). La media de este tiempo se puede encontrar en el Cuadro 117, página 202. Además, se hace uso de la constante del viscosímetro, misma que se encuentra en la Figura 140, página 311. Por otro lado, es importante mencionar que los resultados del presente cálculo se encuentran en el Cuadro 118, página 202.

Cálculo 12. Determinación de altura del lecho sin expansión de bioresina a escala por similitud geométrica. Se hizo uso de la ecuación 7 del marco teórico, página 32.

$$H_p = \frac{D_p}{D_m} * H_m$$

$$H_p = \frac{1.25m}{0.117m \pm 0.0005m} * (0.2280m \pm 0.0005m)$$

$H_p = 2.4359m \pm 0.0048m$

Se llevó a cabo el mismo procedimiento para el escalamiento de la altura de la bioresina en la columna del sistema a escala. Estos resultados se ubican en el Cuadro 120, página 203. Los valores utilizados para este cálculo, se encuentran en el Cuadro 23, página 91.

Cálculo 13. Deteminación del porcentaje de expansión de la bioresina. Se aplicó la ecuación 14 del marco teórico, página 34.

% de expansión =
$$\frac{(h_m - h_s)}{h_m} * 100$$

% de expansión =
$$\frac{(0.095m \pm 0.0005m - 0.085m \pm 0.0005m)}{0.095m \pm 0.0005m} * 100$$

% de expansión = 10.5263 \pm 0.0709

Para este procedimiento se hizo uso de los valores que se encuentran en el Cuadro 20, página 90. Al tratarse de la misma bioresina, este cálculo es el mismo tanto para la columna a escala laboratorio como el de su escalamiento. El resultado se encuentra en el Cuadro 66, página 150.

Cálculo 14. Conversión de gramos a metro cúbico de bioresina.

 $0.080000g \pm 0.000005kg \ de \ bioresina * rac{1m^3}{610.000000kg \pm 0.000006kg}$

Volumen de bioresina = $0.00013115m^3 \pm 0.0009836m^3$

Se realizó el mismo procedimiento para establecer el volumen que ocupa tanto la piedra pómez como el agua a tratar en la columna a escala laboratorio. Con los volúmenes de cada componente, se obtiene la capacidad mínima que debe de tener la columna del sistema. La cantidad de resina utilizada se encuentra en el Cuadro 22, página 91; y el cálculo de la densidad aparente seca se encuentra en el cálculo 8, página 127. Mientras que los resultados del presente cálculo, se ubican en el Cuadro 119, página 202.

Cálculo 15. Proporción de bioresina en la columna a escala laboratorio.

 $X = 7.550\% \pm 0.008\%$

Se llevó a cabo el mismo cálculo para determinar el porcentaje que representa tanto la piedra pómez como el agua a tratar en la columna a escala laboratorio. Los volúmenes utilizados se encuentran en el Cuadro 119, página 202. Los resultados de este cálculo se ubican en el mismo cuadro. Es importante mencionar que para este procedimiento, se aplicó una regla de tres en la que se conocían tres valores y solo existía una incógnita.

Cálculo 16. Altura que ocupa bioresina en la columna a escala laboratorio. Se aplicó la ecuación 12 del marco teórico, página 34.

$$h = \frac{V}{\pi r^2}$$

$$h = \frac{0.00013115m^3 \pm 0.00009836m^3 \ de \ bioresina}{\pi \left(\frac{0.117m \pm 0.0005m}{2}\right)^2}$$

$h = 0.0122m \pm 0.0075m$

Los valores empleados para este cálculo se encuentran en el Cuadro 119, página 202 (para el volumen que ocupa la bioresina); y en el Cuadro 23, página 91 (para el diámetro de la columna a escala laboratorio). Mientras que el resultado del mismo, se puede ubicar en el Cuadro 120, página 203.

Cálculo 17. Expansión del lecho en la columna a escala. Se hizo uso de la ecuación 15 del marco teórico, página 34 y 35.

 $E_{Max.} = h_{lR} * (\% \ de \ expansión)$ $E_{Max.} = 0.1303m \pm 0.0061m * (10.5263\% \pm 0.0709\%)$

 $E_{Max.} = 0.0137m \pm 0.6753m$

Se realizó el mismo procedimiento para establecer la expansión del lecho en la columna a escala laboratorio. Es importante destacar que el subíndice "IR" hace referencia a la altura que ocupa solo la bioresina. Los valores utilizados se encuentran en el Cuadro 120, página 203. Los resultados del presente procedimiento se ubican en el mismo cuadro.

Cálculo 18. Altura de lecho hinchado a escala. Se aplicó la ecuación 16 del marco teórico, página 35.

$$h_{lex.} = h_l + E_{Max.}$$

 $h_{lex.} = (2.4359m \pm 0.0048m) + (0.0137m \pm 0.6753m)$

$h_{lex} = 2.4496m \pm 0.6753m$

Se ejecutó el mismo cálculo para determinar la altura del lecho hinchado a escala laboratorio. Es importante destacar que el subíndice "l" hace referencia a la altura que ocupan todos los componentes de la columna sin considerar el factor de seguridad. Los valores utilizados se encuentran en el Cuadro 120, página 203. Los resultados del presente procedimiento se ubican en el mismo cuadro.

Cálculo 19. Altura de la columna a escala con factor de seguridad.

$$H_{p+20\%} = (2.4496m \pm 0.6753m) + (2.4496m \pm 0.6753m) * (20\% de seguridad)$$

$$H_{p+20\%} = 2.9395m \pm 0.6753m$$

Se llevó a cabo el mismo procedimiento para determinar la altura total de la columna a escala laboratorio. Tanto los valores utilizados como los resultados del presente cálculo se encuentran en el Cuadro 120, página 203.

Cálculo 20. Relación de esbeltez para columna del sistema a escala. Se aplicó la ecuación 13 del marco teórico, página 34.

$$\frac{\frac{h_T}{D}}{\frac{2.9395m \pm 0.6753m}{1.25m}}$$

$$\frac{h_T}{D} = 2.3516 \pm 0.6753$$

Se llevó a cabo el mismo procedimiento para la relación de esbeltez de la columna del sistema a escala laboratorio. Para esete cálculo, se tomó en consideración la altura total de la columna del sistema, la cual incluye la altura del lecho y el factor de seguridad. Los valores utilizados se encuentran en el Cuadro 120, página 203. Los resultados del presente procedimiento se ubican en el mismo cuadro.

Cálculo 21. Área de la columna del sistema a escala. Se hizo uso de la ecuación 11 del marco teórico, página 33.

$$A_P = 2\pi(rh + r^2)$$

$$A_P = 2\pi \left[\left(\frac{1.25m}{2} \right) * (2.9395m \pm 0.6753m) + \left(\frac{1.25m}{2} \right)^2 \right]$$

$A_c = 13.9979m^2 \pm 0.0046m^2$

Se realizó el mismo procedimiento para la determinación del área de paso de la columna del sistema a escala laboratorio. Los resultados del presente cálculo se encuentran en el Cuadro 120, página 203. Es importante mencionar que para el diámetro de la columna a escala, se utilizó como referencia uno ya existente para filtros de carbón activado de la empresa DESOTEC (Ver Figura 142, página 313). Sin embargo, las medidas experimentales de la columna a escala laboratorio se ubican en el Cuadro 23, página 91.

Cálculo 22. Determinación del volumen de la columna del sistema a escala.

$$V_P = \pi r^2 h$$

$$V_P = \pi \left(\frac{1.25m}{2}\right)^2 * 2.9395m \pm 0.6753m$$

$V_P = 3.6074m^3 \pm 0.6753m^3$

Para este procedimiento, se hizo uso de la fórmula del volumen de un cilindro. Se ejecutó el mismo cálculo para determinar el volumen de la columna del sistema a escala laboratorio. Para este análisis, se requirió el diámetro de la columna del sistema a escala, para el cual se utilizó como referencia uno ya existente para filtros de carbón activado de la empresa DESOTEC (Ver Figura 142, página 313). No obstante, el diámetro experimental de la columna del sistema a escala laboratorio se puede encontrar en el Cuadro 23, página 91.

Cálculo 23. Determinación del radio de nudillo para el cabezal toriesférico de la columna del sistema natural. Se aplicó la ecuación 18 del marco teórico, página 36.

$$r = 0.10D$$

 $r = 0.10(1.25m)$

r = 0.125m

Para el presente cálculo, se hizo uso del diámetro que se estableció para la columna del sistema a escala. Los resultados de este cálculo se encuentran en el Cuadro 121, página 203.

Cálculo 24. Determinación de la altura de la parte recta para el cabezal toriesférico de la columna del sistema natural. Se aplicó la ecuación 19 del marco teórico, página 36.

$$h = 0.15D + t$$

 $h = 0.15(1.25m) + 0.0043m$

h = 0.02305m

Para el presente análisis, se tomó en consideración el diámetro que se estableció para la columna del sistema a escala. Asimismo, es importante destacar que se hizo uso del espesor calculado en una tesis para una columna catiónica de lecho fijo para la potabilización de agua (Agamez, 2014). El resultado de este cálculo se encuentra en el Cuadro 121, página 203.

Cálculo 25. Determinación de la velocidad nominal del agua dentro de la tubería de acero estándar.

Densidad (kg/m3)	Velocidad (n	n/s)		
1600	2.4			
800	3			
-	-	-		
Caudal	0.00639	m3/s		
Densidad	1000.00000	kg/m3		
Viscosidad	0.00250 kg/n			
Velocidad Nc=PRONOSTICO(C29,C12:C13,B12:B13)				

Figura 23. Pronóstico de velocidad nominal del fluido dentro de la tubería de acero estándar.

(Elaboración propia).

Para este caso, se realizó un pronóstico de las velocidades nominales para las densidades de $1600 kg/m^3$ y $800kg/m^3$ que se encuentran en la Figura 13 del marco teórico, página 38; para así obtener la velocidad nominal del agua, misma que posee una densidad de $1000 kg/m^3$. Los resultados de este cálculo, se encuentran en el Cuadro 122, página 204.

Cálculo 26. Área nominal de la tubería de acero estándar.

 $Area Nominal = \frac{Caudal (m^3/s)}{Velocidad Nominal (m/s)}$

 $Area Nominal = \frac{0.00639 \, m^3/s}{2.85000 \, m/s}$

$\acute{A}rea Nominal = 0.00224m^2$

Para este cálculo, se hizo uso del caudal a escala. El caudal utilizado para este cálculo es el propuesto para el filtro MOBICON 2000 CUBE, de la empresa DESOTEC (Ver Figura 142, página 313), el cual es un filtro móvil de carbón activado. Los resultados de este cálculo se ubican en el Cuadro 123, página 211.

Cálculo 27. Diámetro nominal de la tubería de acero estándar.

$$A = \frac{\pi * (D)^2}{4}$$
$$D = \sqrt{\frac{A * 4}{\pi}}$$
$$= \sqrt{\frac{(0.00224m^2) * 4}{\pi}}$$

D

Diámetro Nominal = 0.05343m

Para este procedimiento, se realizó el despeje para el diámetro del área de un círculo. Es importante mencionar que tanto el área como el diámetro nominal, se encuentran en el Cuadro 122, página 204.

Cálculo 28. Radio nominal de la tubería de acero estándar.

$$Radio Nominal = \frac{Diámetro Nominal}{2}$$
$$Radio Nominal = \frac{0.05343m}{2}$$

Radio Nominal = 0.02671m

Este procedimiento se realizó, sabiendo que el radio de un círculo es la mitad del diámetro. Los resultados de este cálculo, se sitúan en el Cuadro 122, página 204.

Cálculo 29. Área real de tubería de acero estándar.

$$A = \frac{\pi * (D)^2}{4}$$
$$A = \frac{\pi * (0.05250m)^2}{4}$$

$A = 0.00216m^2$

Para este cáclulo, se hizo uso de la ecuación del área de un círculo. Además, es importante destacar que se hizo uso del diámetro interior real de la tubería, el cual se obtuvo de la Figura 126 que se encuentra en la página 298. Los datos utilizados para este procedimiento, así como el resultado del mismo, se encuentran en el Cuadro 122, página 204.

Cálculo 30. Velocidad real del agua dentro de la tubería de acero estándar.

$$Velocidad Real = \frac{Caudal (m^3/s)}{\acute{A}rea real (m^2)}$$

$$Velocidad Real = \frac{0.00839m^2/s}{0.00216 m^2}$$

Velocidad Real = 2.95112m/s

Para la determinación de la velocidad real, se hizo uso del caudal que tendría la columna del sistema a escala, y el área real encontrada en el cálculo 29, página 138. El resultdo del presente cálculo, se puede encontrar en el Cuadro 122, página 204.

Cálculo 31. Determinación de número de Reynolds. Se hizo uso de la ecuación 21 del marco teórico, página 39.

Número de Reynolds =
$$\frac{D_{iR} * V_R * \rho}{\mu}$$

$$N\'umero\ de\ Reynolds = \frac{(0.05250m)(2.95112m/s)(1000.00000kg/m^3)}{0.00250kg/m * s \pm 0.00020kg/m * s}$$

Número de Reynolds = 62006.95804 ± 0.00020

Para este cáclulo, se hizo uso del diámetro interior real de la tubería, el cual se obtuvo de la Figura 126 que se encuentra en la página 298. Asimismo, se utilizó la velocidad real, calculada en el cálculo 29, página 138; la densidad del fluido y la viscosidad, calculada en el cálculo 11, página 129. Tanto los datos empleados para la determinación del Número de Reynolds como el mismo, se ubican en el Cuadro 122, página 204.

Cálculo 32. Rugosidad relativa en tubería de acero estándar.

Rugosidad Relativa =
$$\frac{k}{D_{iR}}$$

$$Rugosidad \ Relativa = \frac{0.00005m}{0.05250m}$$

Rugosidad Relativa = 0.00087

Sabiendo que el material de la tubería a manejar será de acero, la constante de rugosidad (k) es de 0.00005m, misma que se encontró en la Figura 127, página 299. Tanto el diámetro interior real de la tubería (D_{iR}) , el cual se obtuvo de la Figura 126 que se encuentra en la página 298; como el resultado de este cálculo, se ubican en el Cuadro 122, página 204.

Cálculo 33. Determinación de largo asociado de accesorios.

Largo Asociado de Accesorios = $D_{iR} * D_{eq.T}$

Largo Asociado de Accesorios = 0.05250*m* * 345

Largo Asociado de Accesorios = 18.11311m

Para este procedimiento, se hizo uso del diámetro interior real de la tubería, el cual se obtuvo de la Figura 126 que se encuentra en la página 298; y del diámetro equivalente total de accesorios en la tubería, los cuales se encuentran en la Figura 14, página 40. El resultado del presente cálculo, se encuentra en el Cuadro 123, página 211.

Cálculo 34. Largo total de tubería.

Largo Total de Tubería = $L_{Sin Accs.} + L_{As.Accs.}$

Largo Total de Tubería = 10.0000*m* + 18.11311*m*

Largo Total de Tubería = 28.11311m

Se realizó el mismo procedimiento para el largo total de tubería de salida. Para este cálculo, se asumió el largo que tendría la tubería de entrada a la columna del sistema natural a escala. Y a este, se le sumó el largo asociado de accesorios que se obtuvo en el cálculo 33, página 140. Los resultados de este cálculo, se sitúan en el Cuadro 123, página 211.

Cálculo 35. Caída de presión en tubería de acero estándar. Se hizo uso de la ecuación 20 del marco teórico, página 39.

$$\Delta P_f = 8f\left(\frac{L}{d_i}\right)\frac{\rho u^2}{2}$$

$$\Delta P_f = 8(0.00480) \left(\frac{28.11311m}{0.0520m}\right) \frac{(1000.0000kg/m^3)(2.95112m/s)^2}{2}$$

$\Delta P_f = 89538.79668 N/m^2$

Se llevó a cabo el mismo procedimiento para la determinación de la caída de presión en la tubería de acero estándar de salida. Los datos utilizados se encuentran en el Cuadro 120, página 203 y también en el Cuadro 125, página 211. En este último se encuentra el resultado de este cálculo. Es importante mencionar que el factor de fricción de fanning se obtuvo de la lectura en el eje izquierdo (tras la intersección de las líneas del nímero de Reynolds y la rugosidad relativa de la tubería de acero estándar) en el gráfico de la Figura 127, página 299.

Cálculo 36. Determinación de cabeza dinámica para bomba de entrada de la columna del sistema natural.

$$\frac{89538.79668N}{m^2} * \frac{1m^3}{1000.0000kg} * \frac{1s}{9.81m} = 9.12730m$$

Cabeza dinámica = 9.12730m

Se realizó el mismo procedimiento para la determinación de la cabeza dinámica en la bomba a la salida de la columna del sistema natural. Para este cálculo, se consideró la caída de presión en la tubería calculada en el cálculo 35, página 141; y se multiplicó por la densidad del fluido y por la gravedad para realizar la conversión de N/m^2 a m. El resultado de este análisis, se puede encontrar en el Cuadro 128, página 212.

Cálculo 37. Determinación de cabeza estática para bomba de entrada de la columna del sistema natural.

 $dH = H_1 - H_2$ dH = (1.60 - 0.8 + 2.9395 + 0.5)m dH = 2.63954m $dP = P_1 - P_2$ $dP = (101325 - 101400)N/m^2$ $dP = \frac{75N}{m^2} * \frac{1m^3}{1000.0000kg} * \frac{1s}{9.81m} = 0.00765m$

Cabeza estática = (2.63954 + 0.00765)m

$Cabeza \ est{a}tica = 2.6471m$

Es importante destacar que, en esta ocasión se asumió que el agua contaminada que entrará a la columna del sistema proviene de un tanque que está montado sobre una estructura de 1.60m y que este está abierto a la atmósfera, de manera que la presión de este será la atmosférica. Por otro lado, la altura dos es el alto de la columna del sistema natural aunado a la altura que tendrían los soportes y la tubería de entrada. Es importante aclarar que se trata de una columna que funciona por gravedad.

Es importante tener en consideración que el dimensionamiento de esta bomba se realizó de acuerdo a los supuestos planteados anteriormente con la finalidad de hacer una demostración de cómo deben de ser los cálculos. De manera que el dimensionamiento de las bombas dependerá de la necesidad de cada cliente y de la ubicación de la columna del sistema natural propuesto. El resultado de este cálculo se encuentra en el Cuadro 125, página 211.

Cálculo 38. Determinación de cabeza total de bomba de entrada de la columna del sistema natural.

Cabeza total = Cabeza dinámica + cabeza estática

 $Cabeza \ total = (9.12730 + 2.64718)m$

Cabeza total = 11.77448m

Los resultados del presente cálculo se pueden encontrar en el Cuadro 126, página 211.

C. Análisis de error

Cálculo 39. Media del pH final de la bioresina en agua destilada. Se hizo uso de la ecuación 23 del marco teórico, página 46.

$$\bar{x} = \frac{\sum X_i}{n}$$

$$\bar{x} = \frac{(5.34 + 5.43 + 5.37 + 5.40 + 5.39)}{5}$$

$\overline{x} = 5.386 \ de \ pH.$

Se llevó a cabo el mismo procedimiento para determinar la media del pH inicial de la bioresina en agua destilada; así como también para las medias de la concentración de plomo II en cada corrida. Los datos utilizados para este cálculo se encuentran en el Cuadro 19, página 90. Mientras que los resultados obtenidos, se sitúan en el Cuadro 64, página 149.

Cálculo 40. Desviación estándar del pH final de la bioresina en agua destilada. Se hizo uso de la ecuación 24 del marco teórico, página 46.

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

$$s = \sqrt{\frac{(5.34 - 5.386)^2 + (5.43 - 5.386)^2 + (5.37 - 5.386)^2 + (5.40 - 5.386)^2 + (5.39 - 5.386)^2}{5 - 1}}$$

s = 0.0336

Se realizó el mismo cálculo para determinar la desviación estándar del pH inicial de la bioresina en agua destilada; así como también para las medias de la concentración de plomo II en cada corrida. Los datos utilizados en este procedimiento se encuentran en el Cuadro 19, página 90. Mientras que los resultados obtenidos, se sitúan en el Cuadro 64, página 149.

Cálculo 41. Propagación de error de la concentración de adsorbato en diez minutos. Se aplicó la ecuación 26 del marco teórico, página 47.

$$\frac{s_y}{y} = \sqrt{\left(\frac{s_a}{a}\right)^2 + \left(\frac{s_b}{b}\right)^2 + \left(\frac{s_c}{c}\right)^2}$$
$$\frac{s_y}{y} = \sqrt{\left(\frac{0.00006L}{0.95L}\right)^2 + \left(\frac{0.005g}{80g}\right)^2 + \left(\frac{0.187ppm}{0.929ppm}\right)^2}$$
$$\frac{s_y}{y} = \pm 0.201mg/g.$$

Se llevó a cabo el mismo procedimiento para determinar la propagación de error de las demás muestras obtenidas cada cierto tiempo. Tanto los datos utilizados para este cálculo como sus respectivas incertidumbres se encuentran en los Cuadros 102 a 104, páginas 183 a 184.

D. Datos calculados

	Peso (±0.0	000005 <i>kg</i>)	Porcentaje de cáscara
No. de banano	Sin pelar	cáscara	en el fruto de banano (%)
1	0.087000	0.026000	29.885
2	0.076000	0.030000	39.474
3	0.072000	0.028000	38.889
4	0.063000	0.024000	38.095
5	0.070000	0.027000	38.571
6	0.065000	0.026000	40.000
7	0.067000	0.026000	38.806
8	0.061000	0.023000	37.705
9	0.064000	0.025000	39.063
10	0.057000	0.021000	36.842
11	0.052000	0.018000	34.615
12	0.057000	0.021000	36.842
Media	0.065917	0.024583	37.399
Desviación Estándar	0.009491	0.003369	2.777

Cuadro 60. Porcentaje que representa la cáscara de banano en todo el fruto.

Nota: En este cuadro, se presenta el porcentaje que representa la cáscara de banano en el fruto con su respectiva media y desviación estándar.

Тіетро		Peso de cáscara de	Porcentaie de	
Horas	Segundos	banano (±0.000005kg)	reducción en peso (%)	
0	0	50.289000	0.000	
1	3600	43.369000	13.760	
2	7200	39.419000	21.615	
3	10800	35.506000	29.396	
4	14400	30.652000	39.048	
5	18000	27.028000	46.255	
6	21600	24.022000	52.232	
7	25200	21.228000	57.788	
8	28800	18.116000	63.976	
9	32400	15.362000	69.453	
10	36000	12.102000	75.935	
11	39600	9.999000	80.117	
12	43200	7.065000	85.951	
13	46800	6.123000	87.824	
14	50400	6.090000	87.890	
15	54000	6.090000	87.890	
16	57600	6.090000	87.890	

Cuadro 61. Porcentaje de reducción en peso de la cáscara de banano en función del tiempo de secado.

Nota: En este cuadro, se presenta el porcentaje de reducción en peso que tuvo la cáscara de banano luego de someterse a calor durante 16 horas. Este procedimiento se realizó hasta que el peso de la cáscara de banano se mantuvo constante.

Figura 24. Curva experimental de la pérdida de peso de la cáscara de banano.

(Elaboración propia).

Nota: Esta gráfica se realizó con los datos del Cuadro 15, que se encuentra en la sección de datos originales, página 88.

Número de	Peso retenido de	Porcentaje retenido (%)		Porcentaje	
tamiz	resina (±0.000005kg)	Parcial	Acumulado	acumulado que pasa (%)	
20	1.41000	23.152709	23.152709	76.847291	
30	1.070000	17.569787	40.722496	59.277504	
45	0.130000	2.134647	42.857143	57.142857	
60	0.780000	12.807882	55.665025	44.334975	
80	0.800000	13.136289	68.801314	31.198686	
100	0.720000	11.822660	80.623974	19.376026	
Base	1.180000	19.376026	100.000000	0.000000	
Suma	6.090000	100.000000			

Cuadro 62. Ensayo granulométrico.

Nota: En este cuadro, se presenta tanto el porcentaje retenido parcial y acumulado, como el acumulado que pasa para cada tamiz. Para este trabajo, el tamiz de interés fue el No. 30; de manera que se trabajó con un diámetro de partícula de 600µm.

Cuadro 63. Media y desviación estándar de peso de bioresina para pruebas de pH y solubilidad para agua

Corrida	Peso $(\pm 0.00005 kg)$
1	0.002000
2	0.002000
3	0.002000
4	0.002000
5	0.002000
Media	2.0000
Desviación Estándar	0.0000

destilada.

Nota: En este cuadro, se encuentra la cantidad de bioresina utilizada para cada prueba de solubilidad y pH en agua destilada con su respectiva media y desviación estándar.

Corrida	Temperatura (°C)		р	Н
	Inicial	Final	Inicial	Final
1	25.30	25.0	5.29	5.34
2	25.80	25.60	5.38	5.43
3	26.20	25.80	5.42	5.37
4	25.90	25.90	5.4	5.4
5	25.80	26.00	5.44	5.39
Media	25.80	25.66	5.386	5.386
Desviación Estándar	0.324	0.397	0.058	0.034

Cuadro 64. Media y desviación estándar del pH de bioresina en agua destilada.

Nota: Para la determinación de pH de bioresina en agua destilada, se medía el pH y temperatura al inicio de la agitación. Luego, se dejaba pasar un lapso de diez minutos en lo que la bioresina se asentaba. Al cumplir este tiempo, se medía nuevamente el pH y la temperatura.

	Pro	beta	Masa de resina Densidad aparen		
Corrida	Sin resina (±0.000005kg)	Con resina (±0.000005kg)	seca (±0.000005kg)	$(\pm 0.000006 kg/m^3)$	
1	0.070100	0.076200	0.006100	610.000000	
2	0.070100	0.076200	0.006100	610.000000	
3	0.070100	0.076200	0.006100	610.000000	
4	0.070100	0.076200	0.006100	610.000000	
5	0.070100	0.076200	0.006100	610.000000	
Media	0.070100	0.076200	0.006100	610.000000	
Desviación Estándar	0.0000	0.0000	0.0000	0.000	

Cuadro 65. Densidad aparente seca de resina.

Nota: Este cuadro, contiene información del peso que tenía una probeta de 100mL vacía y cuando estaba tenía resina hasta un volumen conocido. Por diferencia de pesos, se obtuvo la masa de la resina seca. Al conocer el volumen que ocupa la bioresina en la probeta, se determinó la densidad aparente seca.

Por otro lado, es importante destacar que las "corridas" hacen referencia a cuántas veces se realizó el mismo procedimiento.

Courido	Altura de lech	Expansión		
Corrida	Seco	Mojado	$(\pm 0.0005m)$	
1	0.0850	0.0950	0.1053	
2	0.0850	0.0950	0.1053	
3	0.0850	0.0950	0.1053	
4	0.0850	0.0950	0.1053	
5	0.0850	0.0950	0.1053	
Media	0.0850	0.0950	0.1053	
Desviación Estándar	0.0000	0.0000	0.0000	

Cuadro 66. Expansión de bioresina.

Nota: Este cuadro, contiene información de la altura que tenía la bioresina tanto seca como mojada dentro de una probeta. Estos datos fueron utilizados para determinar el factor de expansión que tenía la bioresina. Por otro lado, es importante destacar que las "corridas" hacen referencia a cuántas veces se realizó el mismo procedimiento.

Cuadro 67. Diluciones de plomo (*Pb*) a partir de la solución madre que está a 20*ppm* de plomo (*Pb*) para elaboración de curva de calibración.

	Concentración	Volumen	de solución madre	Volumen de agua destilada		
Estandar	deseada (ppm)	$(\pm 0.06mL)$	$(\pm 0.0000006m^3)$	$(\pm 0.06mL)$	$(\pm 0.0000006m^3)$	
1	20	25.00	0.00002500	0.00	0.00000000	
2	18	22.50	0.00002250	2.50	0.00000250	
3	14	19.44	0.00001944	5.55	0.00000555	
4	12	21.43	0.00002143	3.57	0.00000357	
5	8	16.67	0.00001667	8.33	0.00000833	
6	2	6.25	0.00000625	18.75	0.00001875	

Nota: El volumen de solución madre, hace referencia a la cantidad que se requería de la solución que está a 20*ppm* de plomo (*Pb*) para poder obtener la "Concentración deseada" en cada estándar. El volumen de agua destilada se obtuvo por diferencia, considerando que se estaba utilizando un balón aforado de 25mL.

Figura 25. Curva de calibración de la concentración de plomo (II) en agua.

Nota: Para esta Figura, se utilizaron los datos que se presentan en la sección de datos calculados, cuadro 68, página 151; obteniendo así la curva naranja. Mientras que para la curva azul (concentraciones leídas por el equipo), se tomaron en consideración los datos que se encuentran en la sección de fotografías de resultados obtenidos en el laboratorio de análisis instrumental avanzado, Figura 55, página 228.

Cuadro 68. Curva	e calibración de	la concentración de	plomo (II) en agua
------------------	------------------	---------------------	--------------------

Concentracioes	Ecuación de la recta	Coeficiente de correlación
Leída por el equipo	y = 0.0169x - 0.0046	0.947
Deseada	y = 0.0176x - 0.0048	0.971

Nota: Aquí se presentan tanto la ecuación de la recta como los coeficientes de correlación de las curvas de calibración experimental y teórica que se encuentran en la sección de anexos, en datos calculados, Figura 25, página 151.

⁽Elaboración propia).

Tiempo de c	contacto		Concentración de		Desviación
(+0,0008mins)	(+0.05seg)	Corrida	Plomo	Media	estándar
(<u>+</u> 0.0000mms.)	(<u>+</u> 0.032g.)		(±0.001 <i>ppm</i>)		Cotunidar
			0.793		
		M11	0.847	0.854	0.065
			0.922		
			0.756		
		M12	0.778	0.768	0.011
			0.769		
10,0000	600.00		0.931		
10.0000	000.00	M13	0.726	0.773 0.	0.141
			0.662		
			1.217		
		M14	1.147	1.182	0.035
			1.183		
		M15	0.954	1.067	0.241
		14115	0.904	1.007	0.271

Cuadro 69. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos.

Nota: Este cuadro, contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada diez minutos con su respectiva media y desviación estándar, donde esta última es la propagación de error de la media de las concentraciones de plomo en cada muestra.

Tiempo de contacto			Concentración de		Desviación
$(\pm 0.0008 mins.)$ $(\pm 0.05 set{})$		Corrida	Plomo	Media	ostándor
	$(\pm 0.03seg.)$		(±0.001 <i>ppm</i>)		estanuar
10.0000	600.00	M15	1.344	1.067	0.241
			0.76		0.053
		M21	0.832	0.773	
			0.728		
			0.784		
		M22	0.833	0.797	0.032
			0.774		
			0.806		
20.0000	1200.00	M23	0.885	0.812	0.070
			0.746		
		M24	0.966	0.881	0.077
			0.863		
			0.815		
		M25	0.743	0.736	0.006
			0.732		
			0.734		
		M31	0.998	0.853	0.127
			0.798		
30.0000			0.763		
	1800.00	M32	0.687	0.714	
			0.73		0.023
			0.724		
		M33	0.719	0.720	0.009
			0.711		
			0.729		
		M34	0.722	0.732	0.009

Cuadro 70. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Dosviación
$(\pm 0.0009 mins)$	$(\pm 0.05seq)$	Corrida	Plomo	Media	ostándar
$(\pm 0.0008mms.)$	(±0.05seg.)		(±0.001 <i>ppm</i>)		estanuar
	1800.00	M34	0.733	0.732	0.009
			0.741		
30.0000		M35	0.699		0.024
			0.651	0.673	
			0.669		
			0.698		
		M41	0.707	0.705	0.006
			0.709		
			0.663		0.059
		M42	0.696	0.712	
			0.777		
	2400.00	M43	0.732	0.718	0.014
40.0000			0.704		
			0.719		
		M44	0.822	0.806	0.037
			0.764		
			0.832		
		M45	0.648	0.679	0.027
			0.694		
			0.695		
50.0000	2000.00	M71	0.692	0.701	0.011
			0.698		
			0.713		
	3000.00	M72	0.677	0.673	0.007
			0.665		
			0.678		
			1		l

Cuadro 71. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Dosviggión
(+0.0008mins)	(+0.05seq)	Corrida	Plomo	Media	estándar
(<u>+</u> 0.0000mms.)	(<u>+0.033eg</u> .)		(±0.001 <i>ppm</i>)		Cstandar
		M73	0.723	0.697	0.039
			0.716		
			0.653		
	-		0.850	0.803	0.063
50.0000	3000.00	M74	0.828		
			0.731		
			0.666		
		M75	0.797	0.726	0.066
			0.716		
		M81	0.661	0.726	0.058
			0.746		
			0.772		
	3600.00	M82	0.679	0.688	0.057
			0.635		
			0.749		
		M83	0.650	0.638	0.029
60.0000			0.605		
			0.660		
		M84	0.743	0.721	0.045
			0.750		
			0.669		
	-	M85	0.610	0.835	
			0.878		0.206
			1.016		
70,0000	4200.00	M61	0.685	0.702	0.010
/0.0000	4200.00		0.699		0.019

Cuadro 72. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Dosviggión
$(\pm 0.0000 mins)$		Corrida	Plomo	Media	Desviación
$(\pm 0.0008$ mms.)	$(\pm 0.05 seg.)$		(±0.001 <i>ppm</i>)		estanuar
		M61	0.722	0.702	0.019
		M62	0.754	0.735	0.017
			0.729		
			0.722		
			0.694		
		M63	0.694	0.694	0.000
70.0000	4200.00		0.694		
			0.617		
		M64	0.642	0.647	0.032
			0.681		
		M65	0.749	0.755	0.006
			0.757		
			0.760		
		M101	0.651	0.665	0.012
			0.669		
			0.674		
		M102	0.641	0.667	0.064
			0.740		
			0.620		
80.0000	4800.00	M103	0.623	0.630	
			0.628		0.008
			0.638		
		M104	0.680	0.727	
			0.870		0.127
			0.630		
		M105	0.621	0.630	0.010

Cuadro 73. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Dosviggión
$(\pm 0.0009 mins)$		Corrida	Plomo	Media	Desviación
(±0.0008 <i>mms.)</i>	$(\pm 0.03seg.)$		(±0.001 <i>ppm</i>)		estanuar
80,0000	4800.00	M105	0.640	0.630	0.010
00.0000			0.628	0.050	
			0.690		
		M51	0.675	0.672	0.020
			0.650		
			0.671		
		M52	0.651	0.655	0.014
			0.643		
			0.683		
90.0000	5400.00	M53	0.667	0.678	0.009
			0.683		
		M54	0.674	0.619	0.078
			0.530		
			0.653		
		M55	0.693	0.660	0.029
			0.645		
			0.641		
			0.641		
100.0000		M91	0.670	0.660	0.017
			0.670		
		M92	0.678	0.677	0.004
	6000.00		0.680		
			0.672		
		M93	0.639	0.641	0.022
			0.620		
			0.663		

Cuadro 74. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Dosviación
(+0.0008mins)		Corrida	Plomo	Media	Desviacion
$(\pm 0.0008mms.)$	$(\pm 0.03seg.)$		(±0.001 <i>ppm</i>)		estanuar
	(000.00	M94	0.618	0.630	0.030
			0.608		
100 0000			0.665		
100.0000	0000.00		0.647		0.012
		M95	0.627	0.641	
			0.648		
			0.584		
		M111	0.637	0.622	0.033
			0.645		
	6600.00	M112	0.561	0.561	0.016
			0.545		
			0.576		
		M113	0.602	0.691	0.130
110.0000			0.840		
			0.63		
		M114	0.654	0.669	0.068
			0.610		
			0.744		
			0.586	0.588	0.006
		M115	0.595		
			0.583		
120.0000		M121	0.583	0.657	0.119
	7200.00		0.593		
			0.794		
		M122	0.549	0.552	0.000
			0.562		0.000

Cuadro 75. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Desviación
$(\pm 0.0009 mins)$		Corrida	Plomo	Media	Desviación
$(\pm 0.0008$ mms.)	$(\pm 0.03seg.)$		$(\pm 0.001 ppm)$		estanuar
		M122	0.546	0.552	0.008
		M123	0.547	0.535	
			0.513		0.019
			0.546		
120 0000	7200.00		0.518		
120.0000	7200.00	M124	0.552	0.521	0.029
			0.494		
			0.779		
		M125	0.778	0.814	0.061
			0.885		
	7800.00	M131	0.524	0.553	0.033
			0.589		
120,0000			0.546		
130.0000		M132	0.560	0.566	
			0.524		0.045
			0.613		
			1.161		
		N11	1.093	1.120	0.036
			1.011		
140.0000			2.368		
	8400.00	N12	2.413	2.380	0.029
	0100.00		2.359		
		N13	2.109	2.127	
			2.139		0.016
			2.132		
		N14	1.419	1.409	0.023

Cuadro 76. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.
Tiempo de contacto			Concentración de		Dosvigeión
$(\pm 0.0009 mins)$	$(\pm 0.05seq)$	Corrida	Plomo	Media	ostándar
(<u>1</u> 0.0000 <i>mm</i> .)	(10.033eg.)		(±0.001 <i>ppm</i>)		estanuar
		N14	1.425	1 409	0.023
			1.382	1.407	0.025
140.0000	8400.00		0.742		
		N15	0.739	0.744	0.007
			0.752		
			2.092		
		N21	2.083	2.086	0.006
			2.082		
			2.796		
	9000.00	N22	2.812	2.829	0.045
			2.880		
		N23	2.824	2.853	0.026
150.0000			2.863		
			2.873		
		N24	2.513	2.553	0.048
			2.540		
			2.606		
			2.779		
		N25	2.712	2.743	0.034
			2.737		
			1.971		
		N31	1.925	1.964	0.036
160,0000	0600.00		1.996		
100.0000	9000.00		1.806		
		N32	1.866	1.839	0.031
			1.847		

Cuadro 77. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Dosvigajón
$(\pm 0.0009 mins)$		Corrida	Plomo	Media	Desviacion
$(\pm 0.0008 mms.)$	$(\pm 0.03seg.)$		$(\pm 0.001 ppm)$		estanuar
			3.186		
		N33	3.182	3.180	0.006
			3.173		
			2.049		
160.0000	9600.00	N34	2.074	2.058	0.014
			2.052		
			2.236		
		N35	2.251	2.246	0.0084
			2.250		
		N41	2.063		
			2.028	2.038	0.022
			2.023		
		N42	2.060	2.061	
			2.068		0.006
			2.055		
			2.057	2.065	
170.0000	10200.00	N43	2.126		0.058
			2.011		
			1.930		
		N44	1.912	1.931	0.019
			1.951		
			2.101		
		N45	2.075	2.098	0.022
			2.118		
180,0000	10800.00	N51	1.630	1 666	0.028
180.0000	10800.00	N51	1.706	1.000	0.038

Cuadro 78. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Docuinción
(± 0.000) mins)		Corrida	Plomo	Media	ostándon
$(\pm 0.0008mms.)$	$(\pm 0.03seg.)$		(±0.001 <i>ppm</i>)		estanuar
		N51	1.661	1.666	0.038
			1.639		
		N52	1.706	1.690	0.045
			1.726		
			1.911		
		N53	1.959	1.921	0.034
180.0000	10800.00		1.892		
			1.813		
		N54	1.853	1.835	0.020
			1.838		
		N55	1.929	1.851	0.068
			1.821		
			1.802		
_			1.606		
		N61	1.577	1.599	0.019
			1.614		
			1.947		
		N62	1.977	1.969	0.019
190.0000	11400.00		1.982		
			1.896		
		N63	1.908	1.893	0.017
			1.874	1	
		N64	1.812	1.840	0.024
		1004	1.851	1.040	0.024

Cuadro 79. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto		Concentración de		Dosvigajón
	Corrida	Plomo	Media	Desviacion
$(\pm 0.05seg.)$		(±0.001 <i>ppm</i>)		estanuar
	N64	1.857	1.840	0.024
11400.00		1.920		
11400.00	N65	1.869	1.871	0.047
		1.825		
		1.979		
	N71	1.933	1.962	0.025
		1.975		
		1.984		
12000.00	N72	2.039	1.989	0.048
		1.944		
	N73	1.863	1.857	0.044
		1.898		
		1.810		
	N74	2.212	2.226	
		2.197		0.038
		2.269		
		1.938		
	N75	1.909	1.920	0.016
		1.913	•	
		2.236		
	N81	2.223	2.242	0.022
12600.00		2.266		
12000.00		2.196		
	N82	2.161	2.187	0.023
		2.204		
	(±0.05 <i>seg</i> .) 11400.00 12000.00 12600.00	Intacto Corrida (±0.05seg.) N64 11400.00 N65 11400.00 N71 12000.00 N73 12000.00 N73 12000.00 N74 N75 N81 12600.00 N82	Intacto Corrida Concentración de (±0.05seg.) Plomo (±0.001ppm) 11400.00 N64 1.857 11400.00 N65 1.869 11400.00 1.825 1.869 11825 1.869 1.825 1180 1.979 1.933 11975 1.975 1.975 11975 1.984 1.944 N72 2.039 1.944 12000.00 N73 1.898 12000.00 N73 1.898 12000.00 N74 2.197 1913 2.269 1.938 12000.00 N75 1.909 1913 2.236 1.913 12600.00 N81 2.223 12600.00 N81 2.223 12600.00 N81 2.204	Intacto Concentración de Plomo (±0.01ppm) Media (±0.05seg.) N64 1.857 Media 11400.00 N64 1.857 1.840 11400.00 N65 1.869 1.871 11400.00 N71 1.933 1.962 11400.00 N71 1.933 1.962 11400.00 N71 1.933 1.962 1197 1.933 1.962 1.989 1197 1.984 1.989 1.989 11944 1.863 1.857 1.989 11810 1.810 1.810 1.920 11810 1.938 1.920 1.913 1190 1.913 1.920 1.913 112600.00 1.810 2.196 2.196 112

Cuadro 80. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Dosviggión
$(\pm 0.0000 mins)$		Corrida	Plomo	Media	Desviacion
(±0.0008 <i>mms.)</i>	$(\pm 0.03seg.)$		(±0.001 <i>ppm</i>)		estanuar
			2.323		
		N83	2.355	2.362	0.043
			2.409		
			2.313		
210.0000	12600.00	N84	2.287	2.313	0.026
			2.340		
			2.260		
		N85	2.290	2.258	0.034
			2.223		
		N91	2.440	2.459	
			2.450		0.024
			2.486		
		N92	2.272	2.277	0.028
			2.307		
			2.251		
			2.577	2.579	
220.0000	13200.00	N93	2.570		0.011
			2.591		
			2.518		
		N94	2.581	2.533	0.043
			2.499		
			2.553		
		N95	2.571	2.579	0.031
			2.614		
220.0000	12800.00	N101	2.793	2 701	0.021
230.0000	13800.00	11101	2.749	2./04	0.031

Cuadro 81. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Desviación
$(\pm 0.0009 mins)$	$(\pm 0.05 \text{ sog})$	Corrida	Plomo	Media	ostándor
$(\pm 0.0008$ mms.)	$(\pm 0.03seg.)$		$(\pm 0.001 ppm)$		estanuar
		N101	2.809	2.784	0.031
			3.041		
		N102	2.055	2.693	0.554
			2.984		
			3.042		
		N103	2.959	2.972	0.064
230.0000	13800.00		2.916		
			2.883		
		N104	2.903	2.909	0.029
			2.940		
		N105	2.830	2.797	
			2.805		0.038
			2.755		
			3.323		
		N111	3.319	3.313	0.014
			3.297	-	
			3.356		
		N112	3.363	3.351	0.016
			3.333		
240.0000	14400.00		3.172		
		N113	3.139	3.143	0.027
			3.119		
			3.126		
		N114	3.191	3.172	0.040
			3.200	-	
		N115	3.188	3.210	0.034

Cuadro 82. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo de contacto			Concentración de		Desviación
(+0.0008mins)	(+0.05seq)	Corrida	Plomo	Media	estándar
(<u>+</u> 0.0000 <i>mm</i> .)	(±0.0000mmms.) (±0.0050g.)		$(\pm 0.001 ppm)$		Cstandar
240,0000	14400.00	N115	3.249	3 210	0.034
240.0000	14400.00	11115	3.193	5.210	0.054
			3.502		
		N121	3.403	3.440	0.059
			3.394		
			2.208		
		N122	2.246	2.208	0.038
			2.170		
	15000.00	N123	3.187	3.233	
250.0000			3.241		0.042
			3.270		
		N124	3.463	3.480	0.016
			3.495		
			3.482		
			3.396		
		N125	3.417	3.401	0.015
			3.3889		
			3.425		
260.0000		N131	3.446	3.447	0.023
	15600.00		3.471		
200.0000	13000.00		3.535		
		N132	3.603	3.562	0.036
			3.549		

Cuadro 83. Media y desviación estándar de la determinación de plomo por corrida para cada diez minutos, continuación.

Tiempo d	le contacto		Concentración de		Dogwianión
Segundos	Horas	Corrida	Plomo	Media	Desviación
$(\pm 0.05 seg.)$	(±0.00001 <i>horas</i>)		(±0.001 <i>ppm</i>)		estanuar
			1.690		
		011	1.657	1.675	0.017
			1.679		
			1.947		
		O12	1.945	1.955	0.016
			1.974		
			1.717		
19200.00	5.33300	O13	1.748	1.734	0.016
			1.737		
		O14	2.120		
			2.111	2.110	0.011
			2.098		
		O15	1.903	1.888	
			1.890		0.016
			1.872		
		O21	2.092		
			2.011	2.043	0.043
			2.026		
			2.360		
		O22	2.395	2.387	0.024
			2.405		
22800.00	6.33300		1.919		
		O23	1.905	1.914	0.008
			1.917		
			1.727		
		024	1.663	1.696	0.032
			1.698		-

Cuadro 84. Media y desviación estándar de la determinación de plomo por corrida para cada hora.

Nota: Este cuadro, contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada hora con su respectiva media y desviación estándar, donde esta última es la propagación de error de la media de las concentraciones de plomo en cada muestra.

Tiempo d	le contacto		Concentración de		Dosvigajón
Segundos	Horas	Corrida	Plomo	Media	estándar
$(\pm 0.05 seg.)$	(±0.00001 <i>horas</i>)		(±0.001 <i>ppm</i>)		Cstanuar
			1.723		
22800.00	6.33300	O25	1.683	1.709	0.022
			1.720		
			3.775		
		O31	3.854	3.840	0.060
			3.892		
			3.399		
		O32	3.423	3.393	0.034
	7.33300		3.356	-	
			3.235		
26400.00		O33	3.290	3.287	0.051
			3.337		
			3.323		
		O34	3.357	3.354	0.035
			3.392		
		O35	2.943		
			3	2.962	0.033
			2.944	-	
			3.160		
		O41	3.197	3.188	0.025
			3.207	-	
20000.00	8 22200		3.221		
30000.00	8.33300	O42	3.282	3.248	0.031
			3.242		
		042	3.427	2 479	0.045
		043	3.512	3.4/8	0.045

Cuadro 85. Media y desviación estándar de la determinación de plomo por corrida para cada hora,

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la media y la desviación estándar de la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo d	le contacto		Concentración de		Doguiogión
Segundos	Horas	Corrida	Plomo	Media	Desviacion
$(\pm 0.05 seg.)$	$(\pm 0.00001 horas)$		(±0.001 <i>ppm</i>)		estanuar
		O43	3.494	3.478	0.045
			3.441		
		O44	3.441	3.458	0.030
30000.00	8.33300		3.493		
			3.612		
		O45	3.603	3.604	0.008
			3.596		
			3.248		
		O51	3.287	3.269	0.020
	9.33300		3.271	-	
		052	3.371	3.399	
			3.287		0.039
			3.443		
		O53	3.449	3.481	
22600.00			3.519		0.035
55000.00			3.475		
			3.594		
		O54	3.560	3.586	0.023
			3.604		
			3.440		
		O55	3.305	3.382	0.070
			3.402		
			2.029		
27200.00	10 22200	O61	2.019	2.027	0.008
57200.00	10.53300		2.034		
		O62	1.663	1.692	0.026

Cuadro 86. Media y desviación estándar de la determinación de plomo por corrida para cada hora,

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la media y la desviación estándar de la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo d	le contacto		Concentración de		Doguiogión
Segundos	Horas	Corrida	Plomo	Media	Desviacion
$(\pm 0.05 seg.)$	$(\pm 0.00001 horas)$		(±0.001 <i>ppm</i>)		estanuar
		O62	1.697	1 602	0.026
			1.715	1.092	0.020
			1.594		
		O63	1.582	1.584	0.010
			1.575		
37200.00	10.33300		1.770		
		O64	1.840	1.813	0.038
			1.830		
			1.852		
		O65	1.826	1.830	0.020
			1.813		
		O71	2.205	2.187	
			2.186		0.017
			2.171		
		072	1.137	1.132	
			1.111		0.019
			1.147		
			2.238		
40800.00	11.33300	073	2.171	2.230	0.055
			2.281		
			2.078		
		O74	2.228	2.151	0.075
			2.147		
			2.369		
		075	2.376	2.389	0.029
			2.423		

Cuadro 87. Media y desviación estándar de la determinación de plomo por corrida para cada hora,

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la media y la desviación estándar de la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo d	le contacto		Concentración de		Dosvigajón
Segundos	Horas	Corrida	Plomo	Media	estándar
$(\pm 0.05 seg.)$	$(\pm 0.0001 horas)$		(±0.001 <i>ppm</i>)		Cstanuar
			4.373		
		O81	4.466	4.462	0.087
			4.547		
			4.115		
		082	4.186	4.164	0.043
			4.191		
			4.447		
44400.00	12.33300	083	4.438	4.443	0.005
			4.445	-	
			4.386		
		084	4.347	4.357	0.026
			4.338		
		O85	3.978	3.963	0.026
			3.933		
			3.979		
			4.265		
		O91	4.394	4.344	0.069
			4.373	-	
			4.715		
		O92	4.707	4.729	0.031
48000.00	13.33300		4.764	-	
			4.707		
		O93	4.694	4.720	0.034
			4.759	1	
		004	4.772	4 722	0.024
		094	4.711	4./33	0.034

Cuadro 88. Media y desviación estándar de la determinación de plomo por corrida para cada hora,

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la media y la desviación estándar de la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo de contacto			Concentración de		Dogwianión
Segundos	Horas	Corrida	Plomo	Media	ostándar
$(\pm 0.05 seg.)$	$(\pm 0.0001 horas)$		$(\pm 0.001 ppm)$		Cstanuar
		O94	4.716	4.733	0.034
48000 00	12 22200		4.429		
48000.00	15.55500	O95	4.416	4.413	0.017
			4.395		
			5.324		
		O101	5.460	5.392	0.068
			5.393		
			5.776		0.043
	14.33300	O102	5.818	5.819	
			5.862		
		O103	5.585	5.597	
51600.00			5.600		0.010
			5.605		
		O104	5.576	5.582	
			5.554		0.031
			5.615		
			5.481		
		O105	5.548	5.538	0.052
			5.584	-	
			5.598		
		O111	5.556	5.572	0.023
			5.561	-	
55200.00	15.33300		5.981		
		0112	6.106	6.078	0.087
			6.148		
		0113	6.104	6.142	0.037

Cuadro 89. Media y desviación estándar de la determinación de plomo por corrida para cada hora,

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la media y la desviación estándar de la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo	Tiempo de contacto		Concentración de		Dosviggión
Segundos	Horas	Corrida	Plomo	Media	ostándar
$(\pm 0.05 seg.)$	$(\pm 0.0001 horas)$		$(\pm 0.001 ppm)$		Cstanuar
	15.33300	O113	6.144	6 1 4 2	0.037
			6.177	0.142	0.037
		O114	5.951	6.000	0.043
55200.00			6.021		
55200.00			6.029		
		O115	6.023		
			6.071	6.076	0.055
			6.133	1	

Cuadro 90. Media y desviación estándar de la determinación de plomo por corrida para cada hora,

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la media y la desviación estándar de la concentración de Plomo II en triplicado para cada muestra obtenida cada hora.

Tiempo de contacto			Concentración de		Desviación
Segundos	Horas	Corrida	Plomo	Media	Fstándar
$(\pm 0.05 seg.)$	$(\pm 0.0001 horas)$		$(\pm 0.001 ppm)$		Estandar
			9.699		
		P11	9.707	9.659	0.076
	26.33300		9.571		
		P12	8.860		
			9.001	8.921	0.073
94800.00			8.901		
			9.326		
		P13	9.220	9.224	0.100
			9.127		
		P14	9.267	9 280	0.020
		Г14	9.270	9.200	0.020

Cuadro 91. Media y desviación estándar de la determinación de plomo por corrida para cada once horas.

Nota: Este cuadro, contiene la concentración de Plomo II en triplicado para cada muestra obtenida cada 11 horas con su respectiva media

y desviación estándar, donde esta última es la propagación de error de la media de las concentraciones de plomo en cada muestra.

Tiempo d	Tiempo de contacto		Concentración de		Dogwianión
Segundos	Horas	Corrida	Plomo	Media	Desviacion
(±0.05 <i>seg</i> .)	(±0.00001 <i>horas</i>)		$(\pm 0.001 ppm)$		estanuar
		P14	9.303	9.280	0.020
04800.00	26 22200		9.412		
94800.00	20.33300	P15	9.460	9.431	0.026
			9.420		
			10.460		
		P21	10.520	10.513	0.050
			10.560		
			10.840		0.031
	37.33300	P22	10.820	10.813	
			10.780		
		P23	10.750	10.880	0.141
134400.00			10.860		
			11.030		
		P24	10.860	10.943	0.104
			10.910		
			11.060		
			10.900		
		P25	10.970	10.947	0.040
			10.970		
			11.500		
		P31	11.540	11.597	0.134
			11.750	1	
174000.00	48.33300		12.050		
		P32	12.070	12.037	0.042
			11.990		
		P33	12.010	12.050	0.087

Cuadro 92. Media y desviación estándar de la determinación de plomo por corrida para cada once horas,

Nota: Este cuadro es la continuación del cuadro anterior, que contiene la media y la desviación estándar de la concentración de Plomo II en triplicado para cada muestra obtenida cada 11 horas.

Tiempo de contacto			Concentración de		Doguiagión
Segundos	Horas	Corrida	Plomo	Media	Desviacion
$(\pm 0.05 seg.)$	(±0.00001 <i>horas</i>)		(±0.001 <i>ppm</i>)		estanuar
		D33	11.990	12.050	0.097
		155	12.150	12.030	0.087
			12.370		
174000.00	48 33300	P34	12.370	12.290	0.139
174000.00	48.55500		12.130		
			12.150		
		P35	12.240	12.197	0.045
			12.200	-	
		P41	11.960		0.123
	59.33300		12.000	12.050	
			12.190		
		P42	12.820	12.783	0.064
			12.820		
			12.710		
		P43	12.600	12.727	
213600.00			12.780		0.110
			12.800		
			12.570		
		P44	12.790	12.747	0.159
			12.880	-	
			12.770		
		P45	12.770	12.810	0.069
			12.890	-	
			12.240		
253200.00	70.33300	P51	12.260	12.247	0.012
			12.240		

Cuadro 93. Media y desviación estándar de la determinación de plomo por corrida para cada once horas,

Tiempo de contacto			Concentración de		Doguiogión
Segundos	Horas	Corrida	Plomo	Media	Desviacion
$(\pm 0.05 seg.)$	$(\pm 0.00001 horas)$		(±0.001 <i>ppm</i>)		estanuar
			12.240		
		P51	12.260	12.247	0.012
			12.240		
			12.570		
	70.33300	P52	12.520	12.533	0.032
			12.510		
		Р53	12.670	12.637	0.031
253200.00			12.630		
			12.610		
			12.710		0.086
		P54	12.770	12.787	
			12.880		
			12.750		
		P55	12.770	12.737	0.042
			12.690		

Cuadro 94. Media y desviación estándar de la determinación de plomo por corrida para cada once horas,

Tiempo de c	ontacto	Media por corrida	Media por tiempo	Desviación
(+0.0008mins.)	(+0.05seq.)	de la concentración	de la concentración	estándar
()	()	de plomo (ppm)	de plomo (ppm)	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		0.854		
10,0000	(00.00	0.768	0.000	0.105
10.0000	600.00	0.773	0.929	0.187
		1.182		
		1.067		
		0.773		
• • • • • •	1.0.0.00	0.797		0 0 - 4
20.0000	1200.00	0.812	0.800	0.054
		0.881		
		0.736		
		0.853		
		0.714		
30.0000	1800.00	0.720	0.738	0.068
		0.732		
		0.673		
		0.705		
		0.712		
40.0000	2400.00	0.718	0.724	0.048
		0.806		
		0.679		
		0.701		
		0.673		
50.0000	3000.00	0.697	0.720	0.050
		0.803		
		0.726		
		0.726		
		0.688		
60.0000	3600.00	0.638	0.722	0.072
		0.721		
		0.835		
		0.702		
		0.735		
70.0000	4200.00	0.694	0.707	0.042
		0.647		
		0.755		
		0.665		
		0.667		
80.0000	4800.00	0.630	0.664	0.040
		0.727		
		0.630		

Cuadro 95. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada diez

minutos.

Nota: Este cuadro presenta la media y desviación estándar de las cinco muestras obtenidas por cada tiempo de contacto cada diez minutos.

Tiempo de co	ontacto	Media por corrida	Media por tiempo	Desviación
$(\pm 0.0008 mins.)$	(±0.05 <i>seg</i> .)	de la concentración de plomo (ppm)	de la concentración de plomo (ppm)	estándar
		0.672		
		0.655		
90.0000	5400.00	0.678	0.657	0.023
		0.619		
		0.660		
		0.660		
		0.677		
100.0000	6000.00	0.641	0.650	0.019
		0.630		
		0.641		
		0.622		
		0.561		
110.0000	6600.00	0.691	0.626	0.054
		0.669		
		0.588		
		0.657		
		0.552		
120.0000	7200.00	0.535	0.616	0.123
		0.521		
		0.814		
120,0000	7800.00	0.553	0.550	0.000
130.0000	/800.00	0.566	0.339	0.009
		1.120		
		2.380		
140.0000	8400.00	2.127	1.556	0.685
		1.409		
		0.744		
		2.086		
		2.829		
150.0000	9000.00	2.853	2.613	0.317
		2.553		
		2.743		
		1.964		
		1.840		
160.0000	9600.00	3.180	2.258	0.537
		2.058] [
		2.246		

Cuadro 96. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada diez minutos, continuación.

Nota: Continuación del cuadro anterior, el cual presenta la media y desviación estándar de las cinco muestras obtenidas por cada tiempo de contacto cada diez minutos.

Tiempo de co	ontacto	Media por corrida de	Media por tiempo de	Desviación
$(\pm 0.0008 mins.)$	$(\pm 0.05 seg.)$	la concentración de	la concentración de	estándar
		2 028	рюто (ррт)	
		2.038		
170,0000	10200.00	2.001	2 039	0.064
170.0000	10200.00	1 031	2.059	0.004
		2 098		
		1 666		
		1.690		
180 0000	10800.00	1.020	1 792	0 109
100.0000	10000.00	1.835	1.772	0.109
		1.851		
		1.599		
		1.969		
190.0000	11400.00	1.893	1.834	0.139
		1.840		
		1.871		
		1.962		
		1.989		
200.0000	12000.00	1.857	1.991	0.141
		2.226		
		1.920		
		2.242		
		2.187		
210.0000	12600.00	2.362	2.272	0.067
		2.313		
		2.258		
		2.459		
		2.277		
220.0000	13200.00	2.579	2.485	0.127
		2.533		
		2.579		
		2.784		
		2.693		
230.0000	13800.00	2.972	2.831	0.109
		2.909		
		2.797		
		3.313		
• 40,0000		3.351		
240.0000	14400.00	3.143	3.238	0.089
		3.172		
		3.210		

Cuadro 97. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada diez minutos, continuación.

Nota: Continuación del cuadro anterior, el cual presenta la media y desviación estándar de las cinco muestras obtenidas por cada tiempo de contacto cada diez minutos.

Cuadro 98. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada diez minutos, continuación.

Tiempo de contacto		Media por corrida de	Media por tiempo de	Dosviación
$(\pm 0.0008 mins.)$	(±0.05 <i>seg</i> .)	la concentración de plomo (ppm)	la concentración de plomo (ppm)	estándar
		3.433		0.535
	15000.00	2.208	3.151	
250.0000		3.233		
		3.480		
		3.401		
260.0000	15600.00	3.447	3.505	0.081
	15600.00	3.562		

Nota: Continuación del cuadro anterior, el cual presenta la media y desviación estándar de las cinco muestras obtenidas por cada tiempo de contacto cada diez minutos.

Tiempo	de contacto	Media por corrida	Media por tiempo	N
Segundos	Horas	de la concentración	de la concentración	Desviación
(±0.05 <i>seg</i> .)	(±0.00001 <i>horas</i>)	de plomo (ppm)	de plomo (ppm)	estandar
		1.675		
		1.955		
19200.00	5.33300	1.734	1.873	0.174
		2.110		
		1.888		
		2.043		
		2.387		
22800.00	6.33300	1.914	1.950	0.284
		1.696		
		1.709		
	7.33300	3.840		0.314
		3.393	3.367	
26400.00		3.287		
		3.354		
		2.962		
		3.188		
		3.248		
30000.00	8.33300	3.478	3.395	0.172
		3.458		
		3.604		
		3.269		
		3.399		
33600.00	9.33300	3.481	3.423	0.118
		3.586		
		3.382		

Cuadro 99. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada hora.

Nota: Este cuadro presenta la media y desviación estándar de las cinco muestras obtenidas por cada tiempo de contacto cada hora.

Tiempo	de contacto	Media por	Media por tiempo	
Segundos	Horas	corrida de la	de la	Desviación
		concentración de	concentración de	estándar
$(\pm 0.05 seg.)$	$(\pm 0.00001 horas)$	plomo (ppm)	plomo (ppm)	
		2.027		
		1.692		
37200.00	10.33300	1.584	1.789	0.166
		1.813		
		1.830		
		2.187		
		1.132		
40800.00	11.33300	2.230	2.018	0.504
		2.151		
		2.389		
		4.462		
		4.164		
44400.00	12.33300	4.443	4.278	0.212
		4.357		
		3.963		
		4.344		
		4.729		
48000.00	13.33300	4.720	4.588	0.193
		4.733		
		4.413		
		5.392		
		5.819		
51600.00	14.33300	5.5970	5.585	0.153
		5.582		
		5.538		
		5.572		
		6.078		
55200.00	15.33300	6.142	5.974	0.230
		6.000	1	
		6.076		

Cuadro 100. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada hora,

Nota: Continuación del cuadro anterior, el cual presenta la media y desviación estándar de las cinco muestras obtenidas por cada tiempo de contacto cada hora.

Tiempo	de contacto	Media por	Media por tiempo	
Segundos	Horas	corrida de la	de la	Desviación
(±0.05 <i>seg</i> .)	(±0.00001 <i>horas</i>)	concentración de plomo (ppm)	concentración de plomo (ppm)	estándar
		9.659		
		8.921		
94800.00	26.33300	9.224	9.303	0.272
		9.280		
		9.431		
		10.513		
		10.813		
134400.00	37.33300	10.880	10.819	0.180
		10.943		
		10.947		
		11.597		
		12.037		
174000.00	48.33300	12.050	12.034	0.266
		12.290		
		12.197		
		12.050		
		12.783		
213600.00	59.33300	12.727	12.623	0.322
		12.747		
		12.810		
		12.247		
		12.533		
253200.00	70.33300	12.637	12.588	0.214
		12.787		
		12.737		

Cuadro 101. Media y desviación estándar de la determinación de plomo por tiempo de contacto cada once

horas.

Nota: Este cuadro presenta la media y desviación estándar de las cinco muestras obtenidas por cada tiempo de contacto cada once horas.

Tiempo de contacto		Concentración (ppm)		Concentración	
Minutos	Segundos			de adsorbato	Porcentaje de
(+0.0008mins.)	(+0.05seg.)	Inicial	Final	de equilibrio	remoción (%)
10,0000			0.0001.0.107	(mg/g)	05 25 (10 107
10.0000	600.00		0.929 <u>+</u> 0.18/	0.226 <u>+</u> 0.201	95.356 <u>+</u> 0.187
20.0000	1200.00		0.800 ± 0.054	0.228 ± 0.233	96.000 <u>±</u> 0.054
30.0000	1800.00		0.738 <u>+</u> 0.068	0.229 <u>+</u> 0.253	96.309 <u>+</u> 0.068
40.0000	2400.00		0.724 <u>+</u> 0.048	0.229 <u>+</u> 0.258	96.380 <u>+</u> 0.048
50.0000	3000.00		0.720 <u>±</u> 0.050	0.229 <u>+</u> 0.259	96.399 <u>+</u> 0.050
60.0000	3600.00		0.722±0.072	0.229 <u>+</u> 0.259	96.392±0.072
70.0000	4200.00		0.707±0.042	0.229±0.264	96.467±0.042
80.0000	4800.00		0.664 ± 0.040	0.230±0.281	96.682 <u>±</u> 0.040
90.0000	5400.00		0.657±0.023	0.230 ± 0.284	96.717 <u>±</u> 0.023
100.0000	6000.00		0.650±0.019	0.230 ± 0.287	96.751±0.019
110.0000	6600.00		0.626 ± 0.054	0.230 ± 0.298	96.869±0.054
120.0000	7200.00		0.616±0.123	0.230±0.303	96.920±0.123
130.0000	7800.00	20	0.559 <u>+</u> 0.009	0.231±0.334	97.203 <u>+</u> 0.009
140.0000	8400.00	20	1.556 <u>+</u> 0.685	0.219±0.440	92.221±0.685
150.0000	9000.00		2.613 <u>+</u> 0.317	0.206±0.262	86.936 <u>+</u> 0.317
160.0000	9600.00		2.258±0.537	0.211±0.303	88.712 <u>+</u> 0.537
170.0000	10200.00		2.039±0.064	0.213±0.336	89.807 <u>±</u> 0.064
180.0000	10800.00		1.792±0.110	0.216±0.382	91.038±0.110
190.0000	11400.00		1.834±0.140	0.216±0.373	90.828±0.140
200.0000	12000.00		1.991±0.141	0.214±0.344	90.046±0.141
210.0000	12600.00		2.272±0.067	0.211±0.301	88.638±0.067
220.0000	13200.00		2.485±0.127	0.208±0.276	87.573±0.127
230.0000	13800.00		2.831±0.110	0.204 ± 0.242	85.845±0.110
240.0000	14400.00		3.238±0.090	0.199 <u>±</u> 0.211	83.811±0.090
250.0000	15000.00		3.151±0.535	0.200±0.217	84.246 <u>+</u> 0.535
260.0000	15600.00		3.505±0.081	0.196 <u>+</u> 0.195	82.476 <u>+</u> 0.081

Cuadro 102. Concentración de adsorbato en la fase sólida respecto a un determinado tiempo y porcentaje de remoción de plomo (II) cada diez minutos.

Nota: Pruebas de remoción de plomo II en agua contaminada, cada diez minutos.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Tiempo	Concentración (ppm)		Concentración			
Segundos (±0.05 <i>seg</i> .)	Horas (±0.00001 <i>horas</i>)	Inicial	Final	de adsorbato de equilibrio (mg/g)	Porcentaje de remoción (%)	
19200.00	5.33300		1.873±0.174	0.215±0.093	90.637±0.174	
22800.00	6.33300		1.950±0.284	0.214 <u>+</u> 0.089	90.252±0.284	
26400.00	7.33300		3.367±0.314	0.198 <u>+</u> 0.052	83.163 <u>+</u> 0.314	
30000.00	8.33300		3.395±0.172	0.197 <u>±</u> 0.051	83.024±0.172	
33600.00	9.33300		3.423±0.118	0.197 <u>+</u> 0.051	82.883±0.118	
37200.00	10.33300	20	1.789 <u>±</u> 0.166	0.216 <u>+</u> 0.097	91.054 <u>±</u> 0.166	
40800.00	11.33300		2.018±0.504	0.214 <u>+</u> 0.086	89.911 <u>±</u> 0.504	
44400.00	12.33300		4.278±0.212	0.187 <u>+</u> 0.041	78.610±0.212	
48000.00	13.33300		5.588 <u>+</u> 0.193	0.183 <u>+</u> 0.038	77.061±0.193	
51600.00	14.33300		5.585±0.153	0.171±0.031	72.073±0.153	
55200.00	15.33300		5.874 ± 0.230	0.167 ± 0.029	70.132±0.230	

Cuadro 103. Concentración de adsorbato en la fase sólida respecto a un determinado tiempo y porcentaje de remoción de plomo (II) cada hora.

Nota: Pruebas de remoción de plomo II en agua contaminada, cada hora.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Cuadro 104. Concentración de adsorbato en la fase sólida respecto a un determinado tiempo y porcentaje de remoción de plomo (II) cada once horas.

Tiempo	de contacto	Concentración (ppm)		Concentración	
Segundos	Horas	Inicial	Final	de adsorbato de equilibrio	Porcentaje de
(±0.05 <i>seg</i> .)	(±0.00001 <i>horas</i>)	Interar	I IIIui	(mg/g)	
94800.00	26.33300		9.303±0.272	0.127 <u>+</u> 0.029	53.485±0.272
134400.00	37.33300		10.819 <u>+</u> 0.180	0.109 <u>+</u> 0.025	45.903±0.180
174000.00	48.33300	20	12.034 <u>+</u> 0.266	0.095 <u>+</u> 0.023	39.830 <u>+</u> 0.266
213600.00	59.33300		12.623±0.322	0.088±0.022	36.883±0.322
253200.00	70.33300		12.588±0.214	0.088±0.022	37.060±0.214

Nota: Pruebas de remoción de plomo II en agua contaminada, cada once horas.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Figura 26. Curva de ruptura del agua contaminada con 20ppm de Plomo II, luego que abandona el lecho, considerando todos los tiempos de contacto.

Nota: Esta es la curva de ruptura del agua contaminada con 20ppm de Plomo II, la cual se fue construyó con las concentraciones de los Cuadros 103 a 105 que se encuentran en anexos, datos calculados, páginas 180 a 181.

⁽Elaboración propia).

(Elaboración propia).

Nota: Esta Figura, es el principio de la curva de ruptura de la Figura 26, que se encuentra en anexos, en datos calculados, páginas 182. Esta representa la curva de ruptura en las primeras cuatro horas de operación de la columna del sistema natural. Además, es importante mencionar que esta se construyó con los las concentraciones del Cuadro 103 que se encuentran en anexos, datos calculados, páginas 180.

(Elaboración propia).

Nota: Esta Figura, es el final de la curva de ruptura de la Figura 26, que se encuentra en anexos, en datos calculados, páginas 185. Esta representa la curva de ruptura en luego de setenta horas de operación de la columna del sistema natural. Además, es importante mencionar que esta se construyó con los las concentraciones de los Cuadros 104 y 105, que se encuentran en anexos, cálculos de muestra, páginas 184 y 191.

(Elaboración propia).

Nota: Esta Figura, es la curva de ruptura del agua contaminada con 20ppm de Plomo II, en donde se toman en consideración solo las concentraciones de la primera hora de operación (Ver Cuadro 103, en anexos, en datos calculados, página 184) y las concentraciones de cada once horas (Ver Cuadros 104 y 105, en anexos, en datos calculados, páginas 184 y 191).

Figura 30. Efecto del tiempo de contacto entre una solución con 20ppm de Plomo (II) y la bioresina fabricada a partir de la cáscara de banano.

Nota: Esta Figura tiene como objetivo mostrar el efecto que tiene el tiempo cuando la solución de Plomo II está en contacto con la bioresina de cáscara de banano. Es importante mencionar que este gráfico se construyó solo con las primeras dos horas de operación de la columna del sistema natural a escala laboratorio. Estos datos se pueden encontrar en el Cuadro 103, en anexos, en datos calculados, página 184.

⁽Elaboración propia).

(Elaboración propia).

Nota: Esta Figura tiene como objetivo mostrar cómo va cambiando la concentración de Plomo II en el adsorbato a medida que va avanzando el tiempo. Es importante mencionar que este gráfico se construyó solo con las primeras dos horas de operación de la columna del sistema natural a escala laboratorio. Estos datos se pueden encontrar en el Cuadro 103, en anexos, en datos calculados, página 184.

Tiempo de		Volumen	Media	Tiempo de		
contacto	Corrida	$(+0.0000006m^3)$	$(+0,00000000m^3)$	llenado	Media	Desv. estándar
$(\pm 0.0008 min.)$			(10.0000000000)	$(\pm 0.05 seg.)$		
	M11	0.00001000	-	11.20		
	M12	0.00001000		12.00		
10.0000	M13	0.00001000	0.00001000	10.30	11.00	0.67
	M14	0.00001000		11.00		
	M15	0.00001000		10.50		
	M21	0.00001000		20.60		
	M22	0.00001000		18.50		
20.0000	M23	0.00001000	0.00001000	22.00	20.30	2.34
	M24	0.00001000		17.40		
	M25	0.00001000		23.00		
	M31	0.00001000	0.00001000	13.30	13.48	
	M32	0.00001000		10.00		3.02
30.0000	M33	0.00001000		11.70		
	M34	0.00001000		14.40		
	M35	0.00001000		18.00		
	M41	0.00001000		18.00	13.38	2.98
	M42	0.00001000		10.11		
40.0000	M43	0.00001000	0.00001000	14.00		
	M44	0.00001000		13.20		
	M45	0.00001000		11.60		
	M71	0.00001000		16.00		
	M72	0.00001000		15.00		
50.0000	M73	0.00001000	0.00001000	19.80	15.72	2.52
	M74	0.00001000		14.80		
	M75	0.00001000		13.00		
60,0000	M81	0.00001000	0.00001000	10.00	11 98	1 80
00.0000	M82	0.00001000	0.00001000	11.00	11.98	1.07

Cuadro 105. Media y desv. e	estándar del volumen y	tiempo de llenado p	or cada diez	minutos de contacto.
-----------------------------	------------------------	---------------------	--------------	----------------------

Nota: Aquí, se presenta la media del volumen de cada muestra con su respectivo tiempo de llenado, el cual también tiene su media y desviación estándar, para cada 10 mins.

Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006m ³)	Media (±0.0000000m ³)	Tiempo de llenado (±0.05seg.)	Media	Desv. estándar
	M83	0.00001000		11.60		
60.0000	M84	0.00001000	0.00001000	15.00	11.98	1.89
	M85	0.00001000		12.30		
	M61	0.00001000		13.80		
	M62	0.00001000		14.00		
70.0000	M63	0.00001000	0.00001000	12.50	12.70	1.62
	M64	0.00001000		10.00		
	M65	0.00001000		13.20		
	M101	0.00001000		13.60		1.64
	M102	0.00001000		14.00	14.26	
80.0000	M103	0.00001000	0.00001000	12.00		
	M104	0.00001000		15.70		
	M105	0.00001000		16.00		
	M51	0.00001000		14.50	12.06	1.79
	M52	0.00001000	•	12.22		
90.0000	M53	0.00001000	0.00001000	10.00		
	M54	0.00001000		11.00		
	M55	0.00001000		11.60		
	M91	0.00001000		10.11		
	M92	0.00001000		14.00		
100.0000	M93	0.00001000	0.00001000	12.50	12.05	1.91
	M94	0.00001000		10.00	1	
	M95	0.00001000		13.66		
	M111	0.00001000		12.30		
110.0000	M112	0.00001000	0.00001000	13.80	12.48	1.51
	M113	0.00001000		14.00		

Cuadro 106. Media y desviación estándar del volumen y tiempo de llenado por cada diez minutos de contacto, continuación.

Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006m ³)	Media (±0.00000000m ³)	Tiempo de llenado (±0.05 <i>seg</i> .)	Media	Desv. estándar
110,0000	M114	0.00001000	0.00001000	12.00	12.48	1.51
110.0000	M115	0.00001000	0.00001000	10.30	12.40	1.51
	M121	0.00001000		14.50		
	M122	0.00001000		11.20		
120.0000	M123	0.00001000	0.00001000	12.00	12.36	1.76
	M124	0.00001000		10.30		
	M125	0.00001000		13.80		
120,0000	M131	0.00001000	0.00001000	14.00	12.25	1.06
130.0000	M132	0.00001000	0.00001000	12.50	15.25	1.06
	N11	0.00001000		17.60		
	N12	0.00001000	0.00001000	14.55	16.68	1.67
140.0000	N13	0.00001000		16.90		
	N14	0.00001000		15.55		
	N15	0.00001000		18.80		
	N21	0.00001000		6.60	10.15	
	N22	0.00001000		10.11		1.17
150.0000	N23	0.00001000	0.00001000	9.50		
	N24	0.00001000		11.05		
	N25	0.00001000		11.5		
	N31	0.00001000		15.00		
	N32	0.00001000		15.50		
160.0000	N33	0.00001000	0.00001000	12.45	13.98	1.25
	N34	0.00001000		13.40		
	N35	0.00001000		13.55		
170.0000	N41	0.00001000	0.00001000	12.45	12.66	3 57
170.0000	N42	0.00001000	0.00001000	8.60	12.00	5.57

Cuadro 107. Media y desviación estándar del volumen y tiempo de llenado por cada diez minutos de contacto, continuación.

Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006m ³)	Media (±0.0000000m ³)	Tiempo de llenado (±0.05seg.)	Media	Desv. estándar
	N43	0.00001000	0.00001000	10.11		
170.0000	N44	0.00001000		14.55	12.66	3.57
	N45	0.00001000		17.60		
	N51	0.00001000		5.20		
	N52	0.00001000		6.55		
180.0000	N53	0.00001000	0.00001000	5.23	5.69	0.58
	N54	0.00001000		5.48		
	N55	0.00001000	-	6.00		
	N61	0.00001000		7.00		0.51
	N62	0.00001000		6.55	6.93	
190.0000	N63	0.00001000	0.00001000	6.30		
	N64	0.00001000		7.58		
	N65	0.00001000		7.23		
	N71	0.00001000		6.25	6.65	0.49
	N72	0.00001000		6.56		
200.0000	N73	0.00001000	0.00001000	7.06		
	N74	0.00001000		7.24		
	N75	0.00001000		6.13		
	N81	0.00001000		5.20		
	N82	0.00001000		7.05		
210.0000	N83	0.00001000	0.00001000	5.55	5.95	0.97
	N84	0.00001000		6.93	1	
	N85	0.00001000		5.00		
	N91	0.00001000		8.80		
220.0000	N92	0.00001000	0.00001000	5.65	7.28	1.16
	N93	0.00001000		7.82	-	

Cuadro 108. Media y desviación estándar del volumen y tiempo de llenado por cada diez minutos de contacto, continuación.

Tiempo de	Corrida	Volumen	Media	Tiempo de Ilenado	Madia	Desv.
$(\pm 0.0008 min.)$	Corrida	$(\pm 0.0000006m^3)$	$(\pm 0.0000000m^3)$	$(\pm 0.05 seg.)$	wicula	estándar
220,0000	N94	0.00001000	0.00001000	6.87	7.20	1.16
220.0000	N95	0.00001000	0.00001000	7.24	7.20	1.10
	N101	0.00001000		4.50		
	N102	0.00001000		6.78		
230.0000	N103	0.00001000	0.00001000	7.00	6.14	1.08
	N104	0.00001000		5.56		
	N105	0.00001000		6.87		
	N111	0.00001000	0.00001000	5.65	6.51	0.67
	N112	0.00001000		6.43		
240.0000	N113	0.00001000		7.00		
	N114	0.00001000		6.12		
	N115	0.00001000		7.33		
	N121	0.00001000		6.56		
	N122	0.00001000		7.58		0.99
250.0000	N123	0.00001000	0.00001000	5.23	6.39	
	N124	0.00001000		7.05		
	N125	0.00001000		5.55		
260,0000	N131	0.00001000	0.00001000	6.44	6.00	0.62
200.0000	N132	0.00001000	0.00001000	5.56	6.00	0.02

Cuadro 109. Media y desviación estándar del volumen y tiempo de llenado por cada diez minutos de contacto, continuación.
Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006m ³)	Media (±0.00000000m ³)	Tiempo de llenado (±0.05 <i>seg</i> .)	Media	Desv. estándar
	011	0.00001000		10.00		
	012	0.00001000		11.00		
320.0000	O13	0.00001000	0.00001000	11.60	11.98	1.89
	O14	0.00001000	•	15.00		
	015	0.00001000		12.30		
	O21	0.00001000		12.30		
	O22	0.00001000	•	13.80		1.51
380.0000	O23	0.00001000	0.00001000	14.00	12.48	
	O24	0.00001000		12.00		
	O25	0.00001000		10.30		
	O31	0.00001000		15.00	13.98	
	O32	0.00001000		15.50		1.25
440.0000	O33	0.00001000	0.00001000	12.45		
	O34	0.00001000		13.40		
	O35	0.00001000		13.55		
	O41	0.00001000		13.40		
	O42	0.00001000		13.55		
500.0000	O43	0.00001000	0.00001000	12.45	11.62	2.18
	O44	0.00001000		8.60		
	O45	0.00001000		10.11		
	O51	0.00001000		16.23		
560.0000	O52	0.00001000		8.40		
	O53	0.00001000	0.00001000	12.45	12.13	2.18
	O54	0.00001000		11.55		
	O55	0.00001000		12.00		
620,0000	O61	0.00001000	0.00001000	7.00	6.02	0.51
620.0000	O62	0.00001000	0.0001000	6.55	0.93	0.31

Cuadro 110. Media y desviación estándar del tiempo de llenado por cada hora de contacto.

Nota: Aquí, se presenta la media del volumen de cada muestra con su respectivo tiempo de llenado, el cual también tiene su media y desviación estándar, para cada hora.

Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006m ³)	Media (±0.00000000m ³)	Tiempo de llenado (±0.05 <i>seg</i> .)	Media	Desv. estándar
	O63	0.00001000		6.30		
620.0000	O64	0.00001000	0.00001000	7.58	6.93	0.51
	O65	0.00001000		7.23		
	O71	0.00001000		10.30		
	072	0.00001000		15.00		
680.0000	073	0.00001000	0.00001000	15.50	13.33	2.09
	O74	0.00001000		12.45		
	075	0.00001000		13.40		
	081	0.00001000		13.20		
	082	0.00001000		13.60	13.70	
740.0000	083	0.00001000	0.00001000	14.00		1.34
	O84	0.00001000		12.00		
	085	0.00001000		15.70		
	O91	0.00001000		8.80		1.16
	092	0.00001000		5.65	7.28	
800.0000	093	0.00001000	0.00001000	7.82		
	O94	0.00001000		6.87		
	095	0.00001000		7.24		
	O101	0.00001000		4.50		
	O102	0.00001000		6.78		
860.0000	O103	0.00001000	0.00001000	7.00	6.14	1.08
	O104	0.00001000		5.56		
	O105	0.00001000		6.87		
	0111	0.00001000		14.00		
920 0000	0112	0.00001000	0.00001000	12.00	13 36	2 17
920.0000	0113	0.00001000	0.0001000	10.30	15.50	2.1/
	0114	0.00001000		15.00	-	

Cuadro 111. Media y desviación estándar del tiempo de llenado por cada hora de contacto, continuación.

Nota: Aquí, se presenta la continuación del cuadro anterior de la media del volumen de cada muestra con su respectivo tiempo de llenado, el cual también tiene su media y desviación estándar, para cada hora.

Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006 <i>m</i> ³)	Media (±0.00000000m ³)	Tiempo de llenado (±0.05seg.)	Media	Desv. estándar
920.0000	O115	0.00001000	0.00001000	15.05	13.36	2.17

Cuadro 112. Media y desviación estándar del tiempo de llenado por cada hora de contacto, continuación.

Nota: Aquí, se presenta la continuación del cuadro anterior de la media del volumen de cada muestra con su respectivo tiempo de llenado, el cual también tiene su media y desviación estándar, para cada hora.

Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006m ³)	Media (±0.0000000m ³)	Tiempo de llenado (±0.05 <i>seg</i> .)	Media	Desv. estándar
	P11	0.00001000		13.500		
	P12	0.00001000		10.27		
1580.0000	P13	0.00001000	0.00001000	12.35	12.93	1.76
	P14	0.00001000		15.00		
	P15	0.00001000		13.55		
	P21	0.00001000		11.43	11.57	
	P22	0.00001000		13.55		1.53
2240.0000	P23	0.00001000	0.00001000	12.55		
	P24	0.00001000		10.65		
	P25	0.00001000		9.67		
	P31	0.00001000		15.23	11.72	2.15
	P32	0.00001000		11.86		
2900.0000	P33	0.00001000	0.00001000	11.24		
	P34	0.00001000		10.80		
	P35	0.00001000		9.45		
25(0.0000	P41	0.00001000		12.43		
	P42	0.00001000	0.00001000	11.96	11.40	0.86
5500.0000	P43	0.00001000	0.0001000	11.54	11.40	0.00
	P44	0.00001000		10.36		

Cuadro 113. Media y desviación estándar del tiempo de llenado por cada once horas de contacto.

 P44
 0.00001000
 10.50

 Nota: Aquí, se presenta la media del volumen de cada muestra con su respectivo tiempo de llenado, el cual también tiene su media y desviación estándar, para cada once horas.

continuación.

Tiempo de contacto (±0.0008 <i>min</i> .)	Corrida	Volumen (±0.0000006m ³)	Media (±0.00000000m ³)	Tiempo de Ilenado (±0.05seg.)	Media	Desv. estándar
3560.0000	P45	0.00001000	0.00001000	10.72	11.40	0.86
	P51	0.00001000		15.78		
	P52	0.00001000		13.28		
4220.0000	P53	0.00001000	0.00001000	11.37	12.37	2.20
	P54	0.00001000		10.34		
	P55	0.00001000		11.06		

 Nota: Aquí, se presenta la continuación del cuadro anterior de la media del volumen de cada muestra con su respectivo tiempo de llenado, el cual también tiene su media y desviación estándar, para cada once horas.

Tiempo de contacto		Tiempo	de llenado		Caudal
Segundos (±0.05 <i>seg</i> .)	Horas (±0.00001 <i>hrs</i> .)	Minutos	Segundos	(L/min)	(m^3/s)
600.00	0.16667	0.18±0.01	11.00 <u>±</u> 0.67	0.055±0.006	0.000001 ± 0.0060845
1200.00	0.33333	0.34 <u>+</u> 0.04	20.30 <u>+</u> 2.34	0.030 <u>+</u> 0.006	0.0000005 ± 0.0063003
1800.00	0.50000	0.22±0.05	13.48 <u>+</u> 3.02	0.045 ± 0.007	0.0000007 ± 0.0070699
2400.00	0.66667	0.22 <u>+</u> 0.05	13.38 <u>+</u> 2.98	0.045 <u>±</u> 0.007	0.0000007±0.0070579
3000.00	0.83333	0.26 <u>±</u> 0.04	15.72 <u>+</u> 2.52	0.038 ± 0.007	0.0000006 ± 0.0065698
3600.00	1.00000	0.20 <u>+</u> 0.03	11.98 <u>+</u> 1.89	0.050 <u>+</u> 0.007	0.0000008 ± 0.0065494
4200.00	1.16667	0.21 <u>±</u> 0.03	12.70 <u>+</u> 1.62	0.047 <u>±</u> 0.006	0.000008 ± 0.0063649
4800.00	1.33333	0.24 <u>+</u> 0.03	14.26 <u>+</u> 1.64	0.042 <u>+</u> 0.006	0.0000007 <u>+</u> 0.0062975
5400.00	1.50000	0.20 <u>±</u> 0.03	12.06 <u>+</u> 1.79	0.050 <u>+</u> 0.006	0.000008 ± 0.0064919
6000.00	1.66667	0.20 <u>+</u> 0.03	12.054 <u>+</u> 1.91	0.050 <u>+</u> 0.007	0.0000008 ± 0.0065544
6600.00	1.83333	0.21 <u>±</u> 0.03	12.48 <u>+</u> 1.51	0.048 <u>+</u> 0.006	0.0000008 ± 0.0063280
7200.00	2.00000	0.21 <u>±</u> 0.03	12.36 <u>+</u> 1.76	0.049 <u>+</u> 0.006	0.0000008±0.0064517
7800.00	2.16667	0.22 <u>+</u> 0.03	13.25 <u>+</u> 1.06	0.045 <u>+</u> 0.006	0.0000008±0.0061465
8400.00	2.33333	0.28 <u>+</u> 0.03	16.68 <u>+</u> 1.67	0.036 <u>+</u> 0.006	0.0000006 ± 0.0062287
9000.00	2.50000	0.17 <u>±</u> 0.02	10.15 <u>+</u> 1.17	0.059 <u>+</u> 0.006	0.0000010±0.0062991
9600.00	2.66667	0.23 <u>±</u> 0.02	13.98 <u>+</u> 1.25	0.043±0.006	0.0000007 ± 0.0061812
10200.00	2.83333	0.21 <u>±</u> 0.06	12.66 <u>+</u> 3.57	0.047 <u>±</u> 0.008	0.0000008±0.0076219
10800.00	3.00000	0.09 <u>±</u> 0.01	5.69 <u>+</u> 0.58	0.105±0.006	0.0000018 ± 0.0062333
11400.00	3.16667	0.12±0.01	6.93 <u>±</u> 0.51	0.087 <u>±</u> 0.006	0.0000014 ± 0.0061262
12000.00	3.33333	0.11±0.01	6.65 <u>±</u> 0.49	0.090 <u>+</u> 0.006	0.0000015 ± 0.0061237

Cuadro 115. Determinación de caudal para llenado de muestras de la columna del sistema a escala

laboratorio.

Nota: Con el tiempo de llenado, se determinó el caudal para cada tiempo de contacto.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Tiempo de contacto		Tiempo	de llenado		Caudal
Segundos (±0.05 <i>se.g.</i>)	Horas (+0.00001 <i>brs</i>)	Minutos	Segundos	(L/min)	(m^3/s)
12600.00	3.50000	0.10+0.02	5.95+0.97	0.101+0.007	0.0000017+0.0065920
13200.00	3.66667	0.12 ± 0.02	7.28 ± 1.16	0.082 ± 0.007	0.0000014 ± 0.0065666
13800.00	3.83333	0.10 ± 0.02	6.14 ± 1.08	0.098 ± 0.007	0.0000016 ± 0.0066833
14400.00	4.00000	0.11±0.01	6.51 <u>±</u> 0.67	0.092 ± 0.006	0.0000015 ± 0.0062426
15000.00	4.16667	0.11±0.02	6.39 <u>±</u> 0.99	0.094 ± 0.007	0.0000016 ± 0.0065329
15600.00	4.33333	0.10±0.01	6.00±0.62	0.100±0.06	0.0000017 ± 0.0062440
19200.00	5.33300	0.20±0.03	11.98 <u>+</u> 1.89	0.050 ± 0.007	0.0000008 ± 0.0065494
22800.00	6.33300	0.21±0.03	12.48 <u>+</u> 1.51	0.048 ± 0.007	0.0000008 ± 0.0065079
26400.00	7.33300	0.23 ± 0.02	13.98±1.25	0.043±0.006	0.0000007 ± 0.0064080
30000.00	8.33300	0.19 <u>±</u> 0.04	11.62 <u>+</u> 2.18	0.052 ± 0.007	0.0000009 ± 0.0065822
33600.00	9.33300	0.20±0.04	12.13 <u>+</u> 2.18	0.049 <u>±</u> 0.007	0.0000008 ± 0.0065367
37200.00	10.33300	0.12±0.01	6.93 <u>+</u> 0.51	0.087 <u>±</u> 0.008	0.0000014 ± 0.0075227
40800.00	11.33300	0.22±0.03	13.33 <u>+</u> 2.09	0.045 <u>+</u> 0.006	0.000008 ± 0.0064474
44400.00	12.33300	0.23 ± 0.02	13.70±1.35	0.044 <u>+</u> 0.006	0.0000007 ± 0.0064243
48000.00	13.33300	0.12±0.02	7.28 <u>±</u> 1.16	0.083 <u>+</u> 0.007	0.0000014 <u>+</u> 0.0073953
51600.00	14.33300	0.10 <u>±</u> 0.02	6.14 <u>+</u> 1.08	0.098 <u>+</u> 0.008	0.0000016 ± 0.0078885
55200.00	15.33300	0.22 <u>±</u> 0.04	13.36 <u>+</u> 2.17	0.045 <u>+</u> 0.006	0.0000007 ± 0.0064454
94800.00	26.33300	0.22 <u>±</u> 0.03	12.93 <u>+</u> 1.76	0.046 <u>+</u> 0.006	0.0000008 ± 0.0064148
134400.00	37.33300	0.19 <u>±</u> 0.03	11.57 <u>+</u> 1.53	0.052 <u>+</u> 0.007	0.0000009 <u>+</u> 0.0065143
174000.00	48.33300	0.20±0.04	11.72 <u>+</u> 2.15	0.051 ± 0.007	0.0000009 ± 0.0065020
213600.00	59.33300	0.19 <u>±</u> 0.01	11.40 <u>±</u> 0.86	0.053 ± 0.007	0.000009 ± 0.0065289
253200.00	70.33300	0.21±0.04	12.37±2.20	0.049±0.006	0.0000008±0.0064524
Ν	Aedia	0.19 <u>±</u> 0.06	11.16 <u>+</u> 3.41	0.060 ± 0.022	0.000001 ± 0.0000003

Cuadro 116. Determinación de caudal para llenado de muestras de columna del sistema a escala laboratorio, continuación.

Nota: Con el tiempo de llenado, se determinó el caudal para cada tiempo de contacto.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Cuadro 117. Media y desviación estándar del tiempo que le toma tanto al agua destilada sin contaminar como a la contaminada de plomo II, ir de la marca "D" a "E" del viscosímetro.

Fluido	Drucho	Tiempo	Modio	Desviación
Fluido	TTUEDa	$(\pm 0.05 seg.)$	Witula	Estándar
Agua destilada sin	1	268.00	280.00	16.97
contaminar	2	292.00	200.00	10.57
Agua destilada	1	248.00		
contaminada con	2	257.00	252.50	6.36
plomo II	_			

Nota: Para ver la marca "D" y "E" del viscosímetro, ir a la sección de metodología, la Figura 19, página 58.

Cuadro 118. Determinación de la viscosidad tanto para el agua destilada sin contaminar como el agua contaminada de plomo II.

Fluido	Viscosidad (kg/m*s)
Agua destilada sin contaminar	0.00277 ± 0.00018
Agua destilada contaminada con plomo II	0.00250 ± 0.00020

Nota: Para la obtención de la viscosidad se tomó en consideración el tiempo que le toma tanto al agua destilada sin contaminar como a la contaminada de plomo II, ir de la marca "D" a "E" del viscosímetro. Y se hizo uso de otros parámetros proporcionados por el proveedor del viscosímetro (Ver Figura 140, en anexos, en información adicional, página 311.

Cuadro 119. Volúmenes de los componentes de la columna del sistema natural tanto a escala laboratorio como su escalamiento con sus respectivas proporciones.

Componentes	Proporciones de	Escala Laboratorio	Escalamiento	
Componentes	componentes (%)	Volúmenes (m ³)		
Piedra Pómez	37.763 <u>±</u> 0.001	0.00065600±0.00000001	1.3465 <u>±</u> 0.0001	
Bioresina	7.550 <u>±</u> 0.008	0.00013115±0.00009836	0.2692±0.0010	
Agua a Tratar	54.687±0.001	0.00095000±0.0000006	1.9500	
Capacidad Total	$100\ 000\pm 0\ 008$	0 00173715+0 00009836	3 5657+0 0001	
de la Columna	100.000 - 0.000	0.00170710_0.00007050	5.555 / <u>-</u> 0.0001	

Nota: El volumen del escalamiento fue de $3.5657m^3 \pm 0.0001m^3$. Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

escalamiento.				
Parámetro	Escala Laboratorio	Escalamiento		
Porcentaje de expansión de bioresina (%)	10.5263±0.0709	10.5263±0.0709		
Altura de bioresina (<i>m</i>)	0.0122 <u>+</u> 0.0075	0.1303 ± 0.0061		
Expansión de bioresina (m)	0.0013 <u>+</u> 0.9120	0.0137±0.6753		
Altura del lecho sin expansión de bioresina (<i>m</i>)	0.2280 ± 0.0005	2.4359±0.0048		
Altura del lecho con expansión de bioresina (<i>m</i>)	0.2293±0.9120	2.4496±0.6753		
Altura de lecho con factor de seguridad (<i>m</i>)	0.2751±0.9120	2.9395±0.6753		
Relación de esbeltez (L/D)	2.3516±0.0331	2.3516±0.6753		
Área de columna (m^2)	0.1226 <u>+</u> 0.0046	13.9979 <u>+</u> 0.0046		
Volumen de columna (m^3)	0.0030 ± 0.0331	3.6074 <u>±</u> 0.6753		

Cuadro 120. Dimensionamiento de la columna del sistema natural tanto a escala laboratorio como su

Nota: Se consideró un factor del 20% para el escalamiento de la columna del sistema natural.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Cuadro 121. Dimensionamiento de cabezales toriesféricos del tipo ASME FLANGED & DISHED.

Parámetros	Valor (m)
Diámetro	1.2500
Radio de corona	1.2500
Radio de nudillo	0.1250
Espesor	0.0043
Altura de parte recta	0.02305

Nota: Se hizo uso del espesor calculado en una tesis para una columna catiónica de lecho fijo para la potabilización de agua (Agamez, 2014).

Parámetros	Valor					
Caudal (m^3/s)	0.00639					
Viscosidad $(kg/m * s)$	0.00250 ± 0.00020					
Velocidad Nominal (m/s)	2.85000					
Área nominal (m^2)	0.00224					
Radio nominal (<i>m</i>)	Valor 0.00639 0.00250 ± 0.00020 2.85000 0.00224 0.02671 $0.05343 m$ $2.10335 in$ $2.06700 in$ $0.05250 m$ $2.37500 in$ $0.06032 m$ 0.00216 2.95112 10.00000 62006.95804 ± 0.00020 $0.00015 ft$ 0.00087					
	0.05343 m					
Diametro nominai	2.10335 in					
	2.06700 in					
Diametro interior real	0.05250 m					
	2.37500 in					
Diametro exterior	0.06032 m					
Town 7 or a main of the table of	2.0000 in					
l'amano nominal de tuberia	0.05080 m					
Área (m^2)	0.00216					
Velocidad real (m/s)	2.95112					
Largo (<i>m</i>)	10.00000					
Número de Reynolds	62006.95804±0.00020					
1	0.00015 ft					
K	0.00005 m					
Rugosidad relativa (k/D)	0.00087					
Factor de fricción Fanning	0.00480					

Cuadro 122. Dimensionamiento de tuberías estándar de acero.

Nota: Este dimensionamiento corresponde tanto a la tubería de entrada como de salida del escalamiento de la columna del sistema.

Los valores que le siguen al \pm , hacen referencia a la propagación de error de los resultados (desviación estándar de la media).

Figura 32. Índice: Equipos y Accesorios.

Figura 33. Índice: Control e instrumentación.

Thuộ Naturai	_		
FN			
Transmisor Indicador de Presión	Transmisor de Temperatura	Válvula Controladora de Flujo	Potencia de Bomba
PIT	TT	FCV	Р
Transmisor de pH	Transmisor Indicador de Nivel	Controlador Indicador de Flujo	Alarma de Nivel Alto
РНТ	LIT	FIC	ALH
Alarma de Nivel Bajo	Transmisor Indicador de Flujo	Válvula de Control de Flujo	Cálculo de Flujo
ALL	FIT	FCV	FY

Figura 34. Propuesta de sistema natural vista planta.

Figura 35. Medidas de la propuesta de la columna del sistema natural.

Figura 36. Propuesta de la columna del sistema natural Vista 3D.

Figura 37. Ficha técnica de la propuesta del la columna del sistema natural que utiliza la cáscara de banano para la remoción de Plomo II.

Accesories	Cantidad	Coeficient	Diámetro	equivalente					
Accesorios	Cantidad	Unidad	Totales	Unidad	Totales				
Codo de 45°	3	0.35	1.05	15	45				
Válvula de globo	1	6	6	300	300				
	Total								

Cuadro 123. Pérdida de presión en accesorio de tuberías y válvulas de entrada.

Nota: Tanto los coeficientes de fricción para cada accesorio como el diámetro equivalente de cada uno, se ubican en la Figura 14, en marco teórico, página 40.

Cuadro 124. Determinación de cabeza dinámica para dimensionamiento de bombas centrífuga de entrada.

Largo asociado de accesorios (m)	18.1131
Largo total en tubería (m)	28.1131
Caída de presión (N/m^2)	89538.7967
Cabeza dinámica (<i>m</i>)	9.1273

Cuadro 125. Determinación de cabeza estática para dimensionamiento de bombas centrífuga de entrada.

1.6000
4.2395
2.6395
101325.0000
101400.0000
75.0000
0.0076
2.6471

Nota: Para la altura 1, se consideró la altura de un tinaco Rotoplas de 2,500L. La altura 2, es la altura del escalamiento, tomando en cuenta el alto de las tuberías.

Para el caso de la presión 1, se asumió que el tinaco estaba abierto a la atmósfera. Mientras que para la presión 2, se consideró que sería un poco mayor a la atmósfera por tratarse de un tanque cerrado.

Cuadro 126. Determinación de cabeza total para dimensionamiento de bomba centrífuga de entrada.

|--|

	r
	Bomba de entrada
Potencia (kW)	0.7
Eficiencia (%)	60

Cuadro 127. Potencia y eficiencia para la bomba de entrada del escalamiento de la columna del sistema natural.

Nota: Para la determinación tanto de la potencia como de la eficiencia de la bomba de entrada, se utilizó las curvas características que se ubican en anexos, en información adicional, Figuras 128 y 129 páginas 298 y 299. Para utilizar estas curvas, se hizo uso del caudal que tendría el escalamiento de la columna del sistema natural. Este caudal fue el propuesto por la empresa DESOTEC (Ver Figura 142, en anexos, en información adicional, página 313). Además, se necesitó de la cabeza total de cada una de las bombas.

Nota: Es importante destacar que para el balane de masa de la bioresina, se tomó como referencia la producción de banano en el año 2016 en Guatemala, y considerando que el 46% de la misma provenía de Escuintla. Además, se trabajó bajo la suposición de que el 10% era banano de rechazo, y que el 30% del peso del fruto correspondía a la cáscara (Ver Cuadro 36). Dicho lo anterior, se obtuvo un flujo másico de 16,344.8686kg/h de cáscara de banano sucio, mismo que se utilizó para el balance de masa de la fabricación de la bioresina.

Cuadro 128. Tasa interna de retorno y valor actual neto de la fabricación de la bioresina.

Valor Actual Neto (VAN)	Q. 35,490,744.78
Tasa Interna de Retorno (TIR)	28%
Periodo de Recuperación	2.30

Nota: Para el detalle de todos los rubros que se consideraron para el cálculo de la tasa interna de retorno (TIR) de la bioresina, dirigirse a anexos, datos calculados, Figuras 38 a 47, páginas 210 a 220.

Figura 39. Inversión en maquinaria requerida para la fabricación de la bioresina.

	Conversión de \$ a Q	
Q	7.70	\$ 1.00

Descripción de los Equipos	scripción de los Equipos Capacidad Requerida		Material	Cantidad Requerida
Máquina lavadora	2	m3	CS	2
Motor para máquin lavadora	16	kW	CS	2
Bomba para máquina lavadora	16	kW	CS	2
Secador de bandejas	3.4	m2	CS	1
Motor para secador de bandejas	18	kW	CS	1
Molino de martillos	0.305	m3	CS	1
Motor para molino de martillos	55	kW	CS	1
Tamizador	1500	kg	CS	1
Motor para tamizador	0.525	kW	CS	1
Ensacadora	18750	kg	CS	1
Motor de ensacadora	4.5	kW	CS	1

						For show do	Costo					
Equipos	Capacidad	Unidades	Costo	o aproximado	Exponente	Material	M&S /	(1año)	M&S (1956)	SupePro Designe	Pro	oveedores
Máquina lavadora							\$		\$ -	\$-	\$1	10,000.00
Motor para máquin lavadora	7.5	kW	\$	12,300.00	0.56	1	\$ 18,8	800.87	\$ 73,549.01			
Bomba para máquina lavadora	7.5	kW	\$	1,600.00	0.3	1	\$ 2,0	008.34	\$ 7,856.63			
Secador de bandejas	9.3	m2	\$	73,000.00	0.52	1	\$ 43,2	259.43	\$ 84,615.44	\$-	\$	
Motor para secador de bandejas	7.5	kW	\$	12,300.00	0.56	1	\$ 20,0	082.76	\$ 39,281.88			
Molino de martillos							\$		\$ -	\$82,000.	00 \$	
Motor para molinode martillos	7.5	kW	\$	12,300.00	0.56	1	\$ 37,5	538.24	\$ 73,424.80			
Tamizador							\$		\$ -	\$-	\$	6,500.00
Motor para tamizador	7.5	kW	\$	12,300.00	0.56	1	\$ 2,7	774.34	\$ 5,426.61			
Ensacadora							\$		\$ -	\$-	\$4	40,000.00
Motor de ensacadora	7.5	kW	\$	12,300.00	0.56	1	\$ 9,2	239.95	\$ 18,073.35			
			Cos	sto FOB					\$284,154.37	\$82,000.	00 \$5	56,500.00

M&S						
1000	Referencia					
1956	Año 2010					

Costo FOB total de Equipos	\$	422,654.37
Flete Internacional	\$	12,679.63
Costo CIF	\$	435,334.01
IVA	\$	52,240.08
Arancel	\$	21,766.70
Costo con Impuestos	\$	509,340.79
Costos Aduanales	\$	4,353.34
Costo Total	Ś	513,694.13

Flete Internacional	Flete Internacional 3% del costo F			
IMPUESTOS				
IVA	12%	del costo CIF		
Arancel	5%	del costo CIF		
Gastos aduanales, transporte interno, otros.	1%	del costo CIF		

Detalles (Sólidos-fluidos, plantas base)	Factor	Costo			
Instalación	0.41	\$	210,614.59	Q	1,621,732.36
Tubería	0.34	\$	174,656.00	Q	1,344,851.22
Electricidad	0.13	\$	66,780.24	Q	514,207.82
Instrumentación	0.13	\$	66,780.24	Q	514,207.82
Planta auxiliar de energía	0.3	\$	154,108.24	Q	1,186,633.43
Excavación y preparación del sitio	0.15	\$	77,054.12	Q	593,316.72
Auxiliares	0.52	\$	267,120.95	Q	2,056,831.28
Ingenieria	0.39	\$	200,340.71	Q	1,542,623.46
Contratistas	0.13	\$	66,780.24	Q	514,207.82
Contingencia	0.39	\$	200,340.71	Q	1,542,623.46
Total		\$	1,484,576.02	Q	11,431,235.39

Invortión	\$ 1,998,270.15
Inversion	Q15,386,680.16

Nota: En esta figura se plantean los equipos requeridos para el proceso de fabricación de bioresina en sacos de 25kg.

Para establecer los costos de los equipos, se consideró el índice de costo de equipos de Marshall&Swift para los que que se encontraban en la Figura 136, en anexos, en la sección de información adicional, página 308. Para los costos de los equipos que no se que no se encontraron en esa figura, se utilizó SuperPro Designer; y los que no se encontraron en los dos anteriores, se cotizaron con algunos proveedores.

También se consideraron los costos de instalación, tubería, electricidad, instrumentación, planta auxiliar de energía, excavación y preparación del sitio, entre otros.

Figura 40. Costo total de la construcción, terreno y paredes para la fabricación de la bioresina.

Clasificación		Costo
m2 de construcción industrial	Q	4,500.00
m2 de construcción de piso no industrial	Q	2,500.00
m lineal de pared (3m de alto)	Q	1,500.00
m2 de jardín, área verde, áreas que no sean de construcción	Q	750.00
Costo de pozo	Q3,	000,000.00
Costos de terreno	\$	30.00

1 vara2 0.698896 m2

[Área de Planta	Largo (m)	Ancho (m)	Área (m2)		Costo
	Recepción de cáscaras de banano	5.9	5.9	34.81	Q	156,645.00
	Máquina lavadora	5.221	4.321	22.559941	Q	101,519.73
	Secador de bandejas	3.5	3.7	12.95	Q	58,275.00
	Molino de martillos	3.725	3.345	12.460125	Q	56,070.56
	Tamizador	2.044	2.544	5.199936	Q	23,399.71
	Ensacadora	5.694	5.068	28.857192	Q	129,857.36
Construcción	Almacenamiento de sacos de bioresina			3228	Q14	4,526,000.00
Industrial	Laboratorio fisicoquímico	7	4	28	Q	126,000.00
industrial	Oficinas administrativas	6	6	36	Q	162,000.00
	Oficinas de producción	6	6	36	Q	162,000.00
	Vestidores	6	5	30	Q	135,000.00
	Baños	5	3	15	Q	67,500.00
	Cafetería	10	6	60	Q	270,000.00
	Garita	3	3	9	Q	40,500.00
	Clínicas médicas	5	5	25	Q	112,500.00
Ároas do	Estacionamiento de camiones	20	6	120	Q	300,000.00
Construcción	Parqueos administrativos	6	24	144	Q	360,000.00
No. Industrial	Desechos	7	7	49	Q	122,500.00
No industrial	Parqueo de recolección de desechos	14	3	42	Q	105,000.00
Área Verde y de Recreación	Jardín	6	3	18	Q	13,500.00
	Costo Total de Construcción				Q1	7,028,267.37

Paredes		65 Q97,500.00			
Área de Terreno (m2)		3956.837194			
Costo do Torrono			82,962.53		
costo de Terreno	Q		638,811.49		
Costo Total de Construcción, Terreno y Paredes	Q	1	7,764,578.86		

Nota: Para establecer los costos de área, se tomó en consideración el espacio que iba a requerir cada equipo necesario para la fabricación de la bioresina. Además, se tomó en cuenta el espacio de los laboratorios fisicoquimicos, las oficinas administrativas, oficinas de producción, los baños, la cafetería, la garita, la clínica médica, el estacionamiento de camiones, los parqueos administrativos, el área de desechos, entre otros. Además, es importante mencionar que se consideraron los costos de construcción y de terreno, para así establecer el costo total de construcción.

Equipos	Q 3,955,444.77
Instalación	Q 1,621,732.36
Tubería	Q 1,344,851.22
Electricidad	Q 514,207.82
Instrumentación	Q 514,207.82
Planta auxiliar de energía	Q 1,186,633.43
Excavación y preparación del sitio	Q 593,316.72
Auxiliares	Q 2,056,831.28
Ingenieria	Q 1,542,623.46
Contratistas	Q 514,207.82
Contingencia	Q 1,542,623.46
Construcción Industrial	Q 16,127,267.37
Área de Construcción No Industrial	Q 887,500.00
Área Verde y de Recreación	Q 13,500.00
Paredes	Q 97,500.00
Terreno	Q 638,811.49
Inversión Total	Q 33,151,259.03

Figura 41. Inversión total para la fabricación de la bioresina.

(Elaboración propia).

Nota: En la inversión total se toma en cuenta tanto la inversión de los equipos y de instalación, como de la construcción industrial y el costo del terreno.

Figura 42. Horarios y salarios de personal responsable de la fabricación de bioresina.

RECEPCIÓN DE CÁSCARAS DE BANANO

					Jornada	Horario	Horas	Días
Operarios	3				Diurna	8:00am a 6:00pm	8	Lunes a Viernes
Sueldo por Día	Q 150.00							
Hora Ordinaria	Q 18.75							
Jornada	Horario	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Diurna	Todas las Semanas	8	8	8	8	8	0	0
Salario Somanal	0 750.00							

Salario Semanal	Q	750.00
Salario Mensual	Q	3,000.00
Vacaciones	Q	3,000.00

MÁQUINA LAVADORA

	1
Q	150.00
Q	18.75
	Q

		Itolallo	Lunes	iviartes	Wiercoles	Jueves	Viernes	Sábado	Domingo
Diurna Todas las Semanas 8 8 8 8 8 8	Diurna	Todas las Semanas	8	8	8	8	8		

Salario Semanal	Q	750.00
Salario Mensual	Q	3,000.00
Vacaciones	Q	3,000.00

SECADOR DE BANDEJAS

Operarios		2
Sueldo por Día	Q	150.00
Hora Ordinaria	Q	18.75

Jornada	Horario	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Diurna	Todas las Semanas	8	8	8	8	8		

Salario Semanal	Q	750.00
Salario Mensual	Q	3,000.00
Vacaciones	Q	3,000.00

MOLINO DE MARTILLOS

	2
Q	150.00
Q	18.75
	Q

Jornada	Horario	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Diurna	Todas las Semanas	8	8	8	8	8		

Salario Semanal	Q	750.00
Salario Mensual	Q	3,000.00
Vacaciones	Q	3,000.00

(Elaboración propia).

Nota: Para este trabajo, se consideró que tanto los operarios como el personal administrativo trabajaría en jornada diurna de lunes a viernes durante todo el año.

Figura 43. Horarios y salarios de personal responsable de la fabricación de bioresina.

		1
Sueldo por Día	Q	150.00
Hora Ordinaria	Q	18.75

Jornada	Horario	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Diurna	Todas las Semanas	8	8	8	8	8		

Salario Semanal	Q	750.00
Salario Mensual	Q	3,000.00
Vacaciones	Q	3,000.00

ENSACADORA

Operarios		2
Sueldo por Día	Q	150.00
Hora Ordinaria	Q	18.75

Jornada	Horario	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Diurna	Todas las Semanas	8	8	8	8	8		

Salario Semanal	Q	750.00
Salario Mensual	Q	3,000.00
Vacaciones	Q	3,000.00

ALMACENAMIENTO DE SACOS DE BIOESINA

Operarios		3
Sueldo por Día	Q	150.00
Hora Ordinaria	Q	18.75

Jornada	Horario	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Diurna	Todas las Semanas	8	8	8	8	8		

Salario Semanal	Q	750.00
Salario Mensual	Q	3,000.00
Vacaciones	Q	3,000.00

ADMINISTRACIÓN

Calabaradan	Countinformal	Sueldo	Mensual	Sueldo	por Año	Sueldo por Semaa		
Colaborador	Cantidad	Personal	Todos	Personal	Todos	Personal	Todos	
Gerente General	1	Q 23,497.83	Q 23,497.83	Q 281,973.96	Q 281,973.96	Q 5,874.46	Q 5,874.46	
Gerente de Control de Calidad	1	Q 16,450.83	Q 16,450.83	Q 197,409.96	Q 197,409.96	Q 4,112.71	Q 4,112.71	
Gerente de Planta	1	Q 16,450.83	Q 16,450.83	Q 197,409.96	Q 197,409.96	Q 4,112.71	Q 4,112.71	
Ingeniero	2	Q 7,054.83	Q 14,109.66	Q 84,657.96	Q 169,315.92	Q 1,763.71	Q 3,527.42	
Policía	3	Q 4,000.00	Q 12,000.00	Q 48,000.00	Q 144,000.00	Q 1,000.00	Q 3,000.00	
Secretaria	1	Q 4,705.83	Q 4,705.83	Q 56,469.96	Q 56,469.96	Q 1,176.46	Q 1,176.46	
Publicidad y Mercadeo	2	Q 4,698.00	Q 9,396.00	Q 56,376.00	Q 112,752.00	Q 1,174.50	Q 2,349.00	
Recursos Humanos	2	Q 18,799.00	Q 37,598.00	Q 225,588.00	Q 451,176.00	Q 4,699.75	Q 9,399.50	
Doctor/Enfermera	1	Q 7,047.00	Q 7,047.00	Q 84,564.00	Q 84,564.00	Q 1,761.75	Q 1,761.75	
Conserjes	3	Q 3,000.00	Q 9,000.00	Q 36,000.00	Q 108,000.00	Q 750.00	Q 2,250.00	
Ventas	1	Q 4,698.00	Q 4,698.00	Q 56,376.00	Q 56,376.00	Q 1,174.50	Q 1,174.50	
Compras	1	Q 4,698.00	Q 4,698.00	Q 56,376.00	Q 56,376.00	Q 1,174.50	Q 1,174.50	
TOTAL	19	Q115,100.15	Q159,651.98	Q1,381,201.80	Q1,915,823.76	Q 28,775.04	Q 39,913.00	

(Elaboración propia).

Nota: Para este trabajo, se consideró que tanto los operarios como el personal administrativo trabajaría en jornada diurna de lunes a viernes durante todo el año.

Área	Personal	Cantidad	Sueldo	Sueldos totales	Sueldos anuales totales
	Gerente General	1	Q 23,497.83	Q 23,497.83	Q 281,973.96
	Gerente de Control de Calidad	1	Q 16,450.83	Q 16,450.83	Q 197,409.96
	Gerente de Planta	1	Q 16,450.83	Q 16,450.83	Q 197,409.96
	Ingeniero	2	Q 7,054.83	Q 14,109.66	Q 169,315.92
	Policía	3	Q 4,000.00	Q 12,000.00	Q 144,000.00
Administración	Secretaria	1	Q 4,705.83	Q 4,705.83	Q 56,469.96
Autonistracion	Publicidad y Mercadeo	2	Q 4,698.00	Q 9,396.00	Q 112,752.00
	Recursos Humanos	2	Q 18,799.00	Q 37,598.00	Q 451,176.00
	Doctor/Enfermera	1	Q 7,047.00	Q 7,047.00	Q 84,564.00
	Conserjes	3	Q 3,000.00	Q 9,000.00	Q 108,000.00
	Ventas	1	Q 4,698.00	Q 4,698.00	Q 56,376.00
	Compras	1	Q 4,698.00	Q 4,698.00	Q 56,376.00
Recepción de Cáscara de Banano	Operario	3	Q 3,000.00	Q 9,000.00	Q 108,000.00
Máquina Lavadora	Operario	1	Q 3,000.00	Q 3,000.00	Q 36,000.00
Secador de Bandejas	Operario	2	Q 3,000.00	Q 6,000.00	Q 72,000.00
Molino de Martillos	Operario	2	Q 3,000.00	Q 6,000.00	Q 72,000.00
Tamizador	Operario	1	Q 3,000.00	Q 3,000.00	Q 36,000.00
Ensacadora	Operario	2	Q 3,000.00	Q 6,000.00	Q 72,000.00
Almacenamiento de Sacos	Operario	3	Q 3,000.00	Q 9,000.00	Q 108,000.00
	Total	33	Q136,100.15	Q 201,651.98	Q 2,419,823.76

Figura 44. Salarios totales requeridos para la fabricación de la bioresina.

Sueldos de costos variables						
Base		Q504,000.00				
IGSS	10.67%	Q 53,776.80				
IRTRA	1.00%	Q 5,040.00				
INTECAP	1.00%	Q 5,040.00				
BONO 14	8.33%	Q 42,000.00				
Otros	8.33%	Q 42,000.00				
Aguinaldo	8.33%	Q 42,000.00				
Pasivo laboral	8.33%	Q 42,000.00				
Bono extra	Q 250.00	Q 3,000.00				
	TOTAL ANUAL	Q738.856.80				

Sueldos de costos fijos							
Base		Q1,915,823.76					
IGSS	10.67%	Q 204,418.40					
IRTRA	1.00%	Q 19,158.24					
INTECAP	1.00%	Q 19,158.24					
BONO 14	8.33%	Q 159,651.98					
Otros	8.33%	Q 159,651.98					
Aguinaldo	8.33%	Q 159,651.98					
Pasivo laboral	8.33%	Q 159,651.98					
Bono extra	Q 250.00	Q 3,000.00					
тс	Q2,800,166.55						

(Elaboración propia).

Nota: Los sueldos fijos hacen referencia a todo el personal administrativo; mientras que los sueldos variables corresponden a los operarios.

Figura 45. Costos variables totales.

Horas en un año	8760
Producción Anual (sacos)	176800.6177
Salarios: Costos Fijos	Q2,800,166.55
Salarios: Costos Variables	Q 738,856.80
Salarios: Costos Variables Unitarios	Q 4.18

Materia Prima		Costo		Cantidad Anual	
Cáscara de Banano (quintal)	Q	72.00	Q	24,478,075.25	

Material de Empaque	Costo		C	antidad Anual
Sacos de 25kg	α	0.40	Q	832.00
			Q	24,478,907.25

SERVICIOS AUXILIARES	Rango (%)	Mediana	C	osto Anual
Suministro de agua, refrigeración y bombeo	0.4 a 3.7	1.80%	Q	212,170.06
Almacenamiento de producto terminado	0.7 a 2.4	1.50%	Q	176,808.38
Sistemas de residuos de proceso	0.4 a 1.8	1.10%	Q	129,659.48
Almacenamiento de materias primas	0.3 a 3.2	1.10%	Q	129,659.48
Distribución eléctrica	0.4 a 2.1	1%	Q	117,872.25
Distribución de agua	0.1 a 2	0.90%	Q	106,085.03
Sistema de protección contra fuego	0.3 a 1.0	0.70%	Q	82,510.58
Tratamiento de agua	0.2 a 1.1	0.60%	Q	70,723.35
Caminos y paseos	0.3 a 0.9	0.60%	Q	70,723.35
Comunicaciones	0.1 a 0.3	0.20%	Q	23,574.45
lluminación de patio y valla	0.1 a 0.3	0.20%	Q	23,574.45

Costo Variable Total	Q	587.29
(Elaboración propia)		

(Elaboración propia).

Nota: Para la determinación del costo variable total, se tomó en cuenta la producción anual de la bioresina.

Instalación de Planta Q11,787,225.42

Personal	Personal Sueldos Anual	
Gerente General	Q	23,497.83
Gerente de Control de Calidad	Q	16,450.83
Gerente de Planta	Q	16,450.83
Ingeniero	Q	14,109.66
Policía	Q	12,000.00
Secretaria	Q	4,705.83
Publicidad y Mercadeo	Q	9,396.00
Recursos Humanos	Q	37,598.00
Doctor/Enfermera	Q	7,047.00
Conserjes	Q	9,000.00
Ventas	Q	4,698.00
Compras	Q	4,698.00

Figura 46. Costos fijos totales.

Q/kWh	Q	1.10
-------	---	------

5	Días
52	Semanas

Equipo	Cantidad Potenia (k)	Cantidad Potenia (kW) Hora Uso		Consmo de energía	Costos
••				por equipos (kWh)	Anuales
Máquina lavadora	2	16	8	8320	Q 9,152.00
Secador de bandejas	1	18	8	4680	Q 5,148.00
Molino de martillos	1	55	8	14300	Q15,730.00
Tamizador	1	0.525	8	136.5	Q 150.15
Ensacadora	1	4.5	8	1170	Q 1,287.00

Q31,467.15

	Costo Mensual		Costo Anual
Internet	Q	5,000.00	Q 60,000.00
Teléfono	Q	8,000.00	Q 96,000.00
Publicidad	Q	15,000.00	Q180,000.00

Costos Fijos Totales	Q	527,119.13

(Elaboración propia).

Nota: Se consideró los sueldos anuales del personal administrativo, el consumo de energía por cada equipo, el internet, teléfono y publicidad.

Figura 47. Flujo de caja para la fabricación de la bioresina.

INVERSIONES	
Parámetros	Inversión Inicial
Terreno	Q 638,811.49
Construcción	Q 17,125,767.37
Maquinaria	Q 3,955,444.77
Otros	Q 11,431,235.39
Total	Q 33,151,259.03

7,125,767.37	Tas	a de financiamiento	9%
3,955,444.77		Tasa de riesgo	3%
1,431,235.39		TMAR	12%
3,151,259.03			

Tasas

Amortización	Q516,563.22
Impuesto	28%
Capital de Trabajo	50%
Improvistos	10%

Parámetro		Inversión	Porcentaje
Capital propio	Q	29,836,133.12	90%
Préstamo	Q	3,315,125.90	10%
Inversión	Q	33,151,259.03	100%

Año	Capital Inicial		Interés		Pago a Capital		Capital Final	
1	Q	3,315,125.90	Q	298,361.33	Q	218,201.88	Q	3,096,924.02
2	Q	3,096,924.02	Q	278,723.16	Q	237,840.05	Q	2,859,083.96
3	Q	2,859,083.96	Q	257,317.56	Q	259,245.66	Q	2,599,838.30
4	Q	2,599,838.30	Q	233,985.45	Q	282,577.77	Q	2,317,260.53
5	Q	2,317,260.53	Q	208,553.45	Q	308,009.77	Q	2,009,250.77
6	Q	2,009,250.77	Q	180,832.57	Q	335,730.65	Q	1,673,520.12
7	Q	1,673,520.12	Q	150,616.81	Q	365,946.41	Q	1,307,573.71
8	Q	1,307,573.71	Q	117,681.63	Q	398,881.58	Q	908,692.13
9	Q	908,692.13	Q	81,782.29	Q	434,780.92	Q	473,911.21
10	Q	473,911.21	Q	42,652.01	Q	473,911.21	Q	0.00

Parámetros Inversión Inicial		Vida Útil (Años)	Depreciación (Años)	Depreciación (Anua)		
Terreno	Q	638,811.49				
Construcción	Q	17,125,767.37		40	Q	428,144.18
Maquinaria	Q	3,955,444.77	10	10	Q	395,544.48
Otros	Q	11,431,235.39	5	5	Q	2,286,247.08
	Q	3,109,935.74				

Incremento precio		0	0	0	0	0	0	0	0	0	0
Incremento ventas			5%	5%	5%	5%	0%	0%	0%	0%	0%
Precio		Q1,000.00	Q1,000.00	Q1,000.00	Q1,000.00	Q1,000.00	Q1,000.00	Q1,000.00	Q1,000.00	Q1,000.00	Q1,000.00
Ventas		41980.05536	44079.05812	46283.01103	48597.16158	51027.01966	51027.01966	51027.01966	51027.01966	51027.01966	51027.01966
Año	0	1	2	3	4	5	6	7	8	9	10
Ingresos		Q41,980,055.36	Q44,079,058.12	Q46,283,011.03	Q48,597,161.58	Q51,027,019.66	Q51,027,019.66	Q51,027,019.66	Q51,027,019.66	Q51,027,019.66	Q51,027,019.66
Otro ingresos											
Costos fijos		-Q527,119.13	-Q527,119.13	-Q527,119.13	-Q527,119.13	-Q527,119.13	-Q527,119.13	-Q527,119.13	-Q527,119.13	-Q527,119.13	-Q527,119.13
Costos variables		-Q24,654,343.56	-Q25,887,060.74	-Q27,181,413.78	-Q28,540,484.47	-Q29,967,508.69	-Q29,967,508.69	-Q29,967,508.69	-Q29,967,508.69	-Q29,967,508.69	-Q29,967,508.69
Depreciación		-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74	-Q3,109,935.74
Ventas activos											
Valor libros											
Intereses Financiamiento		-Q298,361.33	-Q278,723.16	-Q257,317.56	-Q233,985.45	-Q208,553.45	-Q180,832.57	-Q150,616.81	-Q117,681.63	-Q81,782.29	-Q42,652.01
Utilidad		Q13,390,295.59	Q14,276,219.35	Q15,207,224.82	Q16,185,636.80	Q17,213,902.65	Q17,241,623.53	Q17,271,839.29	Q17,304,774.47	Q17,340,673.81	Q17,379,804.09
Impuesto		-Q3,749,282.77	-Q3,997,341.42	-Q4,258,022.95	-Q4,531,978.30	-Q4,819,892.74	-Q4,827,654.59	-Q4,836,115.00	-Q4,845,336.85	-Q4,855,388.67	-Q4,866,345.15
Utilidad neta		Q9,641,012.83	Q10,278,877.93	Q10,949,201.87	Q11,653,658.49	Q12,394,009.91	Q12,413,968.94	Q12,435,724.29	Q12,459,437.61	Q12,485,285.14	Q12,513,458.95
Préstamo bancario	Q3,315,125.90										
Pago a capital		-Q 218,201.88	-Q 237,840.05	-Q 259,245.66	-Q 282,577.77	-Q 308,009.77	-Q 335,730.65	-Q 365,946.41	-Q 398,881.58	-Q 434,780.92	-Q 473,911.21
Depreciación		Q3,109,935.74	Q3,109,935.74	Q3,109,935.74	Q3,109,935.74	Q3,109,935.74	Q3,109,935.74	Q3,109,935.74	Q3,109,935.74	Q3,109,935.74	Q3,109,935.74
Valor de desecho											
Valor libros											
Capital de trabajo	-Q12,590,731.35	-Q616,358.59	-Q647,176.52	-Q679,535.34	-Q713,512.11	Q0.00	Q0.00	Q0.00	Q0.00	Q0.00	Q15,247,313.91
Imprevistos	-Q2,172,002.36										
Inversión inicial	-Q29,836,133.12					-Q 11,431,235.39					
Flujo de caja	-Q41,283,740.93	Q11,916,388.09	Q12,503,797.10	Q13,120,356.61	Q13,767,504.35	Q3,764,700.49	Q15,188,174.03	Q15,179,713.62	Q15,170,491.77	Q15,160,439.96	Q30,396,797.39
Flujo valor actual		Q10,639,632.22	Q21,132,055.05	Q31,512,882.75	Q41,816,720.35	Q13,570,902.73	Q62,444,769.96	Q69,276,517.30	Q75,361,538.21	Q80,778,611.04	Q171,748,684.59
Flujo acumulado	-Q41,283,740.93	-Q30,644,108.71	-09,512,053.66	Q22,000,829.09	Q63,817,549.44	Q77,388,452.18	0139,833,222.13	Q209,109,739.43	Q284,471,277.64	Q365,249,888.69	Q536,998,573.28

VAN	Q35,490,744.78
TIR	28%
Periodo de Recuperación	2.301846509

(Elaboración propia).

Nota: Para el precio de la bioresina, se utilizó como referencia la de carbón activado en presentación de 25kg que tiene un precio de Q940.00

A. FOTOGRAFÍAS DE EXPERIMENTACIÓN

Figura 48. Tratamiento de lavado, secado y de reducción de tamaño a la cáscara de banano para su posterior uso como adsorbente natural.

Figura 49. Tamizador tipo shaker.

Figura 50. Bioresina fabricada separada por tamaño de partícula.

Figura 51. Pruebas de solubilidad y pH en agua destilada.

Figura 52. Prueba de expansión de la bioresina fabricada.

Figura 53. Prototipos de columna del sistema natural a escala laboratorio para llevar a cabo las pruebas de remoción de Plomo II.

Nota: La Figura (a) es el primer prototipo de la columna a escala laboratorio, el cual solo utiliza la bioresina fabricada. Mientras que la Figura (b) es el segurndo prototipo de la columna del sistema a escala laboratorio, el cual utiliza tanto la bioresina fabricada como la piedra pómez.

Figura 54. Medición de la viscosidad, a temperatura ambiente, del fluido que sale de la columna del sistema natural a escala laboratorio, mediante un viscosímetro marca CANNON-Instrument-Company-.

B. FOTOGRAFÍAS DE RESULTADOS OBTENIDOS EN EL LABORATORIO DE ANÁLISIS INSTRUMENTAL AVANZADO

Figura 55. Curva de calibración obtenida del espectrofotómetro de absorción atómica (llama).

Calibration Curve Slope: 0.01944 Calibration Curve Intercept: -0.00318 Calibration Curve Correlation Coefficient: 0.997184 Calibration Curve Type: Linear, Calculated Intercept

Std #	Standard ID	Entered Conc.	Calculated Conc.	Action
Blank	Blanco	0	0.163	Include
1	std 1	2.00	1.979	Include
2	std 2	8.00	7.100	Include
3	std 3	10.00	18.708	Ignore
4	std 4	12.00	12.568	Include
5	std 5	14.00	14.561	Include
6	std6	20.00	19.628	Include

9/23/2020 12:36:59 PM

Figura 57. Determinación de plomo en estándares.

Date: 9/23/2020 1:20:00 PM Method: Determinacion de Pb 1 Page Analysis Begun Logged In Analyst: Administrator Technique: AA Flame Spectrometer: PinAAcle 900F, S/N PFBS13050203 Autosampler: Sample Information File: C:\Users\Public\PerkinElmer\AA\Data\Sample Information\ 200923 Pb en agua LF Mollinedo.sif Batch ID: 200923 Results Data Set: 200923 Pb LFMollinedo Results Library: C:\Users\Public\PerkinElmer\AA\Data\Results\Results.mdb Method Loaded Method Name: Determinacion de Pb Method Last Saved: 9/23/2020 12:28:55 PM Method Description: Determinacion de Plomo Sequence No.: 1 Autosampler Location: Sample ID: Blanco Date Collected: 9/23/2020 12:31:36 PM Analyst: Data Type: Original Replicate Data: Blanco Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal Signal 0 4177 12:31:38 PM . mg/L mg/L Stored [0.00] 0.4177 Yes [0.00] 12:31:39 PM Yes [0.00] 0.4174 12:31:41 PM Yes 4 [0.00] 0.4183 12:31:42 PM Yes 12:31:43 PM Yes 12:31:44 PM Yes 5 [0.00] 0.4180 [0.00] 0.4183 [0.00] 0.4179 Mean: 0.0000 0.0004 SD: SRSD: 800.0 0.10 Auto-zero performed. Method Loaded Method Name: Determinacion de Pb Method Last Saved: 9/23/2020 12:32:15 PM Method Description: Determinacion de Plomo Sequence No.: 2 Autosampler Location: Sample ID: std 1 Date Collected: 9/23/2020 12:32:31 PM Analyst: Data Type: Original Replicate Data: std 1 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal nc Binkovi Signal D.0362 12:32:32 PM Yes 0.0354 12:32:33 PM Yes 0.0342 12:32:34 PM Yes . mg/L mg/L Stored [2.00] [2.00] [2.00] Mean: [2.00] SD: 0.0000 0.0010 %RSD: 800.0 2,90 Standard number 1 applied. [2.00] Correlation Coef.: 1.000000 Slope: 0.01765 Intercept: 0.00000 Autosampler Location: Sequence No.: 3 Sample ID: std 2 Date Collected: 9/23/2020 12:32:44 PM Analyst: Data Type: Original Replicate Data: std 2 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal

Figura 58. Determinación de plomo en estándares, continuación.

Method: Determinacion de Pb Page 2 Date: 9/23/2020 1:20:00 PM Signal . mg/L mg/L Stored 0.1347 [8.00] 12:32:44 PM Yes Yes 12:32:45 PM 12:32:46 PM Yes [8.00] 0.1362 Mean: [8,00] 0.1348 0.0000 0.0013 SD: %RSD: \$00.0 0.97 Standard number 2 applied. [8.00] Slope: 0.01679 Correlation Coef.: 0.999921 Intercept: 0.00073 Sequence No.: 4 Autosampler Location: Date Collected: 9/23/2020 12:32:55 PM Sample ID: std 3 Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: std 3 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored [10.00] [10.00] 12:32:55 PM 0.3683 Yes 12:32:56 PM Yes 3 [10.00] 0.3737 12:32:58 PM Yes 0.3714 Mean: [10.00] SD: 0.0000 0.0028 %RSD: \$00.0 0.75 Standard number 3 applied. [10.00] Correlation Coef.: 0.901662 Slope: 0.03170 Intercept: -0.02312 Sequence No.: 5 Autosampler Location: Sample ID: std 4 Date Collected: 9/23/2020 12:33:16 PM Analyst: Data Type: Original Replicate Data: std 4 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L Signal Stored [12.00] 0.2408 12:33:18 PM Yes 2 [12.00] 0.2433 12:33:19 PM 12:33:20 PM Yes [12.00] 0.2393 Yes Mean: [12.00] 0.2411 SD: 0.0000 0.0020 %RSD: 800.0 0.83 Standard number 4 applied. [12.00] Correlation Coef.: 0.870265 Slope: 0.02563 Intercept: -0.00752 Standard absorbance and concentration values are not in the same order. Sequence No.: 6 Autosampler Location: Sample ID: std 5 Analyst: Date Collected: 9/23/2020 12:33:38 PM Data Type: Original Analyte: Pb 283.31 Replicate Data: std 5 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored [14.00] [14.00] 12:33:38 PM 0.2817 Yes 0.2796 12:33:39 PM Yes 3 [14.00] 0.2784 12:33:40 PM Yes Mean: [14.00] 0.2799 0.0016 SD: 0.0000 %RSD: \$00.0 0.59 Standard number 5 applied. [14.00] Correlation Coef.: 0.871019 Slop Slope: 0.02272 Intercept: 0.00291 Standard absorbance and concentration values are not in the same order. Sequence No.: 7 Autosampler Location: Sample ID: std6 Date Collected: 9/23/2020 12:34:03 PM
Method: Determinacion de Pb Page 3 Date: 9/23/2020 1:20:00 PM Analyst: Data Type: Original Replicate Data: std6 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Signal . mg/L Stored Yes 0.3079 12:34:03 PM [20.00] 12:34:05 PM [20.00] Yes [20.00] 0.2748 12:34:06 PM Yes [20.00] 0.2911 Mean: SD: 0.0000 0.0166 %RSD: 800.0 5.69 Standard number 6 applied. [20.00] Correlation Coef.: 0.819393 Slope: 0.01657 Intercept: 0.03716 Standard absorbance and concentration values are not in the same order. Calibration data for Pb 283.31 Equation: Linear, Calculated Intercept Entered Calculated Mean Signal Conc. Conc. Standard TD (Abs) mg/L mg/L Deviation %RSD Blanco 0.0000 0 -2.2430.00 0.10 2.00 -0.112 0.0353 0.00 2,90 std 1 8.00 std 2 0.1348 5.895 0.00 0.97 std 3 0.3714 10.00 20.175 0.00 0.75 std 4 0.2411 12.00 12.311 0.00 0.83 std 5 0.2799 14.00 20.00 14.650 0.00 0.59 0.2911 15.324 std6 0.02 5.69 Correlation Coef.: 0.819393 Slope: 0.01657 Intercept: 0.03716 Calibration curve edited: calibration points ignored. Sequence No.: 1 Autosampler Location: Sample ID: std 3 Date Collected: 9/23/2020 12:35:37 PM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: std 3 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored . [10.00] [10.00] 12:35:48 PM Yes 0.3565 12:35:50 PM Yes [10.00] 0.3616 12:35:51 PM Yes Mean: [10.00] 0.3605 SD . 0.0000 0.0036 %RSD: \$00.0 0.99 Standard number 3 applied. [10.00] Correlation Coef.: 0.831920 Slope: 0.01655 Intercept: 0.03581 Standard absorbance and concentration values are not in the same order. Calibration curve edited: standards were reanalyzed. Sequence No.: 1 Autosampler Location: Sample ID: std6 Date Collected: 9/23/2020 12:36:19 PM Analyst: Data Type: Original Replicate Data: std6 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L Signal Stored [20.00] 0.3726 12:36:24 PM Yes [20.00] 12:36:25 PM Yes [20.00] 0.3912 12:36:26 PM Yes 3 Mean: [20.00] 0.3784 0.0000 0.0111 SD: &RSD: \$00.0 2.94 Standard number 6 applied. [20.00]

Figura 59. Determinación de plomo en estándares, continuación.

Method	: Determinac	ion de Pb			Р	age 4		Date:	9/23/2020 1:20:00 PM
Correl	ation Coof .	0 003540	Cloper	0 01078		ntercent	0.01781		
Sta	ndard absorb	ance and c	oncentra	tion valu	ies a	re not in	the same o	order.	
Calibr	ation data f	or Pb 283.	31	Patarad	0-1-	Equati	on: Linear,	Calculated	Intercept
		Mean Si	mal	Conc	Calc	onc	Standard		
	ID	(Abs)	mg/L		a/L	Deviation	%RSD	
	Blanco	0.00	00	0	-0	.901	0.00	0.10	
	std 1	0.03	53	2.00	0	.884	0.00	2.90	
	std 2	0.13	48	8.00	5	.917	0.00	0.97	
	std 3	0.36	05	10.00	17	.326	0.00	0.99	
	std 4	0.24	00	14.00	13	251	0.00	0.83	
	std6	0.37	84	20.00	18	.231	0.01	2.94	
Correl	ation Coef .:	0.903540	Slope:	0.01978	I	ntercept:	0.01781		
Sequen	ce No.: 2					Autosamp	ler Locatio	n:	
Analys	ID: M11					Date Col	lected: 9/2	23/2020 12:3	9:05 PM
Anarys	6.					baca iyp	e. original		
Replic	ate Data: M1	1				Analyte:	Pb 283.31		
Repl	SampleConc	StndConc	BlnkCor	r Time		Signal			
	mg/L	mg/L	Signal			Stored			
1	0.793	0.793	0.0122	12:3	9:06	PM Yes			
3	0.047	0.847	0.0147	12:3	3-08	PM 105			
Mean:	0.854	0.854	0.0134			10 100			
SD:	0.0646	0.0646	0.0013						
%RSD:	7.57%	7.57%	9.36						
	No D								
Sequen	Ce No.: 3					Autosamp	ler Locatio	n: 2/2020 12-3	9.26 PM
Analys	10: MI2					Date COL	e: Original	3/2020 12:3	5.20 PM
marys						baca ijp	e. orrginal		
Replic	ate Data: M1	2 ShadCone	Blakfor			Analyte:	Pb 283.31		
Kepi	ma/L	mg/L	Signal	I IIMe		Stored			
1	0.756	0.756	0.0115	12:3	9:26	PM Yes			
2	0.778	0.778	0.0120	12:3	9:28	PM Yes			
3	0.769	0.769	0.0118	12:3	9:29	PM Yes			
Mean:	0.768	0.768	0.0117						
SD:	0.0114	0.0114	0.0002						
%RSD:	1.48%	1.48%	1.88						
Sequen	ce No.: 4					Autosamp	ler Locatio	n:	
Sample	ID: M14					Date Col	lected: 9/2	23/2020 12:3	9:52 PM
Analys	t:					Data Typ	e: Original	L	
Replic	ate Data: Mi	4				Analute	Ph 283 31		
Repl	SampleConc	StndConc	BlnkCor	r Time		Signal	20 203.31		
	mg/L	mg/L	Signal			Stored			
1	1,217	1,217	0.0205	12:3	9:53	PM Yes			
2	1.147	1.147	0.0191	12:3	9:54	PM Yes			
3	1.183	1.183	0.0198	12:3	9:55	PM Yes			
Mean:	1.183	1.183	0.0198						
SD: SRSD-	2 945	2 949	3.41						
shab:			11.94						
Sequen	ce No.: 5					Autosamp	ler Locatio	on:	
Sample	ID: M15					Date Col	lected: 9/2	3/2020 12:4	0:12 PM
Analys	t:					Data Typ	e: Original	L	

Figura 60. Determinación de plomo en muestras.

Method: Determinacion de Pb Page 5 Date: 9/23/2020 1:20:00 PM Replicate Data: M15 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Time Repl Signal mg/L mg/L Signal Stored . 12:40:12 PM Yes 0.0154 0.954 0.954 12:40:13 PM 12:40:14 PM 0.904 0.904 2 Yes 1.344 1.344 0.0229 Yes 3 1.067 1.067 0.0176 Mean: SD: 0.2408 0.2408 0.0047 %RSD: 22.56% 22.56% 26.64 Sequence No.: 6 Autosampler Location: Sample ID: M15 Date Collected: 9/23/2020 12:40:30 PM Analyst: Data Type: Original Replicate Data: M15 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L 1.070 ٠ Signal Stored 1.070 0.0176 12:40:31 PM Yes 0.904 0.904 0.0144 12:40:32 PM Yes 2 12:40:33 PM з 0.914 0.914 0.0146 Yes Mean: 0.963 0.963 0.0155 0.0931 SD: 0.0931 0.0018 %RSD: 9.67% 9.67% 11.64 Sequence No.: 7 Autosampler Location: Sample ID: M15 Date Collected: 9/23/2020 12:40:54 PM Analyst: Data Type: Original Replicate Data: M15 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Signal Stored ٠ mg/L 12:40:54 PM 1.327 1.327 0.0226 Yes 1.017 12:40:56 PM Yes 2 12:40:57 PM 0.920 0.920 0.0147 Yes Mean: 1.088 1.088 0.0180 SD: 0.2123 0.2123 0.0041 %RSD: 19.52% 19.52% 22.97 Sequence No.: 8 Autosampler Location: Sample ID: M21 Date Collected: 9/23/2020 12:41:54 PM Analyst: Data Type: Original Replicate Data: M21 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal mg/L Signal Stored ٠ mg/L 0.760 12:41:55 PM 0.760 0.0116 Yes 12:41:56 PM 12:41:57 PM 0.832 0.0130 Yes 2 3 0.728 0.728 0.0110 Yes 0.773 Mean: 0.773 0.0119 0.0532 0.0532 0.0010 SD: %RSD: 6.88% 6.88% 8.72 -----Sequence No.: 9 Autosampler Location: Sample ID: M22 Date Collected: 9/23/2020 12:42:07 PM Analyst: Data Type: Original Replicate Data: M22 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored .

Figura 61. Determinación de plomo en muestras, continuación.

Figura 62. Determinación de plomo en muestras, continuación.

Date: 9/23/2020 1:20:00 PM Method: Determinacion de Pb 6 Page 0.784 0.784 0.0121 12:42:07 PM 1 Yes 2 0.833 0.833 0.0130 12:42:08 PM Yes 0.774 12:42:09 PM 3 0.774 0.0119 Yes Mean: 0.797 0.797 0.0123 0.0317 0.0317 0.0006 SD: %RSD: 3.98% 3.98% 5.01 Sequence No.: 10 Autosampler Location: Date Collected: 9/23/2020 12:42:18 PM Sample ID: M23 Analyst: Data Type: Original Replicate Data: M23 Analyte: Pb 283.31 Time Repl SampleConc StndConc BlnkCorr Signal . mg/L mg/L Signal Stored 12:42:18 PM 0.806 0.806 0.0125 Yes 12:42:19 PM Yes 0.746 0.746 0.0113 12:42:21 PM Yes 3 Mean: 0.813 0.813 0.0126 SD: 0.0698 0.0698 0.0014 %RSD: 8.59% 8.59% 10.75 Sequence No.: 11 Autosampler Location: Sample ID: M24 Date Collected: 9/23/2020 12:42:29 PM Analyst: Data Type: Original Replicate Data: M24 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Signal Repl Time . mg/L mg/L Signal Stored 0.966 0.0156 12:42:29 PM Yes 0.966 0.863 12:42:31 PM 2 Yes 12:42:32 PM 0.815 0.815 0.0127 3 Yes Mean: 0.881 0.881 0.0140 0.0773 0.0773 0.0015 SD: %RSD: 8.77% 8.77% 10.77 -----Sequence No.: 12 Autosampler Location: Date Collected: 9/23/2020 12:42:48 PM Sample ID: M25 Analyst: Data Type: Original Replicate Data: M25 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L . mg/L Signal Stored 0.743 0.0113 12:42:48 PM 0.743 Yes 0.732 0.732 0.0111 12:42:49 PM Yes 2 з 0.734 0.734 0.0111 12:42:51 PM Yes 0.737 Mean: 0.737 0.0111 0.0059 0.0001 SD: %RSD: 0.80% 0.80% 1.03 Sequence No.: 13 Autosampler Location: Date Collected: 9/23/2020 12:43:12 PM Sample ID: M23 Analyst: Data Type: Original Replicate Data: M23 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 12:43:12 PM 0.804 0.804 0.0125 Yes 12:43:14 PM Yes 0.893 0.0142 12:43:15 PM 0.893 Yes 3 Mean: 0.847 0.847 0.0133 0.0449 SD: 0.0449 0.0009

Figura 63. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 7 Date: 9/23/2020 1:20:00 PM %RSD: 5.30% 5.30% 6.56 Sequence No.: 14 Autosampler Location: Sample ID: M24 Date Collected: 9/23/2020 12:43:24 PM Analyst: Data Type: Original Replicate Data: M24 Analyte: Pb 283.31 Signal Repl SampleConc StndConc BlnkCorr Time . mg/L mg/L Signal Stored 0.785 0.785 12:43:24 PM 0.0121 0.0140 Yes 12:43:25 PM Yes 3 0.826 0.826 0.0129 12:43:26 PM Yes Mean: 0.831 0.831 0.0130 0.0487 0.0487 0.0009 SD: %RSD: 5.86% 5.86% 7.30 Sequence No.: 15 Autosampler Location: Date Collected: 9/23/2020 12:44:33 PM Sample ID: M31 Data Type: Original Analyst: Replicate Data: M31 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Time Repl Signal mg/L mg/L Signal Stored ٠ 0.998 0.998 0.0162 12:44:34 PM Yes 0.798 0.798 0.0123 12:44:35 PM Yes 2 12:44:36 PM 3 0.763 0.763 0.0117 Yes 0.0134 Mean: 0.853 0.853 SD: 0.1266 0.1266 0.0025 %RSD: 14.84% 14.84% 18.36 ------Sequence No.: 16 Autosampler Location: Sample ID: M31 Date Collected: 9/23/2020 12:44:50 PM Analyst: Data Type: Original Replicate Data: M31 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 12:44:50 PM 0.711 0.711 0.0106 Yes 0.734 0.0111 12:44:52 PM Yes 2 0.0104 12:44:53 PM 0.697 0.697 Yes Mean: 0.714 0.714 0.0107 SD: 0.0188 0.0188 0.0004 %RSD: 2.64% 2.64% 3.42 Sequence No.: 17 Autosampler Location: Sample ID: M32 Date Collected: 9/23/2020 12:45:09 PM Data Type: Original Analyst: Replicate Data: M32 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L Signal Stored 0.687 12:45:10 PM 0.687 0.0102 Yes 0.730 2 0.0110 12:45:11 PM Yes 12:45:12 PM з 0.724 0.724 0.0109 Yes 0.714 0.0107 Mean: 0.714 0.0232 0.0232 0.0005 SD: %RSD: 3.25% 3.25% 4.22 Sequence No.: 18 Autosampler Location: Date Collected: 9/23/2020 12:45:20 PM Sample ID: M33

Method	i: Determinac	ion de Pb		1	Page	8			Date:	9/23/2020	1:20:00 PM
Analys	it:				Dat	а Тур	e: Or	iginal			
Replic	ate Data: M3	3			Ana	lyte:	РЬ 2	83.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal					
	mg/L	mg/L	Signal		5	stored					
1	0.719	0.719	0.0108	12:45:20	PM	Yes					
2	0.711	0.711	0.0107	12:45:22	PM	Yes					
3	0.729	0.729	0.0110	12.45.23	PM	Ves					
Means	0.720	0.720	0.0108			100					
cn.	0.0090	0.0090	0.0108								
%RSD:	1.25%	1.25%	1,62								
Sequen	ce No.: 19				Aut	osamp	ler L	ocation:			
Sample Analys	ID: M34				Dat Dat	a Type	lecte e: Or	d: 9/23/2020 iginal	12:4	5:40 PM	
Benlie	ate Data : M3					1	nh 2	03 31			
Replic	CampleCore	Studens	BlokCorr	Time	Ana	igre:	PD 2				
webr	sampieconc	stndCone	BINKCOFF	TIME	5	agnal					
	mg/L	mg/L	Signal		5	stored					
1	0.722	0.722	0.0109	12:45:40	PM	Yes					
2	0.733	0.733	0.0111	12:45:41	PM	Yes					
3	0.741	0.741	0.0112	12:45:43	PM	Yes					
Mean:	0.732	0.732	0.0111								
SD:	0.0097	0.0097	0.0002								
%RSD:	1.33%	1.33%	1.71								
Semier	ce No. : 20						ler I	ocation:			
Sequen	TD: M35				Dat	cosamp.	lecto	d: 0/23/2020	12.4	5.50 DM	
Analys	it:				Dat	а Тур	e: Or	iginal	12:4	5:52 PR	
Replic	ate Data: M3	5			Ana	lyte:	РЬ 2	83.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal					
	mg/L	mg/L	Signal		5	Stored					
1	0.699	0.699	0.0104	12:45:52	PM	Yes					
2	0.651	0.651	0.0095	12:45:53	PM	Yes					
3	0.669	0.669	0.0098	12:45:54	PM	Yes					
Mean:	0.673	0.673	0.0099								
SD:	0.0242	0.0242	0.0005								
%RSD:	3.59%	3.59%	4.74								
Seguen	ce No.: 21				Aut	osamp	ler L	ocation:			
Sample Analys	ID: M41 t:				Dat	e Col	lecte e: Or	d: 9/23/2020 iginal	12:4	6:55 PM	
Replic	ate Data: M4	1			Ana	lyte:	РЬ 2	83.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal					
	mg/L	mg/L	Signal		-	stored					
1	0.698	0.698	0.0104	12:46:56	PM.	Yes					
2	0.707	0.707	0.0106	12:46:57	PM	Yes					
3	0.709	0.709	0.0106	12:46.59	DM	Ves					
Marrie	0.705	0.705	0.0105	46:40:38	1.10	100					
ender:	0.0050	0.0050	0.0105								
SD:	0.0059	0.0059	0.0001								
*RSD:	0.848	0.848	1.09								
Sequen	ce No.: 22				Aut	osamp.	ler I	ocation:			
Sample	ID: M42				Dat	e Col	lecte	d: 9/23/2020	12:4	7:07 PM	
Analys	it:				Dat	а тур	e: Or	iginal			
Replic	ate Data: M4	2			Ana	lyte	Ph 2	83.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal					

Figura 64. Determinación de plomo en muestras, continuación.

Figura 65. Determinación de plomo en muestras, continuación.

Date: 9/23/2020 1:20:00 PM Method: Determinacion de Pb Page 9 . mg/L mg/L Signal Stored 12:47:07 PM 0.663 0.663 0.0097 Yes 12:47:08 PM Yes 2 Yes 0.777 0.777 0.0119 12:47:09 PM 2 Mean: 0.712 0.712 0.0107 SD: 0.0586 0.0586 0.0011 %RSD: 8.23% 8.23% 10.68 Sequence No.: 23 Autosampler Location: Sample ID: M43 Date Collected: 9/23/2020 12:47:29 PM Analyst: Data Type: Original Replicate Data: M43 Analyte: Pb 283.31 Repl SampleConc StndConc # mg/L mg/L BlnkCorr Time Signal mg/L Signal Stored 0.738 0.738 0.0112 12:47:30 PM Yes 2 0.0156 12:47:31 PM 12:47:32 PM Yes 0.778 0.778 0.0119 Yes 3 0.827 Mean: 0.827 0.0129 SD: 0.1213 0.1213 0.0024 %RSD: 14.66% 14.66% 18.27 Sequence No.: 24 Autosampler Location: Date Collected: 9/23/2020 12:47:40 PM Sample ID: M43 Analyst: Data Type: Original Replicate Data: M43 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Time Signal Repl . mg/L mg/L Signal Stored 0.732 12:47:40 PM 0.732 0.0111 Yes 0.0105 12:47:41 PM Yes 0.0108 12:47:43 PM 0.719 0.719 Yes Mean: 0.718 0.718 0.0108 0.0140 SD: 0.0140 0.0003 %RSD: 1,95% 1.95% 2.53 Sequence No.: 25 Autosampler Location: Sample ID: M44 Date Collected: 9/23/2020 12:48:01 PM Analyst: Data Type: Original Replicate Data: M44 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Signal 0.0128 . mg/L Stored 0.822 12:48:02 PM 0.822 Yes 0.764 0.764 0.0117 12:48:04 PM Yes 2 12:48:05 PM 3 0.832 0.832 0.0130 Yes 0.0125 Mean: 0.806 0.806 SD: 0.0369 0.0369 0.0007 %RSD: 4.58% 4.58% 5.74 Sequence No.: 26 Autosampler Location: Sample ID: M45 Date Collected: 9/23/2020 12:48:22 PM Analyst: Data Type: Original Replicate Data: M45 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored . 12:48:22 PM 0.648 0.648 0.0094 Yes 2 0.694 0.694 0.0103 12:48:24 PM Yes 12:48:25 PM 0.695 0.695 0.0103 Yes

Mean: 0.679

0.679

0.0100

Method: Determinacion de Pb Page 10 Date: 9/23/2020 1:20:00 PM SD: 0.0268 0.0268 0.0005 %RSD: 3.95% 3.95% 5.20 Sequence No.: 27 Autosampler Location: Sample ID: M42 Date Collected: 9/23/2020 12:49:03 PM Analyst: Data Type: Original Replicate Data: M42 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L Signal Stored 12:49:04 PM 0.664 0.664 0.0097 Yes 0.645 0.0094 12:49:05 PM Yes 3 0.619 0.619 0.0089 12:49:07 PM Yes 0.642 0.0093 Mean: 0.642 SD: 0.0225 0.0225 0.0004 %RSD: 3.50% 3.50% 4.70 Sequence No.: 28 Autosampler Location: Sample ID: M51 Date Collected: 9/23/2020 12:50:28 PM Analyst: Data Type: Original Replicate Data: M51 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mq/L mg/L Signal Stored 0.690 0.690 0.0102 12:50:29 PM Yes 12:50:30 PM 12:50:31 PM 2 0.0099 Yes 0.650 0.0095 0.650 Yes 3 0.671 0.671 0.0099 Mean: SD. 0.0203 0.0203 0.0004 %RSD: 3.03% 3.03% 4.00 Sequence No.: 29 Autosampler Location: Date Collected: 9/23/2020 12:50:46 PM Sample ID: M52 Analyst: Data Type: Original Replicate Data: M52 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L Signal Stored 12:50:46 PM 0.671 0.671 0.0099 Yes 12:50:47 PM Yes 3 0.643 0.643 0.0093 12:50:49 PM Yes Mean: 0.655 0.655 0.0096 0.0142 0.0142 0.0003 SD: %RSD: 2.17% 2.17% 2.89 Sequence No.: 30 Autosampler Location: Sample ID: M53 Date Collected: 9/23/2020 12:51:06 PM Analyst: Data Type: Original Replicate Data: M53 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L . mg/L Signal Stored 0.683 0.683 0.0101 12:51:07 PM Yes 0.667 2 0.667 0.0098 12:51:08 PM Yes 12:51:09 PM 0.683 0.0101 3 0.683 Yes 0.677 Mean: 0.677 0.0100 SD: 0.0091 0.0091 0.0002 %RSD: 1.35% 1.35% 1.78 Sequence No.: 31 Autosampler Location:

Figura 66. Determinación de plomo en muestras, continuación.

```
Method: Determinacion de Pb
                                                 Page 11
                                                                            Date: 9/23/2020 1:20:00 PM
Sample ID: M54
                                                   Date Collected: 9/23/2020 12:51:25 PM
Analyst:
                                                   Data Type: Original
Replicate Data: M54
                                                   Analyte: Pb 283.31
Repl SampleConc StndConc
                             BlnkCorr
                                        Time
                                                     Signal
.
       mg/L
                   mg/L
                             Signal
                                                     Stored
                                         12:51:25 PM
       0.674
                   0.674
                             0.0099
                                                      Yes
                                         12:51:26 PM
                                                       Yes
 2
                             0.0095
                                         12:51:27 PM
       0.653
                   0.653
                                                       Yes
Mean:
       0.660
                   0.660
                             0.0097
SD:
       0.0120
                   0.0120
                             0.0002
%RSD:
      1.82%
                   1.82%
                             2.41
Sequence No.: 32
                                                   Autosampler Location:
Sample ID: M55
                                                   Date Collected: 9/23/2020 12:51:35 PM
Analyst:
                                                   Data Type: Original
Replicate Data: M55
                                                   Analyte: Pb 283.31
Repl SampleConc StndConc BlnkCorr
                                        Time
                                                    Signal
 .
       mg/L
                   mg/L
                             Signal
                                                     Stored
       0.693
                   0.693
                                         12:51:35 PM
                             0.0103
                                                      Yes
                                                      Yes
                   0.645
                             0.0094
                                         12:51:36 PM
 1
       0.641
                   0.641
                             0.0093
                                         12:51:38 PM
                                                      Yes
Mean: 0.660
                   0.660
                             0.0096
       0.0287
                   0.0287
SD:
                             0.0006
%RSD: 4.35%
                   4.35%
                             5.79
Sequence No.: 33
                                                   Autosampler Location:
                                                   Date Collected: 9/23/2020 12:52:46 PM
Sample ID: M61
Analyst:
                                                   Data Type: Original
Replicate Data: M61
                                                   Analyte: Pb 283.31
Repl SampleConc StndConc BlnkCorr
                                        Time
                                                    Signal
                   mg/L
       mg/L
                                                     Stored
٠
                             Signal
                   0.685
                                         12:52:47 PM
                                                     Yes
       0.685
                             0.0101
       0.699
                   0.699
                             0.0104
                                         12:52:48 PM
                                                      Yes
3
       0.722
                   0.722
                             0.0109
                                        12:52:50 PM
                                                      Yes
       0.702
Mean:
                   0.702
                             0.0105
       0.0186
                   0.0186
SD:
                             0.0004
%RSD: 2.65%
                   2.65%
                             3.45
Sequence No.: 34
                                                   Autosampler Location:
Date Collected: 9/23/2020 12:53:06 PM
Sample ID: M62
Analyst:
                                                   Data Type: Original
Replicate Data: M62
                                                   Analyte: Pb 283.31
      SampleConc StndConc BlnkCorr
                                        Time
Repl
                                                     Signal
 ٠
       mg/L
                   mg/L
                             Signal
                                                     Stored
       0.754
                   0.754
                             0.0115
                                         12:53:06 PM
                                                      Yes
       0.729
                   0.729
                             0.0110
                                        12:53:07 PM
12:53:09 PM
                                                      Yes
 2
 3
       0.722
                   0.722
                             0.0109
                                                      Yes
Mean:
       0.735
                   0.735
                             0.0111
SD:
       0.0167
                   0.0167
                             0.0003
%RSD:
      2.28%
                   2.28%
                             2.93
Sequence No.: 35
                                                   Autosampler Location:
Sample ID: M63
                                                   Date Collected: 9/23/2020 12:53:24 PM
Analyst:
                                                   Data Type: Original
Replicate Data: M63
                                                   Analyte: Pb 283.31
```

Figura 67. Determinación de plomo en muestras, continuación.

Figura 68. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb				Page 12 Date: 9/23/2020 1:20:00 P					
Repl	SampleConc mg/L	StndConc mg/L	BlnkCorr Signal	Time	-	Signal Stored			
1	0.694	0.694	0.0103	12:53:24	PM	Yes			
2	0.694	0.694	0.0103	12:53:26	PM	Yes			
3	0.694	0.694	0.0103	12:53:27	PM	Yes			
Mean:	0.694	0.694	0.0103						
SD:	0.0003	0.0003	0.0000						
%RSD:	0.04%	0.04%	0.06						
Sequen	ce No.: 36				Aut	tosamp	ler Location:		
Sample	ID: M64				Dat	te Coli	lected: 9/23/202	0 12:53:49 PM	
Anarys	c :				Da	ca ryp	e: original		
Replic	ate Data: M6	4	Diskows	-	An	alyte:	Pb 283.31		
Rebt	SampleConc	StndConc	BinkCorr	Time		Signal			
	0.617	0.617	0 0088	12.53.40	DM	Yee			
5	0.642	0.642	0.0003	12.53.50	DM	Yee			
3	0.681	0.681	0.0101	12:53:50	DM	Ves			
Mean:	0.647	0.647	0.0094	*******	111	100			
SD:	0.0320	0.0320	0.0006						
%RSD:	4.95%	4.95%	6.62						
Seguen	ce No.: 37				Aut	tosamp	ler Location:		
Sample	ID: M65				Dat	te Col	lected: 9/23/202	0 12:54:08 PM	
Analys	t:				Dat	ta Type	e: Original		
Replic	ate Data: M6	5			An	alvte:	РЬ 283.31		
Repl	SampleConc	StndConc	BlnkCorr	Time	1	Signal			
	mg/L	mg/L	Signal		1	Stored			
1	0.749	0.749	0.0114	12:54:08	PM	Yes			
2	0.757	0.757	0.0115	12:54:10	PM	Yes			
3	0.760	0.760	0.0116	12:54:11	PM	Yes			
Mean:	0.755	0.755	0.0115						
SD:	0.0054	0.0054	0.0001						
&RSD:	0.71%	0.71%	0.90						
Sequen	ce No.: 38				Aut	tosamp.	ler Location:		
Sample	ID: M71				Dat	te Coli	lected: 9/23/202	0 12:55:09 PM	
Anarys	c .				Da	ca ryp	e. orrginar		
Replic	ate Data: M7 SampleConc	1 StodConc	BlokCorr	Time	An	alyte: Signal	PD 283.31		
a a a a a a a a a a a a a a a a a a a	ma/T.	ma/L	Signal	1 2 10 10		Stored			
1	0.692	0.692	0.0103	12:55:09	PM .	Yes			
2	0.698	0.698	0.0104	12:55:10	PM	Yes			
3	0.713	0.713	0.0107	12:55:11	PM	Yes			
Mean:	0,701	0.701	0.0105						
SD:	0.0110	0.0110	0.0002						
%RSD:	1,57%	1.57%	2.05						
Seguen	ce No.: 39				Aut	tosamp	ler Location:		
Sample	ID: M72				Dat	te Col	lected: 9/23/202	0 12:55:19 PM	
Analys	t:				Dat	ta Type	e: Original		
Replic	ate Data: M7	2			Ani	alyte:	Pb 283.31		
Repl	SampleConc	StndConc	BlnkCorr	Time	1	Signal			
	mg/L	mg/L	Signal			Stored			
1	0.677	0.677	0.0100	12:55:19	PM	Yes			
3	0.678	0.655	0.0100	12:55:20	PM PM	Yes			
		~			1.11	- 0.0			

Figura 69. Determinación de plomo en muestras, continuación.

ethod	i: Determinac	ion de Pb		1	Page 13		Date: 9/23/2020 1:20:00 P
dean:	0.673	0.673	0.0099				
SD:	0.0068	0.0068	0.0001				
RSD:	1.02%	1.02%	1.34				
eauer	ce No.: 40				Autosar	mpler Location:	
ample	ID: M73				Date Co Data Ty	pllected: 9/23/2 pe: Original	020 12:55:37 PM
eplic	ate Data: M7	3			Analyte	: Pb 283.31	
lepl	SampleConc	StndConc	BlnkCorr	Time	Signa	1	
	mg/L	mg/L	Signal	10.55.27	Store	bd	
2	0.723	0.723	0.0103	12:00:37	PM Ie:	5	
3	0.653	0.653	0.0095	12:55:30	PM Yes		
lean -	0.697	0.697	0.0104	*********	*** ***	,	
D:	0.0385	0.0385	0.0007				
RSD:	5.52%	5.52%	7,21				
equer	ce No.: 41				Autosar	pler Location:	
ample	1D: M74 it:				Date Co Data Ty	pe: Original	020 12:55:46 PM
eplic	ate Data: M7	4			Analyte	: Pb 283.31	
lep1	SampleConc	StndConc	BlnkCorr	Time	Sign	1	
	mg/L	mg/L	Signal		Store	d	
1	1.689	1.689	0.0297	12:55:47	PM Yes	1	
2	1,391	1.391	0.0239	12:55:48	PM Ye:	1	
3	0.944	0.944	0.0152	12:55:50	PM Ye:	1	
lean:	1,341	1.341	0.0229				
iD:	0.3751	0.3751	0.0073				
RSD:	27.97%	27.97%	31,85				
Sequer	ce No.: 42				Autosa	pler Location:	
Sample Analys	1D: M74				Date Co Data Ty	pllected: 9/23/2 pe: Original	020 12:56:10 PM
ceplic Ceplic	SampleConc	StadCore	BlokCorr	Time	Analyte	1: PD 283.31	
	ma/L	ma/L	Signal	1100	Store	and a second sec	
1	0.850	0.850	0.0133	12:56:10	PM Yes	-	
2	0.828	0.828	0.0129	12:56:11	PM Yes		
3	0.731	0.731	0.0110	12:56:12	PM Yes	1	
lean:	0.803	0.803	0.0124				
D:	0.0634	0.0634	0.0012				
RSD:	7.89%	7.89%	9,91				
lequer	ce No.: 43				Autosar	mpler Location:	020 12-66-31 DM
Inalys	it:				Data Ty	/pe: Original	VEV 16:30:31 PR
teplic	ate Data: M7	5			Analyte	: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signa	1	
	mg/L	mg/L	Signal		Store	bd	
1	0.666	0.666	0.0098	12:56:32	PM Ye:	1	
2	0.797	0.797	0.0123	12:56:33	PM Ye:	1	
3	0.716	0.716	0.0108	12:56:35	PM Ye:	1	
	0.726	0.726	0.0109				
lean:	0.720	0 0440	0.00107				
Mean: SD:	0.0662	0.0662	0.0013				

Method	i: Determina			Page	14		Date: 9/23/2020 1:20:00 PM						
Sequer Sample Analy:	nce No.: 44 a ID: M75 at:				Aut Dat Dat	tosampl te Coll ta Type	er Location: ected: 9/23/202 o: Original	tion: 9/23/2020 12:56:44 PM nal					
Replic	ate Data: M	75			Ana	lvte:	Pb 283.31						
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal							
	mg/L	mg/L	Signal		5	Stored							
1	0.762	0.762	0.0116	12:56:44	PM	Yes							
2	0.968	0.968	0.0156	12:56:45	PM	Yes							
3	0.785	0.785	0.0121	12:56:46	PM	Yes							
Mean:	0.839	0.839	0.0131										
SD:	0.1130	0.1130	0.0022										
<pre>%RSD:</pre>	13.48%	13.48%	16.74										
Sequer Sample Analys	nce No.: 45 5 ID: M75 st:				Aut Dat Dat	cosampl te Coll ta Type	er Location: .ected: 9/23/202 : Original	20 12:57:09 PM					
Replic	ate Data: M	75			Ana	lvte:	Pb 283.31						
Repl	SampleConc	StndConc	BlnkCorr	Time	1	Signal							
	mg/L	mg/L	Signal		5	Stored							
1	0.885	0.885	0.0140	12:57:09	PM	Yes							
2	0.989	0.989	0.0160	12:57:10	PM	Yes							
3	0.776	0.776	0.0119	12:57:11	PM	Yes							
Mean:	0.883	0.883	0.0140										
SD:	0.1065	0.1065	0.0021										
%RSD:	12.06%	12.06%	14.80										
Sequer Sample Analys	nce No.: 46 E ID: M81 st:				Aut Dat Dat	tosampl te Coll ta Type	er Location: ected: 9/23/202 : Original	20 12:58:13 PM					
Replic	ate Data: M	81 StadCone	BlokCorr	Time	Ana	lyte:	Pb 283.31						
Aepi	sampieconc mg/I	schdconc	Signal	1100		signal							
	0.661	0.661	0.0097	12.58.14	PM	Ves							
5	0.746	0.746	0.0113	12.58.15	DM	Yee							
3	0.740	0.740	0.0118	12.58.16	DM	Yee							
Means	0.726	0.726	0.0109	********	4.14	100							
SD.	0.0581	0.0581	0.0011										
%RSD:	8.01%	8.01%	10.33										
	No 1 47				 R4		er Tocation:						
Sample Analys	ID: M82				Dat	te Coll ta Type	ected: 9/23/202 c Original	20 12:58:24 PM					
Replic	ate Data: M	82			Ana	lyte:	Pb 283.31						
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal							
	mg/L	mg/L	Signal		5	Stored							
1	0.679	0.679	0.0100	12:58:24	PM	Yes							
2	0.635	0.635	0.0092	12:58:25	PM	Yes							
3	0.749	0.749	0.0114	12:58:26	PM	Yes							
Mean:	0.688	0.688	0.0102										
SD:	0.0576	0.0576	0.0011										
%RSD:	8.38%	8.38%	10.99										
Sequer Sample	nce No.: 48 1D: M83				Aut	cosampl ce Coll	er Location: ected: 9/23/202	20 12:58:35 PM					
Analys	it:				Dat	а Туре	: Original						

Figura 70. Determinación de plomo en muestras, continuación.

Method	: Determinac	ion de Pb		i	Page 15 Date: 9/23/2020 1:20:00 PM					
Replic	ate Data: M8	3	Blakforn	-	Analyte:	Pb 283.31				
Aepi	sampieconc	schdconc	BinkCorr	1100	Signal					
1	ng/10	0.650	0.0095	12.58.35	PM Ves					
2	0.605	0.605	0.0086	12:58:36	PM Yes					
3	0.660	0.660	0.0097	12:58:37	PM Yes					
Mean:	0.639	0.639	0.0092							
SD:	0.0292	0.0292	0.0006							
%RSD:	4.57%	4.57%	6.14							
Sequen	ce No.: 49				Autosamp	ler Location:	· · · · · · · · · · · · · · · · · · ·			
Analys	t:				Data Typ	e: Original	20 12:58:44 PM			
Replic	ate Data: M8	4			Analyte:	Pb 283.31				
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal					
	mg/L	mg/L	Signal		Stored					
1	0.743	0.743	0.0113	12:58:45	PM Yes					
2	0.750	0.750	0.0114	12:58:46	PM Yes					
3	0.669	0.669	0.0098	12:58:47	PM Yes					
Mean:	0.721	0.721	0.0108							
SD:	0.0452	0.0452	0.0009							
%RSD:	6.27%	6.27%	8.10							
Sequen	ce No.: 50				Autosamp	ler Location:	20 10 E0 0E PM			
Analys	1D: M85 t:				Data Typ	e: Original	20 12:59:05 PR			
Replic	ate Data: M8	5			Analyte:	Pb 283.31				
Repl	SampleConc	StndConc	BinkCorr	Time	Signal					
	mg/L	mg/L	Signal 0.0087	12.50.05	DM Yes					
2	0.878	0.878	0.0139	12:59:05	PM Yes					
3	1.016	1.016	0.0166	12:59:08	PM Yes					
Mean:	0.835	0.835	0.0131							
SD:	0.2067	0.2067	0.0040							
<pre>%RSD:</pre>	24,76%	24,76%	30,78							
 Semien					Butossm	ler Tocation:				
Sample Analys	ID: M85 t:				Date Col Data Typ	lected: 9/23/20 e: Original	20 12:59:17 PM			
Replic	ate Data: M8	5		-	Analyte:	Pb 283.31				
Repl	SampleConc	StndConc	BinkCorr	Time	Signal					
1	0.677	0.677	0.0100	12.50.10	PM Vec					
2	0.701	0.701	0.0104	12:59:10	PM Yee					
3	0.626	0.626	0.0090	12:59:20	PM Yes					
Mean:	0.668	0.668	0.0098	12133120	100 100					
SD:	0.0380	0.0380	0.0007							
%RSD:	5.70%	5.70%	7.54							
Sequen	ce No.: 52				Autosamp	ler Location:				
Sample	ID: M91				Date Col	lected: 9/23/20	20 1:00:21 PM			
Analys	c :				раса тур	e: Original				
Replic	ate Data: M9	1			Analyte	Pb 283.31				
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal					
	mg/L	mg/L	Signal	_	Stored					
1	0.641	0.641	0.0093	1:00:22 1	PM Yes					
2	0.670	0.670	0.0098	1:00:23 #	PM Yes					

Figura 71. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 16 Date: 9/23/2020 1:20:00 PM 3 0.677 0.677 0.0100 1:00:24 PM Yes Mean: 0.662 SD: 0.0191 0.662 0.0097 %RSD: 2.88% 2.88% 3.82 Sequence No.: 53 Autosampler Location: Date Collected: 9/23/2020 1:00:31 PM Sample ID: M92 Analyst: Data Type: Original Replicate Data: M92 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 1:00:31 PM 0.678 0.678 0.0100 Yes 1:00:32 PM Yes 2 3 0.672 0.672 0.0099 1:00:33 PM Yes 0.677 0.677 0.0100 Mean: SD: 0.0041 0.0041 0.0001 %RSD: 0.60% 0.60% 0.80 Sequence No.: 54 Autosampler Location: Sample ID: M93 Date Collected: 9/23/2020 1:00:41 PM Analyst: Data Type: Original Replicate Data: M93 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Stored ٠ mg/L Signal 0.639 0.639 0.0092 1:00:41 PM Yes 0.620 0.620 0.0089 1:00:42 PM Yes 2 3 0.663 0.663 0.0097 1:00:43 PM Yes Mean: 0.641 0.641 0.0093 0.0215 0.0215 0.0004 SD: %RSD: 3.36% 3.36% 4.50 Sequence No.: 55 Autosampler Location: Sample ID: M94 Analyst: Date Collected: 9/23/2020 1:00:51 PM Data Type: Original Replicate Data: M94 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal . mg/L mg/L Signal Stored 1:00:51 PM 0.618 0.618 0.0088 Yes 0.608 0.0086 1:00:52 PM 0.608 2 Yes 1:00:53 PM 0.665 0.665 0.0098 Yes Mean: 0.631 0.631 0.0091 SD: 0.0304 0.0304 0.0006 %RSD: 4.82% 4.82% 6.51 Sequence No.: 56 Autosampler Location: Sample ID: M95 Date Collected: 9/23/2020 1:01:14 PM Data Type: Original Analyst: Replicate Data: M95 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 0.647 1:01:15 PM 0.647 0.0094 Yes 0.627 0.0090 1:01:16 PM Yes 1:01:17 PM з 0.648 0.648 0.0094 Yes 0.0093 0.641 Mean: 0.641 SD: 0.0117 0.0117 0.0002 %RSD: 1.83% 1.83% 2.46

Figura 72. Determinación de plomo en muestras, continuación.

Figura 73. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 17 Date: 9/23/2020 1:20:00 PM Sequence No.: 57 Autosampler Location: Date Collected: 9/23/2020 1:02:25 PM Sample ID: M101 Data Type: Original Analyst: Replicate Data: M101 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal . Stored 0.0095 Yes 0.651 0.651 1:02:25 PM 0.669 0.669 1:02:26 PM Yes 0.674 1:02:27 PM 0.674 0.0099 Yes Mean: 0.665 0.665 0.0097 SD: 0.0122 0.0122 0.0002 %RSD: 1.83% 1.83% 2.43 Sequence No.: 58 Autosampler Location: Date Collected: 9/23/2020 1:02:44 PM Sample ID: M102 Analyst: Data Type: Original Replicate Data: M102 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal . Stored 0.641 0.641 0.0093 1:02:44 PM Yes 0.0099 1:02:46 PM 1:02:47 PM Yes 0.620 0.620 0.0089 3 Yes Mean: 0.645 0.645 0.0094 SD: 0.0270 0.0270 0.0005 %RSD: 4.18% 4.18% 5.60 Sequence No.: 59 Autosampler Location: Sample ID: M103 Date Collected: 9/23/2020 1:03:06 PM Analyst: Data Type: Original Replicate Data: M103 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 0.623 0.628 . mg/L Signal Stored 1:03:07 PM 0.623 0.0089 Yes 1:03:09 PM Yes 2 1:03:10 PM 3 0.638 0.638 0.0092 Yes Mean: 0.630 0.630 0.0091 0.0077 0.0077 0.0001 SD: %RSD: 1.22% 1.22% 1.65 Sequence No.: 60 Autosampler Location: Date Collected: 9/23/2020 1:03:31 PM Sample ID: M104 Analyst: Data Type: Original Replicate Data: M104 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 1:03:31 PM 0.680 0.680 0.0100 Yes 1:03:33 PM Yes 0.630 0.630 0.0091 1:03:34 PM Yes Mean: 0.727 0.727 0.0110 0.1262 0.1262 SD: 0.0025 %RSD: 17.37% 17.37% 22.40 Sequence No.: 61 Sample ID: M104 Autosampler Location: Date Collected: 9/23/2020 1:03:42 PM Data Type: Original Analyst:

Method: Determinacion de Pb Page 18 Date: 9/23/2020 1:20:00 PM Analyte: Pb 283.31 Replicate Data: M104 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Stored . mg/L Signal Yes 0.975 0.975 0.0158 1:03:43 PM 2 0.0117 1:03:44 PM Yes 1:03:45 PM 0.661 0.661 0.0097 3 Yes Mean: 0.801 0.801 0.0124 SD: 0.1596 0.1596 0.0031 %RSD: 19.93% 19.93% 25.04 Sequence No.: 62 Autosampler Location: Sample ID: M104 Date Collected: 9/23/2020 1:04:13 PM Analyst: Data Type: Original Replicate Data: M104 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 0.621 1:04:14 PM 0.621 0.0089 Yes 0.0093 1:04:15 PM Yes 2 0.628 0.628 0.0090 1:04:16 PM 3 Yes Mean: 0.630 0.630 0.0091 0.0093 0.0002 0.0093 SD: %RSD: 1.48% 1.48% 2.00 Sequence No.: 63 Autosampler Location: Sample ID: M105 Date Collected: 9/23/2020 1:04:38 PM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: M105 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 1:04:38 PM 1.018 1.018 0.0166 Yes 2 1.039 1:04:39 PM Yes 1:04:40 PM 1.069 1.069 0.0176 Yes 3 1.042 0.0171 Mean: 1.042 SD: 0.0255 0.0255 0.0005 %RSD: 2.45% 2.45% 2,91 Sequence No.: 64 Autosampler Location: Date Collected: 9/23/2020 1:05:38 PM Sample ID: M111 Analyst: Data Type: Original Replicate Data: M111 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 0.584 1:05:39 PM 0.584 0.0082 Yes 0.637 0.637 0.0092 1:05:40 PM 2 Yes 0.645 0.645 0.0094 1:05:42 PM Yes 3 0.622 0.0089 Mean: 0.622 0.0331 0.0331 SD: 0.0006 %RSD: 5.32% 5.32% 7.21 Sequence No.: 65 Autosampler Location: Sample ID: M112 Date Collected: 9/23/2020 1:06:01 PM Analyst: Data Type: Original Replicate Data: M112 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 0.561 ٠ mg/L Signal Stored 1:06:01 PM 0.561 0.0077 Yes

Figura 74. Determinación de plomo en muestras, continuación.

Figura 75. Determinación de plomo en muestras, continuación.

Method	d: Determinac	ion de Pb			Page	19		Date: 9/23/2020	1:20:00 PM
2	0.545	0.545	0.0074	1:06:02	PM	Yes			
3	0.576	0.576	0.0080	1:06:04	PM	Yes			
Mean:	0.561	0.561	0.0077						
SD:	0.0156	0.0156	0.0003						
%RSD:	2.78%	2.78%	3.92						
Sequer	nce No.: 66				Au	tosamp	ler Location:		
Analy	s ID: MII3 st:				Da	te Col ta Typ	e: Original	0 1:06:28 PM	
Replic	cate Data: M1	13			An	alyte:	Pb 283.31		
Repl	SampleConc	StndConc	BinkCorr	Time		Signal			
	mg/L	mg/L	Signal			Stored			
1	0.602	0.602	0.0085	1:06:29	PM	Yes			
2	0.684	0.684	0.0101	1:06:30	PM	Yes			
3	0.630	0.630	0.0091	1:06:31	PM	Yes			
Mean:	0.639	0.639	0.0092						
SD:	0.0415	0.0415	0.0008						
%RSD:	6.50%	6.50%	8.74						
Sequer	nce No.: 67				Au	tosamp	ler Location:		
Sample	b ID: M114				Da	te Col	lected: 9/23/202	0 1:06:57 PM	
Analys	st:				Da	ta Typ	e: Original		
Replic	cate Data: M1	.14	Blakford	-	An	alyte:	Pb 283.31		
Repi	Sampieconc	StndConc	BINKCOFF	Time		Signal			
	mg/L	mg/L	Signal			Stored			
1	0.654	0.654	0.0095	1:06:57	PM	Yes			
2	0.610	0.610	0.0087	1:06:58	PM	Yes			
3	0.744	0.744	0.0113	1:06:59	PM	Yes			
Mean:	0.669	0.669	0.0098						
SD:	0.0685	0.0685	0.0013						
%RSD:	10.23%	10.23%	13.53						
Sequer	nce No.: 68				Au	tosamp	ler Location:		
Sample	b ID: M114				Da	te Col	lected: 9/23/202	0 1:07:10 PM	
Analys	st:				Da	ta Typ	e: Original		
Den 14	D-b M1					- 1 1	nh 000 01		
Replic	SampleConc	StndConc	BlnkCorr	Time	An	Signal	PD 283.31		
	mg/L	mg/L	Signal			Stored			
1	0.557	0.557	0.0077	1:07:10	PM	Yes			
2	0.611	0.611	0.0087	1:07:12	PM	Yes			
3	0.694	0.694	0.0103	1:07:13	PM	Yes			
Maana	0 621	0 621	0.0089			100			
co.	0.021	0.021	0.0003						
SDCD.	11 125	11 125	15 10						
skan:	11.13%	11,134	13.10						
Sample	nce No.: 69				Au	te Col	<pre>ler Location: lected: 9/23/2020</pre>	0 1:08:14 PM	
Analys	st:				Da	ta Typ	e: Original		
Replic	cate Data: M1	14	pl-b0	=	An	alyte:	Pb 283.31		
Repl	SampleConc	StndConc	BinkCorr	Time		Signal			
	mg/L	mg/L	Signal			stored			
1	0.648	0.648	0.0094	1:08:15	PM	Yes			
2	0.613	0.613	0.0087	1:08:16	PM	Yes			
3	0.578	0.578	0.0081	1:08:17	PM	Yes			
Mean:	0.613	0.613	0.0087						
SD:	0.0348	0.0348	0.0007						
%RSD:	5.68%	5.68%	7.75						

Page 20 Date: 9/23/2020 1:20:00 PM Method: Determinacion de Pb Sequence No.: 70 Autosampler Location: Sample ID: M115 Analyst: Date Collected: 9/23/2020 1:08:39 PM Data Type: Original Replicate Data: M115 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored . 1.247 1.247 0.0211 0.0126 1:08:39 PM Yes 1:08:40 PM Yes 0.705 0.705 0.0105 1:08:42 PM Yes 3 Mean: 0,921 0.921 0.0147 0.2873 SD: 0.2873 0.0056 %RSD: 31.18% 31.18% 37.91 Sequence No.: 71 Autosampler Location: Sample ID: M115 Date Collected: 9/23/2020 1:09:12 PM Analyst: Data Type: Original Replicate Data: M115 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 0.586 0.586 0.0082 1:09:12 PM Yes 1:09:13 PM Yes 2 0.583 0.583 0.0082 1:09:15 PM Yes Mean: 0.588 0.588 0.0083 0.0061 0.0061 0.0001 SD: %RSD: 1.04% 1.04% 1.44 _____ ------Sequence No.: 72 Autosampler Location: Sample ID: M121 Date Collected: 9/23/2020 1:10:46 PM Data Type: Original Analyst: Replicate Data: M121 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 1:10:46 PM 0.583 0.583 0.0082 Yes 0.593 1:10:48 PM Yes 0.594 0.594 0.0084 1:10:49 PM 3 Yes Mean: 0.590 0.590 0.0083 0.0061 0.0061 0.0001 SD: %RSD: 1.04% 1.04% 1.43 Sequence No.: 73 Autosampler Location: Sample ID: M122 Date Collected: 9/23/2020 1:11:22 PM Analyst: Data Type: Original Replicate Data: M122 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 0.549 1:11:23 PM 0.549 0.0075 Yes 0.562 0.562 0.0077 1:11:24 PM Yes 0.546 0.546 0.0074 1:11:25 PM Yes 3 Mean: 0.552 0.552 0.0076 0.0085 0.0085 0.0002 SD: %RSD: 1.53% 1.53% 2.17 Sequence No.: 74 Autosampler Location: Sample ID: M123 Date Collected: 9/23/2020 1:11:54 PM Analyst: Data Type: Original

Figura 76. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 21 Date: 9/23/2020 1:20:00 PM Replicate Data: M123 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Time Signal Repl . mg/L mg/L Signal 0.0075 Stored 1:11:54 PM 0.547 0.547 Yes 0.513 0.513 0.0068 1:11:55 PM Yes 1:11:57 PM 0.546 0.546 0.0074 Yes 3 Mean: 0.535 0.535 0.0072 SD: 0.0193 0.0193 0.0004 %RSD: 3.60% 3.60% 5.18 Sequence No.: 75 Autosampler Location: Sample ID: M124 Date Collected: 9/23/2020 1:12:26 PM Analyst: Data Type: Original Replicate Data: M124 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Stored Signal 0.518 0.0069 1:12:26 PM 0.518 Yes 2 0.552 0.552 0.0075 1:12:28 PM Yes 1:12:29 PM 3 0.494 Mean: 0.521 0.494 0.0064 Yes 0.521 0.0070 0.0289 0.0289 0.0006 SD: %RSD: 5.53% 5.53% 8.06 Sequence No.: 76 Autosampler Location: Sample ID: M125 Date Collected: 9/23/2020 1:13:15 PM Analyst: Data Type: Original Replicate Data: M125 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L 0.779 Signal 0.0120 Stored 1:13:16 PM 0.779 Yes 0.778 0.778 1:13:17 PM 1:13:18 PM 0.0119 Yes 3 0.885 0.885 0.0140 Yes Mean: 0.814 0.814 0.0126 SD: 0.0617 0.0617 0.0012 %RSD: 7.58% 7.58% 9.48 Sequence No.: 77 Autosampler Location: Sample ID: M131 Date Collected: 9/23/2020 1:13:44 PM Analyst: Data Type: Original Replicate Data: M131 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 0.930 Yes 0.930 0.0149 1:13:44 PM 1:13:45 PM 0.653 0.653 0.0095 Yes 1:13:46 PM 0.527 0.527 0.0071 Yes Mean: 0.703 0.703 0.0105 SD: 0.2063 0.2063 0.0040 %RSD: 29.34% 29.34% 38.22 Sequence No.: 78 Autosampler Location: Date Collected: 9/23/2020 1:15:53 PM Sample ID: M131 Analyst: Data Type: Original Replicate Data: M131 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored

Figura 77. Determinación de plomo en muestras, continuación.

Figura 78. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 22 Date: 9/23/2020 1:20:00 PM 1 0.931 0.931 0.0149 1:15:53 PM Yes 0.726 0.0109 1:15:54 PM 2 0.726 Yes 3 0.662 0.662 0.0097 1:15:56 PM Yes Mean: 0.773 0.773 0.0119 SD: 0.1404 0.1404 0.0027 %RSD: 18.16% 18.16% 23.03 Sequence No.: 79 Autosampler Location: Date Collected: 9/23/2020 1:16:03 PM Sample ID: M132 Analyst: Data Type: Original Replicate Data: M132 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal Stored mg/L mg/L Signal . 0.492 0.492 0.0064 1:16:03 PM Yes 2 0.558 0.558 0.0077 1:16:05 PM Yes 0.0074 1:16:06 PM 3 0.543 0.543 Yes 0.0071 Mean: 0.531 0.531 SD: 0.0346 0.0346 0.0007 %RSD: 6.53% 6.53% 9.43 Sequence No.: 80 Autosampler Location: Sample ID: M131 Date Collected: 9/23/2020 1:17:47 PM Analyst: Data Type: Original Replicate Data: M131 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal . mg/L mg/L Signal Stored 1:17:47 PM 0.524 0.524 0.0070 Yes 1:17:49 PM 2 Yes 1:17:50 PM 0.546 0.546 0.0074 Yes 3 0.553 0.553 0.0076 Mean: SD: 0.0331 0.0331 0.0006 %RSD: 5.98% 5.98% 8.49 Sequence No.: 81 Autosampler Location: Sample ID: M132 Date Collected: 9/23/2020 1:19:32 PM Data Type: Original Analyst: Replicate Data: M132 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Signal . mg/L Stored 0.560 0.560 0.0077 1:19:33 PM Yes 2 0.524 0.524 0.0070 1:19:34 PM Yes 3 0.613 0.613 0.0087 1:19:35 PM Yes Mean: 0.565 0.565 0.0078 0.0446 0.0446 SD: 0.0009

%RSD: 7.89%

7.89%

11.10

Figura 79. Determinación de plomo en muestras, continuación.

Date: 10/28/2020 10:37:31 AM Method: Determinacion de Pb Page 1 Analysis Begun Logged In Analyst: Administrator Technique: AA Flame Spectrometer: PinAAcle 900F, S/N PFBS13050203 Autosampler: Sample Information File: C:\Users\Public\PerkinElmer\AA\Data\Sample Information\ 201007 Pb en agua LF Mollinedo.sif Batch ID: 201028 Results Data Set: 201028 Pb LFMollinedo Results Library: C:\Users\Public\PerkinElmer\AA\Data\Results\Results.mdb Method Loaded Method Last Saved: 10/16/2020 9:23:07 AM Method Name: Determinacion de Pb Method Description: Determinacion de Plomo Sequence No.: 1 Autosampler Location: Sample ID: Blanco Date Collected: 10/28/2020 10:09:39 AM Analyst: Data Type: Original Repl SampleConc StndConc BlnkCorr Time Signal mg/L Signal
[0.00] 0.4080
[0.00] 0.4080 mg/L 10:09:40 AM Yes 10:09:41 AM Yes 10:09:42 AM Yes 2 [0.00] 0.4080 Mean: [0.00] 0.4080 SD: 0.0000 0.0000 %RSD: \$00.0 0.01 Auto-zero performed. Sequence No.: 2 Autosampler Location: Date Collected: 10/28/2020 10:09:55 AM Sample ID: std 1 Data Type: Original Analyst: Replicate Data: std 1 Analyte: Pb 283.31 Signal Repl SampleConc StndConc BlnkCorr Time mg/L Signal Stored . mg/L [2.00] [2.00] 10:09:55 AM Yes 10:09:56 AM Yes 10:09:57 AM Yes 0.0585 0.0589 3 [2.00] 0.0587 Mean: [2,00] 0.0002 0.0000 SD: %RSD: \$00.0 0.38 Standard number 1 applied. [2.00] Correlation Coef.: 1.000000 Slope: 0.02934 Intercept: 0.00000 Sequence No.: 3 Autosampler Location: Sample ID: std 2 Date Collected: 10/28/2020 10:10:06 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: std 2 Signal Repl SampleConc StndConc BlnkCorr Time mg/L . mg/L Signal Stored [8.00] [8.00] 10:10:06 AM Yes 10:10:07 AM Yes 10:10:08 AM Yes 0.1935 2 [8.00] 0.1983 Mean: [8,00] 0.1959 0.0024 SD: 0.0000 %RSD: \$00.0 1.23 Standard number 2 applied. [8.00]

Date: 10/28/2020 10:37:31 AM Method: Determinacion de Pb Page 2 Correlation Coef.: 0.998566 Slope: 0.02412 Intercept: 0.00448 Sequence No.: 4 Autosampler Location: Sample ID: std 3 Date Collected: 10/28/2020 10:10:17 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: std 3 Repl SampleConc StndConc BlnkCorr Signal Time . mg/L mg/L Signal Stored 0.2846 [14.00] 10:10:18 AM Yes 114.001 Yes 10:10:19 AM 10:10:20 AM 0.2882 [14.00] 3 Yes 0.2870 Mean: [14.00] 0.0000 SD: %RSD: 800.0 0.71 Standard number 3 applied. [14.00] Correlation Coef.: 0.992928 Slope: 0.02044 Intercept: 0.01275 Sequence No.: 5 Autosampler Location: Date Collected: 10/28/2020 10:10:28 AM Data Type: Original Sample ID: std 4 Analyst: Replicate Data: std 4 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L ٠ mg/L Signal Stored [18.00] 10:10:28 AM 10:10:29 AM 0.3541 0.3557 Yes Yes [18.00] 0.3536 10:10:31 AM [18.00] Yes Mean: [18,00] 0.3545 SD: 0.0000 0.0011 %RSD: 800.0 0.31 Standard number 4 applied. [18.00] Correlation Coef.: 0.994402 Slope: 0.01937 Intercept: 0.01649 Sequence No.: 6 Autosampler Location: Date Collected: 10/28/2020 10:10:38 AM Sample ID: std 5 Analyst: Data Type: Original Replicate Data: std 5 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored [20.00] 0.4039 10:10:38 AM Yes Yes 10:10:39 AM 3 [20.00] 0.4065 10:10:40 AM Yes Mean: [20.00] 0.4053 SD: 0.0000 0.0013 %RSD: 800.0 0.33 Standard number 5 applied. [20.00] Slope: 0.01941 Intercept: 0.01632 Correlation Coef.: 0.996210 Calibration data for Pb 283.31 Equation: Linear, Calculated Intercept Entered Calculated Mean Signal Conc. Conc. Standard ID (Abs) mg/L mg/L Deviation %RSD 0.00 Blanco 0.0000 0.01 -0.841 2.00 std 1 0.0587 2.182 0.00 0.38 std 2 0.1959 8.00 9.252 0.00 1.23 13.943 17.422 0.71 std 3 0.2870 14.00 0.00 18.00 0.3545 0.00 std 4

Figura 80. Determinación de plomo en muestras, continuación.

Intercept: 0.01632

0.00

0.33

0.4053

Correlation Coef.: 0.996210 Slope: 0.01941

20.00

20.041

std 5

Sequence No.: 7 Autosampler Location: Sample ID: N11 Date Collected: 10/28/2020 10:13:53 AM Analyst: Data Type: Original Replicate Data: N11 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Stored mg/L Signal ٠ 1.161 0.0389 10:13:54 AM Yes 10:13:55 AM Yes 1.161 1.093 1.093 0.0375 10:13:56 AM 1.105 1.105 0.0378 Yes Mean: 1,120 1.120 0.0381 SD: 0.0365 0.0365 0.0007 %RSD: 3.26% 3.26% 1.86 Sequence No.: 8 Autosampler Location: Sample ID: N12 Date Collected: 10/28/2020 10:14:06 AM Analyst: Data Type: Original Replicate Data: N12 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 2.368 2.368 0.0623 10:14:06 AM 10:14:07 AM Yes Yes 2 2.359 2.359 0.0621 10:14:08 AM Yes Mean: 2.380 2.380 0.0625 0.0290 0.0290 0.0006 SD: %RSD: 1.22% 1.22% 0.90 Sequence No.: 9 Autosampler Location: Sample ID: N13 Date Collected: 10/28/2020 10:14:17 AM Analyst: Data Type: Original Replicate Data: N13 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored 10:14:17 AM 2.109 2.109 0.0573 Yes 10:14:18 AM Yes 2 10:14:19 AM 3 2.132 2.132 0.0577 Yes 0.0576 Mean: 2.127 2.127 SD: 0.0156 0.0156 0.0003 %RSD: 0.73% 0.73% 0.52 Sequence No.: 10 Autosampler Location: Date Collected: 10/28/2020 10:14:30 AM Sample ID: N14 Analyst: Data Type: Original Replicate Data: N14 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 10:14:30 AM

Figura 81. Determinación de plomo en muestras, continuación.

Page 3

Method: Determinacion de Pb

3

.

1.419

Date: 10/28/2020 10:37:31 AM

1.419 10:14:30 AM Yes 10:14:31 AM Yes 1.425 0.0440 3 1.382 1.382 0.0431 10:14:33 AM Yes 0.0437 1,409 1.409 Mean: SD: 0.0232 0.0232 0.0005 %RSD: 1.65% 1.65% 1.03 Sequence No.: 11 Sample ID: N15 Autosampler Location: Date Collected: 10/28/2020 10:14:41 AM Analyst: Data Type: Original

0.0439

Method: Determinacion de Pb Page 4 Date: 10/28/2020 10:37:31 AM Replicate Data: N15 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L 0.742 0.739 . Signal 0.0307 Stored 10:14:41 AM 10:14:42 AM 0.742 Yes 0.0307 Yes 0.752 0.0309 10:14:43 AM 0.752 Yes Mean: 0.744 0.744 0.0308 SD: 0.0065 0.0065 0.0001 %RSD: 0.88% 0.88% 0.41 Sequence No.: 12 Sample ID: N21 Autosampler Location: Date Collected: 10/28/2020 10:16:16 AM Analyst: Data Type: Original Replicate Data: N21 Analyte: Pb 283.31 Repl SampleConc StndConc mg/L mg/L BlnkCorr Time Signal . mg/L Signal Stored 2.092 2.092 0.0569 10:16:17 AM Yes 10:16:18 AM Yes 0.0567 10:16:19 AM 2.082 2.082 Yes Mean: 2.086 2.086 0.0568 0.0052 0.0052 0.0001 SD: %RSD: 0.25% 0.25% 0.18 Sequence No.: 13 Sample ID: N22 Autosampler Location: Date Collected: 10/28/2020 10:16:26 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: N22 Repl SampleConc StndConc mg/L mg/L BlnkCorr Time Signal . mg/L Signal Stored 2.796 0.0706 10:16:26 AM 10:16:27 AM 2.796 Yes Yes 0.0722 10:16:29 AM 2.880 2.880 Yes Mean: 2.829 2.829 0.0712 SD: 0.0443 0.0443 0.0009 %RSD: 1.57% 1.57% 1.21 Sequence No.: 14 Sample ID: N23 Autosampler Location: Date Collected: 10/28/2020 10:16:39 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: N23 SampleConc StndConc mg/L mg/L Repl BlnkCorr Time Signal . mg/L 2.824 Signal Stored 2.824 0.0711 10:16:39 AM Yes 0.0719 10:16:40 AM 10:16:41 AM 2.863 2.863 Yes 2.873 2.873 0.0721 Yes Mean: 2.853 2.853 0.0717 0.0258 0.0258 0.0005 SD: %RSD: 0.90% 0.90% 0.70 Sequence No.: 15 Autosampler Location: Date Collected: 10/28/2020 10:16:49 AM Sample ID: N24 Analyst: Data Type: Original Replicate Data: N24 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 2.513 mg/L 2.513 Signal 0.0651 Stored ٠ 10:16:49 AM

Figura 82. Determinación de plomo en muestras, continuación.

Figura 83. Determinación de plomo en muestras, continuación.

Method	Method: Determinacion de Pb				Page 5 Date: 10/28/2020 10:					
2 3	2.540 2.606	2.540 2.606	0.0656	10:16:51 10:16:52	AM Y AM Y	es				
Mean:	2.553	2,553	0.0659							
SD:	0.0476	0.0476	0.0009							
%RSD:	1.86%	1.86%	1.40							
Seguer	nce No.: 16				Autos	ampler Location:				
Sample	a ID: N25 st:				Date Data	Collected: 10/28/ Type: Original	/2020 10:17:00 AM			
Replic	cate Data: N2	25			Analy	te: Pb 283.31				
Repl	SampleConc	StndConc	BlnkCorr	Time	Sig	nal				
	mg/L	mg/L	Signal	10.17.00	Sto	red				
2	2.719	2.719	0.0690	10:17:00	AM V	00				
3	2.737	2.737	0.0695	10:17:02	AM Y	es				
Mean:	2.743	2.743	0.0696			0.0				
SD:	0.0338	0.0338	0.0007							
%RSD:	1.23%	1.23%	0.94							
Sequer	nce No.: 17				Autos	ampler Location:				
Sample	DID: N31				Date Data	Collected: 10/28/ Type: Original	/2020 10:19:22 AM			
Replic	ate Data: N3	1			Analy	te: Pb 283.31				
Repl	SampleConc	StndConc	BinkCorr	Time	Sig	nal				
	mg/L	mg/L	Signal	10.10.00	Sto	red				
1	1.971	1.971	0.0546	10:19:23	AM Y	es				
3	1.925	1.925	0.0551	10:19:25	AM V	es				
Mean -	1.964	1.964	0.0544	10119120	ALCI 11	0.5				
SD:	0.0361	0.0361	0.0007							
%RSD:	1.84%	1.84%	1.29							
Semier	No : 18				Autos	ampler Location:				
Sample	DID: N32				Date	Collected: 10/28/	/2020 10:19:33 AM			
Analys					Data	Type: Original				
Replic	ate Data: N3	12			Analy	te: Pb 283.31				
Repl	SampleConc	StndConc	BinkCorr	Time	Sig	nal				
	mg/L	mg/L	Signal	10.10.22	Sto	red				
2	1.866	1.866	0.0514	10:19:33	AM V	05				
3	1.847	1.847	0.0522	10:19:35	AM Y	es				
Mean:	1.840	1.840	0.0520	10110100						
SD:	0.0304	0.0304	0.0006							
%RSD:	1.65%	1.65%	1.13							
Semier					huton	ampler Location:				
Sample Analy:	ID: N33				Date Data	Collected: 10/28/ Type: Original	/2020 10:19:43 AM			
Replic	cate Data: N3	3	Black		Analy	te: Pb 283.31				
Repl	sampieConc	stndConc	BinkCorr	Time	Sig	nai				
1	3.186	3.186	0_0782	10-19-43	AM V					
2	3.182	3,182	0.0781	10:19:44	AM V	es				
3	3.173	3.173	0.0779	10:19:45	AM Y	es				
Mean:	3.180	3.180	0.0781							
SD:	0.0069	0.0069	0.0001							
%RSD:	0.22%	0.22%	0.17							

Figura 84. Determinación de plomo en muestras, continuación.

Date: 10/28/2020 10:37:31 AM Method: Determinacion de Pb Page 6 Sequence No.: 20 Autosampler Location: Sample ID: N34 Analyst: Date Collected: 10/28/2020 10:19:53 AM Data Type: Original Replicate Data: N34 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored . 10:19:53 AM 2.049 2.049 0.0561 Yes Yes 10:19:54 AM 2 3 2.052 2.052 0.0562 10:19:55 AM Yes 2.059 0.0563 Mean: 2,059 SD: 0.0136 0.0136 0.0003 %RSD: 0.66% 0.66% 0.47 Sequence No.: 21 Sample ID: N35 Autosampler Location: Date Collected: 10/28/2020 10:20:01 AM Analyst: Data Type: Original Replicate Data: N35 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored . 10:20:02 AM 2.236 0.0597 2.236 Yes 2.251 2,251 10:20:03 AM Yes 2 2.250 2,250 0.0600 10:20:04 AM Yes 3 2.246 0.0599 Mean: 2.246 SD: 0.0087 0.0087 0.0002 %RSD: 0.39% 0.39% 0.28 Sequence No.: 22 Autosampler Location: Sample ID: N41 Date Collected: 10/28/2020 10:21:23 AM Analyst: Data Type: Original Replicate Data: N41 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal mg/L 2.063 . mg/L Signal Stored 2.063 10:21:24 AM 0.0564 Yes 2.028 0.0557 10:21:25 AM 10:21:26 AM 2 2.028 Yes 2.023 0.0556 Yes 3 2.023 Mean: 2.038 2.038 0.0559 SD: 0.0218 0.0218 0.0004 %RSD: 1.07% 1.07% 0.76 Sequence No.: 23 Autosampler Location: Sample ID: N42 Date Collected: 10/28/2020 10:21:33 AM Data Type: Original Analyst: Replicate Data: N42 Analyte: Pb 283.31 Repl SampleConc StndConc # mg/L mg/L BlnkCorr Time Signal Stored Signal 2.060 2.060 0.0563 10:21:33 AM Yes 0.0565 10:21:34 AM 10:21:36 AM 2 2.068 2.068 Yes 2.055 2.055 0.0562 Yes Mean: 2.061 2.061 0.0563 0.0069 0.0069 0.0001 SD: %RSD: 0.33% 0.33% 0.24 Sequence No.: 24 Autosampler Location: Sample ID: N43 Analyst: Date Collected: 10/28/2020 10:21:42 AM Data Type: Original

Figura 85. Determinación de plomo en muestras, continuación.

Page 7 Date: 10/28/2020 10:37:31 AM Method: Determinacion de Pb Replicate Data: N43 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 2.057 10:21:42 AM 2.057 0.0562 Yes 2.126 2,126 0.0576 10:21:43 AM Yes з 2.011 2.011 0.0554 10:21:45 AM Yes 2.064 0.0564 Mean: 2.064 0.0577 0.0577 SD: 0.0011 %RSD: 2.80% 2.80% 1,99 Sequence No.: 25 Autosampler Location: Sample ID: N44 Analyst: Date Collected: 10/28/2020 10:21:51 AM Data Type: Original Replicate Data: N44 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Signal Repl Time Signal 0.0538 . mg/L mg/L Stored 10:21:51 AM 1.930 1.930 Yes 1.912 1.912 0.0534 10:21:52 AM Yes 3 1.951 1,951 0.0542 10:21:54 AM Yes 1.931 1,931 0.0538 Mean: 0.0004 SD: 0.0195 0.0195 %RSD: 1.01% 1.01% 0.70 Sequence No.: 26 Autosampler Location: Date Collected: 10/28/2020 10:22:01 AM Sample ID: N45 Analyst: Data Type: Original Replicate Data: N45 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Time Signal Repl mg/L 2.101 . mg/L Signal Stored 10:22:02 AM 2,101 0.0571 Yes 2.075 2.075 0.0566 10:22:03 AM Yes 3 2.118 2.118 0.0574 10:22:04 AM Yes Mean: 2.098 2.098 0.0570 0.0215 0.0215 0.0004 SD: %RSD: 1.03% 1.03% 0.73 Sequence No.: 27 Autosampler Location: Sample ID: N51 Analyst: Date Collected: 10/28/2020 10:23:07 AM Data Type: Original Replicate Data: N51 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 10:23:08 AM 1.630 1.630 0.0480 Yes 10:23:09 AM Yes 3 1.661 1.661 0.0486 10:23:11 AM Yes Mean: 1.666 SD: 0.0379 1.666 0.0487 0.0379 0.0007 %RSD: 2.27% 2.27% 1.51 Sequence No.: 28 Autosampler Location: Sample ID: N52 Date Collected: 10/28/2020 10:23:18 AM Analyst: Data Type: Original Replicate Data: N52 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored

Figura 86. Determinación de plomo en muestras, continuación.

Method	I: Determinac	ion de Pb		1	Page	8		Date: 10/28/2020	10:37:31 AM
1	1.638	1,638	0.0481	10:23:18	AM	Yes			
2	1.706	1.706	0.0494	10:23:19	AM	Yes			
3	1,726	1,726	0.0498	10:23:20	AM	Yes			
Mean:	1.690	1.690	0.0491						
SD: %RSD:	2.72%	2.72%	1.82						
Sequen Sample Analys	nce No.: 29 1D: N53 nt:				Aut Dat Dat	cosampl ce Coll ca Type	er Location: ected: 10/28/20 : Original	20 10:23:27 AM	
Replic	ate Data: N5	3			Ana	lyte:	Pb 283.31		
Repl	SampleConc	StndConc mg/L	BinkCorr	Time	5	Signal			
1	1,911	1,911	0.0534	10:23:27	AM .	Yes			
2	1.959	1,959	0.0543	10:23:28	AM	Yes			
3	1.892	1.892	0.0531	10:23:29	AM	Yes			
Mean:	1.921	1,921	0.0536						
SD:	0.0345	0.0345	0.0007						
%RSD:	1.80%	1.80%	1.25						
Sequen	ce No.: 30				Aut	osampl	er Location:		
Sample Analys	ID: N54				Dat Dat	e Coll a Type	ected: 10/28/203 : Original	20 10:23:35 AM	
Replic	ate Data: N5	4			Ana	lyte:	Pb 283.31		
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal			
	mg/L	mg/L	Signal		5	stored			
1	1,813	1.813	0.0515	10:23:35	AM	Yes			
2	1,853	1,803	0.0523	10:23:35	3.M	Ies			
Mean:	1.835	1.835	0.0519	10123137	1425	169			
SD:	0.0204	0.0204	0.0004						
%RSD:	1,11%	1,11%	0.76						
Seguen	ce No.: 31				Aut	osampl	er Location:		
Sample Analys	ID: N55				Dat Dat	e Coll a Type	ected: 10/28/202 : Original	20 10:23:44 AM	
Replic	ate Data: NS	5			Ana	lute	Ph 283 31		
Repl	SampleConc	StndConc	BlnkCorr	Time	-	Signal			
	mg/L	mg/L	Signal		-	stored			
1	1.829	1.829	0.0518	10:23:44	AM	Yes			
2	1.821	1.821	0.0517	10:23:46	AM	Yes			
3	1.802	1.802	0.0513	10:23:47	AM	Yes			
Mean:	1.817	1.817	0.0516						
%RSD:	0.75%	0.75%	0.51						
Sequen Sample Analys	ce No.: 32 ID: N61 t:				Aut Dat Dat	cosampl e Coll a Type	er Location: ected: 10/28/20: : Original	20 10:24:54 AM	
Berli	ake Data . M					1	ph 203 25		
Replic	SampleConc	StndConc	BlnkCorr	Time	Ana	lignal	PD 203.31		
	mg/L	mg/L	Signal	_	-	stored			
1	1.606	1.606	0.0475	10:24:55	AM	Yes			
2	1.577	1.577	0.0469	10:24:56	AM	Yes			
3	1.614	1.614	0.0477	10:24:57	AM	Yes			
mean:	1.599	1.599	0.0474						
10.00	0.0131	0.0131	0.0004						

Figura 87. Determinación de plomo en muestras, continuación.

Date: 10/28/2020 10:37:31 AM Method: Determinacion de Pb 9 Page %RSD: 1.23% 1.23% 0.81 Sequence No.: 33 Autosampler Location: Date Collected: 10/28/2020 10:25:04 AM Sample ID: N62 Analyst: Data Type: Original Replicate Data: N62 Analyte: Pb 283.31 Time Repl SampleConc StndConc BlnkCorr Signal mg/L 1.947 1.977 . mg/L Signal Stored 0.0541 1.947 10:25:04 AM Yes 1.977 10:25:05 AM 10:25:06 AM 2 Yes 3 1,982 1.982 0.0548 Yes 0.0545 Mean: 1.969 1.969 SD: 0.0192 0.0192 0.0004 %RSD: 0.97% 0.97% 0.68 Sequence No.: 34 Autosampler Location: Date Collected: 10/28/2020 10:25:13 AM Sample ID: N63 Analyst: Data Type: Original Replicate Data: N63 Analyte: Pb 283.31 BlnkCorr SampleConc StndConc Time Repl Signal . mg/L mg/L Signal Stored Yes 1.896 1.896 0.0531 10:25:13 AM 10:25:14 AM 2 1,908 1,908 Yes 1.874 0.0527 10:25:15 AM .874 Yes Mean: 1.893 1.893 0.0531 SD: 0.0171 0.0171 0.0003 %RSD: 0.90% \$00.0 0.63 Sequence No.: 35 Autosampler Location: Sample ID: N64 Date Collected: 10/28/2020 10:25:21 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: N64 SampleConc StndConc BlnkCorr Time Signal Repl . mg/L mg/L Signal Stored 1.812 1.812 0.0515 10:25:21 AM Yes 1.851 1.851 0.0523 10:25:23 AM Yes 3 1.857 1.857 0.0524 10:25:24 AM Yes 1.840 Mean: 1.840 0.0520 0.0245 0.0245 0.0005 SD: %RSD: 1.33% 1.33% 0.91 Sequence No.: 36 Autosampler Location: Date Collected: 10/28/2020 10:25:31 AM Sample ID: N65 Analyst: Data Type: Original Replicate Data: N65 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 1.920 1.869 ٠ mg/L Signal Stored 1.920 0.0536 10:25:31 AM Yes 2 1.869 0.0526 10:25:33 AM 10:25:34 AM Yes 1.825 1.825 0.0517 Yes 3 1.871 1.871 0.0526 Mean: SD: 0.0480 0.0480 0.0009 %RSD: 2.56% 2.56% 1.77 Sequence No.: 37 Sample ID: N71 Autosampler Location: Date Collected: 10/28/2020 10:26:40 AM

Figura 88. Determinación de plomo en muestras, continuación.

Method	i: Determinac	ion de Pb		1	Page 10	Date: 10/28/2020 10:37:31 AM					
Analys	it:				Data Type: Original						
Replic	SampleConc	StodConc	BlokCorr	Time	Analyte: Pb 283.31 Signal						
a a a a a a a a a a a a a a a a a a a	ma/L	ma/T.	Signal	1 2000	Stored						
1	1.979	1.979	0.0547	10.26.41	AM Yes						
2	1.933	1.933	0.0538	10:26:42	AM Yes						
3	1.975	1.975	0.0547	10.26.43	AM Yes						
Manna	1 962	1 962	0.0544	10120143	101 100						
cn.	0.0257	0.0257	0.0005								
%RSD:	1.31%	1.31%	0.92								
					Nukaan lan Taashian .						
Sequer Sample Analys	ID: N72				Date Collected: 10/28/2 Data Type: Original	020 10:26:49 AM					
Replic	ate Data: N7	2			Analyte: Pb 283.31						
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal						
	1 084	1 084	o osas	10.26.40	acored						
2	2 039	2 039	0.0548	10:20:49	AM Yes						
5	2.039	2.039	0.0539	10:20:50	AN IES						
Marrie	1 080	1 020	0.0541	10150121	AA 103						
mean:	1.989	1.989	0.0549								
%RSD:	2.39%	2.39%	1.68								
Sequer	ce No.: 39				Autosampler Location:						
Sample Analys	ID: N73 it:				Date Collected: 10/28/2 Data Type: Original	020 10:26:58 AM					
Replic	ate Data: N7	3			Analyte: Pb 283.31						
Repl	SampleConc mg/L	StndConc mg/L	BlnkCorr	Time	Signal						
1	1.863	1.863	0.0525	10.26.58	AM Yes						
2	1.898	1.898	0.0532	10:26:59	AM Yes						
3	1.810	1.810	0.0515	10:27:01	AM Yes						
Mean	1.857	1.857	0.0524								
SD:	0.0441	0.0441	0.0009								
%RSD:	2.38%	2.38%	1.64								
Sequer Sample	ce No.: 40 1D: N74				Autosampler Location: Date Collected: 10/28/2	020 10:27:07 AM					
Analys	it:				Data Type: Original						
Replic	ate Data: N7	4			Analyte: Pb 283.31						
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal						
	mg/L	mg/L	Signal		Stored						
1	2.212	2.212	0.0593	10:27:07	AM Yes						
2	2.197	2.197	0.0590	10:27:09	AM Yes						
3	2.269	2.269	0.0604	10:27:10	AM Yes						
Mean:	2.226	2.226	0.0595								
SD:	0.0378	0.0378	0.0007								
%RSD:	1.70%	1.70%	1.23								
	ce No : 65				Autosamples Tosstics						
Sample	TD: N75				Date Collected: 10/28/2	020 10-27-17 AM					
Analys	it:				Data Type: Original	010 10.2/:1/ AA					
Replic Repl	sate Data: N7 SampleConc	5 StndConc	BlnkCorr	Time	Analyte: Pb 283.31 Signal						

Figura 89. Determinación de plomo en muestras, continuación.

Method	i: Determinac	ion de Pb		1	Page 11		Date: 10/28/2020 10:37:31 #
	mg/L	mg/L	Signal		Store	d	
1	1.938	1.938	0.0539	10:27:18	AM Yes		
2	1,909	1.909	0.0534	10:27:19	AM Yes		
3	1,913	1,913	0.0534	10:27:20	AM Yes		
Mean:	1.920	1.920	0.0536				
SD:	0.0159	0.0159	0.0003				
&RSD:	0.83%	0.83%	0.58				
Sequer	Ce No.: 42				Autosam Date Co	pler Location: llected: 10/28/2	020 10:28:28 AM
Analys	it:				Data Ty	pe: Original	
Replic	ate Data: N8	1			Analyte	: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signa	1	
	mg/L	mg/L	Signal		Store	d	
1	2.236	2.236	0.0597	10:28:29	AM Yes		
2	2.223	2.223	0.0595	10:28:30	AM Yes		
3	2.266	2.266	0.0603	10:28:31	AM Yes		
Mean:	2.242	2.242	0.0598				
SD:	0.0220	0.0220	0.0004				
%RSD:	0.98%	0.98%	0.71				
Seguer	ce No.: 43				Autosam	pler Location:	
Sample	ID: N82				Date Co	llected: 10/28/2	020 10:28:38 AM
Analys	st:				Data Ty	pe: Original	
Benlie	ate Data N					. nb 202 21	
Replic	SampleConc	StndConc	BlnkCorr	Time	Signa	1	
	mg/L	mg/L	Signal		Store	d	
1	2,196	2,196	0.0589	10:28:38	AM Yes	-	
2	2.161	2.161	0.0583	10:28:39	AM Yes		
3	2.204	2.204	0.0591	10:28:40	AM Yes		
Mean:	2.187	2.187	0.0588				
SD:	0.0232	0.0232	0.0005				
%RSD:	1.06%	1.06%	0.77				
Sequer	1ce No.: 44				Autosam Date Co	pler Location:	020 10-28-47 M
Analys	st:				Date Co Data Ty	pe: Original	020 10:28:47 AR
Replic Repl	sampleConc	3 StndConc	BlnkCorr	Time	Analyte Signa	: Pb 283.31 1	
	mg/L	mg/L	Signal		Store	đ	
1	2.323	2.323	0.0614	10:28:47	AM Yes		
2	2.355	2.355	0.0620	10:28:49	AM Yes		
3	2.409	2.409	0.0631	10:28:50	AM Yes		
Mean:	2.362	2.362	0.0622				
SD:	0.0437	0.0437	0.0008				
%RSD:	1.85%	1.85%	1.36				
	ce No : 45				hutogan	plan Togation:	
sedaer	ID: N84				Date Co Data Ty	llected: 10/28/2 pe: Original	020 10:28:57 AM
Sample Analys	it:						
Sample Analys Replic	ate Data: N8	4			Analyte	: Pb 283.31	
Sample Analys Replic Repl	ate Data: N8 SampleConc	4 StndConc	BlnkCorr	Time	Analyte Signa	: Pb 283.31 1	
Sample Analys Replic Repl	ate Data: N8 SampleConc mg/L	4 StndConc mg/L	BlnkCorr Signal	Time	Analyte Signa Store	: Pb 283.31 1 d	
Sample Analys Replic Repl 1	st: cate Data: N8 SampleConc mg/L 2.312	4 StndConc mg/L 2.312	BlnkCorr Signal 0.0612	Time 10:28:57	Analyte Signa Store AM Yes	: Pb 283.31 1 d	
Sample Analys Replic Repl 1 2	st: Sate Data: N8 SampleConc mg/L 2.312 2.287	4 StndConc mg/L 2.312 2.287	BlnkCorr Signal 0.0612 0.0607	Time 10:28:57 10:28:58	Analyte Signa Store AM Yes AM Yes	: Pb 283.31 1 d	
Sample Analys Replic Repl 1 2 3	ate Data: N8 SampleConc mg/L 2.312 2.287 2.340	4 StndConc mg/L 2.312 2.287 2.340	BlnkCorr Signal 0.0612 0.0607 0.0617	Time 10:28:57 10:28:58 10:28:59	Analyte Signa Store AM Yes AM Yes AM Yes	: Pb 283.31 1 d	

Figura 90. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 12 Date: 10/28/2020 10:37:31 AM 0.0266 0.0266 0.0005 SD: %RSD: 1.15% 1.15% 0.84 Sequence No.: 46 Autosampler Location: Sample ID: N85 Analyst: Date Collected: 10/28/2020 10:29:06 AM Data Type: Original Replicate Data: N85 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 2.260 mg/L Signal Stored . 10:29:06 AM 2.260 0.0602 Yes 2.290 2.290 0.0608 10:29:07 AM Yes 2.223 3 2.223 0.0595 10:29:08 AM Yes Mean: 2.258 0.0602 SD: 0.0334 0.0334 0.0006 %RSD: 1.48% 1.48% 1.08 Sequence No.: 47 Autosampler Location: Sample ID: N91 Date Collected: 10/28/2020 10:30:13 AM Analyst: Data Type: Original Replicate Data: N91 Analyte: Pb 283.31 Time Repl SampleConc StndConc BlnkCorr Signal ٠ mg/L mg/L Signal Stored 2.440 2.450 2.486 2.440 10:30:14 AM 0.0637 Yes 10:30:15 AM 10:30:16 AM Yes 0.0646 Yes 2.486 3 Mean: 2.459 2.459 0.0640 0.0239 SD: 0.0239 0.0005 %RSD: 0.97% 0.97% 0.73 Autosampler Location: Date Collected: 10/28/2020 10:30:23 AM Data Type: Original Sequence No.: 48 Sample ID: N92 Analyst: Replicate Data: N92 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal mg/L mg/L . Signal Stored 2.272 2.272 0.0604 10:30:23 AM 10:30:24 AM Yes Yes 3 2.251 2.251 0.0600 10:30:25 AM Yes Mean: 2.276 2.276 0.0605 0.0286 0.0286 0.0006 SD: %RSD: 1.26% 1.26% 0.92 Sequence No.: 49 Sample ID: N93 Autosampler Location: Date Collected: 10/28/2020 10:30:32 AM Analyst: Data Type: Original Replicate Data: N93 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 10:30:32 AM 2.577 2.577 0.0663 Yes 2.570 0.0662 10:30:33 AM Yes 2.591 2.579 10:30:35 AM 3 2.591 0.0666 Yes Mean: 2.579 0.0664 SD. 0.0108 0.0108 0.0002 %RSD: 0.42% 0.42% 0.32 Sequence No.: 50 Autosampler Location:

Figura 91. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 13 Date: 10/28/2020 10:37:31 AM Sample ID: N94 Date Collected: 10/28/2020 10:30:41 AM Analyst: Data Type: Original Replicate Data: N94 Analyte: Pb 283.31 BlnkCorr Repl SampleConc StndConc Time Signal . mg/L mg/L Signal Stored 2.518 2.518 10:30:41 AM 0.0652 Yes 2.581 0.0664 10:30:43 AM Yes 10:30:44 AM 3 2.499 2.499 0.0648 Yes Mean: 2.532 2.532 0.0655 SD: 0.0429 0.0429 0.0008 %RSD: 1.70% 1.70% 1.27 Autosampler Location: Date Collected: 10/28/2020 10:30:50 AM Sequence No.: 51 Sample ID: N95 Analyst: Data Type: Original Replicate Data: N95 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 2.553 2.553 0.0659 10:30:51 AM Yes 2.571 10:30:53 AM 2 2.571 0.0662 Yes 10:30:54 AM 2.614 2.614 0.0671 3 Yes 2.579 2.579 0.0664 Mean: SD: 0.0311 0.0311 0.0006 %RSD: 1.20% 1.20% 0.91 Sequence No.: 52 Autosampler Location: Date Collected: 10/28/2020 10:31:55 AM Sample ID: N101 Analyst: Data Type: Original Replicate Data: N101 Analyte: Pb 283.31 Repl SampleConc StndConc # mg/L mg/L BlokCorr Time Signal mg/L Signal Stored 2.793 2.793 0.0705 10:31:56 AM Yes 10:31:57 AM 2 0.0697 Yes 10:31:58 AM 2.809 2.809 0.0708 3 Yes 2.784 2.784 0.0704 Mean: SD: 0.0310 0.0310 0.0006 %RSD: 1.12% 1,12% 0.86 Sequence No.: 53 Autosampler Location: Sample ID: N102 Date Collected: 10/28/2020 10:32:05 AM Analyst: Data Type: Original Replicate Data: N102 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 3.041 3.041 0.0753 10:32:05 AM Yes 0.0756 10:32:07 AM 10:32:08 AM 3.055 3.055 Yes 2.984 2.984 0.0742 Yes Mean: 3.027 3.027 0.0751 SD: 0.0373 0.0373 0.0007 %RSD: 1.23% 1.23% 0.96 Sequence No.: 54 Autosampler Location: Sample ID: N103 Date Collected: 10/28/2020 10:32:14 AM Analyst: Data Type: Original Replicate Data: N103 Analyte: Pb 283.31

Metho	i: Determinad	cion de Pb		1	Page	14		Date: 10/28/2020 10:37:31 AM
Repl 1 2 3 Mean: SD: %RSD:	SampleConc mg/L 3.042 2.959 2.916 2.972 0.0638 2.15%	StndConc mg/L 3.042 2.959 2.916 2.972 0.0638 2.15%	BlnkCorr Signal 0.0754 0.0738 0.0729 0.0740 0.0012 1.67	Time 10:32:14 10:32:15 10:32:17	ам ам ам	Signal Stored Yes Yes Yes		
Seque Sample Analy:	nce No.: 55 a ID: N104 st:				Au Da Da	tosamp te Col ta Typ	ler Location: lected: 10/28/20 e: Original)20 10:32:23 AM
Replic	cate Data: NI	LO4	BlokCorr	Time	An	alyte:	Pb 283.31	
#	mg/L	mg/L	Signal	1100		Stored		
1	2.883	2.883	0.0723	10:32:23	AM	Yes		
2	2,903	2,903	0.0727	10:32:24	AM	Yes		
3	2.940	2.940	0.0734	10:32:26	AM	Yes		
Mean:	2.909	2.909	0.0728					
SD:	0.0292	0.0292	0.0006					
%RSD:	1.00%	1.00%	0.78					
Sequer Sample Analy:	nce No.: 56 e ID: N105 st:				Au Da Da	tosamp te Col ta Typ	ler Location: lected: 10/28/20 e: Original)20 10:32:32 AM
Replie	cate Data: N1	105			An	alvte:	Pb 283.31	
Rep1 1 2 3 Mean: SD: %RSD:	SampleConc mg/L 2.830 2.805 2.745 2.793 0.0436 1.56%	StndCone mg/L 2.830 2.805 2.745 2.793 0.0436 1.56%	BlnkCorr Signal 0.0712 0.0708 0.0696 0.0705 0.0008 1.20	Time 10:32:33 10:32:34 10:32:35	AM AM AM	Signal Stored Yes Yes Yes		
Sequer Sample Analy:	nce No.: 57 m ID: N111 st:				Au Da Da	tosamp te Col ta Typ	ler Location: lected: 10/28/20 e: Original	20 10:33:39 AM
Replie	cate Data: N1	11			An	alyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time		Signal		
	mg/L	mg/L	Signal	10.00.00		Stored		
1	3.322	3.322	0.0808	10:33:40	AM	res		
3	3.297	3.297	0.0803	10:33:41	AM	Yes		
Mean:	3.312	3.312	0.0806		246.0	* 10 13		
SD:	0.0138	0.0138	0.0003					
%RSD:	0.42%	0.42%	0.33					
Seques Sample Analys	nce No.: 58 a ID: N112 st:				Au Da Da	tosamp te Col ta Typ	ler Location: lected: 10/28/20 e: Original)20 10:33:49 AM
Replie	cate Data: N1	12			An	alyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time		Signal		
	mg/L	mg/L	Signal			Stored		
1	3.356	3.356	0.0815	10:33:49	AM	Yes		
2	3.363	3.363	0.0816	10:33:50	AM	Yes		
3	3.333	3.333	0.0810	10:33:52	AM	Yes		

Figura 92. Determinación de plomo en muestras, continuación.

Figura 93. Determinación de plomo en muestras, continuación.

Date: 10/28/2020 10:37:31 AM Method: Determinacion de Pb Page 15 Mean: 3.351 3.351 0.0814 0.0160 0.0003 SD: 0.0160 %RSD: 0.48% 0.48% 0.38 Sequence No.: 59 Autosampler Location: Date Collected: 10/28/2020 10:33:58 AM Sample ID: N113 Analyst: Data Type: Original Replicate Data: N113 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 3.172 3.139 10:33:58 AM 3.172 0.0779 Yes 10:33:59 AM Yes 3 3.119 3.119 0.0769 10:34:00 AM Yes Mean: 3.143 3.143 0.0773 0.0268 0.0268 0.0005 SD: %RSD: 0.85% 0.85% 0.67 Sequence No.: 60 Autosampler Location: Date Collected: 10/28/2020 10:34:06 AM Sample ID: N114 Analyst: Data Type: Original Replicate Data: N114 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 10:34:06 AM 3.126 3.191 0.0770 3.126 Yes 3.191 0.0783 10:34:08 AM Yes 3.200 3.200 0.0784 10:34:09 AM Yes 3 Mean: 3.172 3,172 0.0779 0.0403 0.0403 0.0008 SD: %RSD: 1.27% 1.27% 1.00 Sequence No.: 61 Autosampler Location: Sample ID: N115 Date Collected: 10/28/2020 10:34:15 AM Analyst: Data Type: Original Replicate Data: N115 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 10:34:16 AM 3.188 3.188 0.0782 Yes 0.0794 10:34:17 AM Yes 2 3 3.193 3.193 0.0783 10:34:18 AM Yes Mean: 3.210 3.210 0.0786 SD: 0.0340 0.0340 0.0007 %RSD: 1.06% 1.06% 0.84 Sequence No.: 62 Autosampler Location: Sample ID: N121 Date Collected: 10/28/2020 10:35:24 AM Analyst: Data Type: Original Replicate Data: N121 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L Signal Stored 3.502 3.502 10:35:24 AM 0.0843 Yes 3.403 3.403 0.0824 10:35:25 AM Yes З 3.394 3.394 0.0822 10:35:26 AM Yes Mean: 3.433 3,433 0.0830 SD: 0.0597 0.0597 0.0012 %RSD: 1.74% 1.74% 1.40

Method		Page 16			r	Date: 10/28/2020 10:37:31 AM		
Sequer Sample Analys			Autosampler Location: Date Collected: 10/28/202 Data Type: Original		ler Location: lected: 10/28/2020 e: Original	0 10:35:33 AM		
Replic Repl	ate Data: N1 SampleConc	22 StndConc	BlnkCorr	Time	An	alyte: Signal	Pb 283.31	
	mg/L	mg/L	Signal			Stored		
1	2.208	2.208	0.0592	10:35:33	AM	Yes		
2	2.246	2.246	0.0599	10:35:34	AM	Yes		
3	2.170	2.170	0.0584	10:35:36	AM	Yes		
Mean:	2.208	2.208	0.0592					
SD:	0.0383	0.0383	0.0007					
%RSD:	1.73%	1.73%	1.26					
Sequence No.: 64 Sample ID: N123 Analyst:					Autosampler Location: Date Collected: 10/28/2020 10:35:42 AM Data Type: Original			
Replic	ate Data: N1	23			An	alyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time		Signal		
	mg/L	mg/L	Signal			Stored		
1	3.187	3.187	0.0782	10:35:42	AM	Yes		
2	3.241	3.241	0.0792	10:35:43	AM	Yes		
3	3.270	3.270	0.0798	10:35:44	ΑM	Yes		
Mean:	3.233	3.233	0.0791					
SD:	0.0421	0.0421	0.0008					
%RSD:	1.30%	1.30%	1.03					
Sequer Sample Analys	nce No.: 65 1D: N124 st:				Au Da Da	tosamp te Col ta Typ	ler Location: lected: 10/28/2020 e: Original	0 10:35:51 AM
Replic	ate Data: N1	24			An	alyte:	Pb 283.31	
Repl #	SampleConc mg/L 3.463	StndConc mg/L 3.463	BlnkCorr Signal	Time	ам	Signal Stored		
2	3.495	3.495	0.0842	10:35:52	AM	Ves		
3	3.482	3.482	0.0839	10:35:53	AM	Yes		
Mean:	3.480	3.480	0.0839					
SD:	0.0159	0.0159	0.0003					
%RSD:	0.46%	0.46%	0.37					
							ler Teertier:	
Sample ID: N125 Analyst:			Date Collected: 10/28/2020 10:35:59 AM Data Type: Original					
Replic	ate Data: N1	25			An	alyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time		Signal		
	mg/L	mg/L	Signal			Stored		
1	3.396	3.396	0.0822	10:36:00	AM	Yes		
2	3.417	3.417	0.0826	10:36:01	AM	Yes		
3	3.389	3.389	0.0821	10:36:03	AM	Yes		
Mean:	3.400	3.400	0.0823					
SD:	0.0145	0.0145	0.0003					
skaD:	0.425	0.425	0.34					
Sequer	ce No.: 67				 Au	tosamo	ler Location:	
Sample			Date Collected: 10/28/2020 10:36:49 AM Data Type: Original					

Figura 94. Determinación de plomo en muestras, continuación.
Figura 95. Determinación de plomo en muestras, continuació	n.
--	----

Method	: Determinac	ion de Pb		Pa	ge 17		Date:	10/28/2020	10:37:31 AM
Replic	ate Data: N1	.31			Analyte:	Pb 283.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal				
	mg/L	mg/L	Signal		Stored				
1	3.435	3.435	0.0830	10:36:50 A	M Yes				
2	3.446	3.446	0.0832	10:36:51 A	M Yes				
3	3.471	3.471	0.0837	10:36:52 A	M Yes				
Mean:	3.451	3.451	0.0833						
SD:	0.0180	0.0180	0.0003						
%RSD:	0.52%	0.52%	0.42						
Analys	t:				Date Coll	ected: 10/28/2020) 10::	36:59 AM	
Replic	ate Data: N1	.32			Analyte:	Pb 283.31			
Repl	SampleConc	StndConc	BinkCorr	Time	Signal				
	mg/L	mg/L	Signal	10.24.50 8	Stored				
1	3.535	3.535	0.0849	10:36:59 A	M Yes				
2	3.603	3.603	0.0863	10:37:00 A	M Yes				
3	3.343	3.349	0.0852	10:37:01 A	n ies				
mean:	3.562	3.562	0.0855						
SD:	0.0359	0.0359	0.0007						
<rsd:< th=""><th>1.01%</th><th>1.018</th><th>0.82</th><th></th><th></th><th></th><th></th><th></th><th></th></rsd:<>	1.01%	1.018	0.82						

Figura 96. Determinación de plomo en muestras, continuación.

```
Method: Determinacion de Pb
                                                        Page 1
                                                                                        Date: 11/18/2020 11:46:23 AM
Analysis Begun
                                                       Technique: AA Flame
Autosarria
Logged In Analyst: Administrator
Spectrometer: PinAAcle 900F, S/N PFBS13050203
                                                          Autosampler:
Sample Information File: C:\Users\Public\PerkinElmer\AA\Data\Sample Information\
                             201113 Pb en agua LF Mollinedo.sif
Batch ID: 201118
Results Data Set: 201118 Pb LFMollinedo
Results Library: C:\Users\Public\PerkinElmer\AA\Data\Results\Results.mdb
Method Loaded
Method Name: Determinacion de Pb
                                                          Method Last Saved: 10/16/2020 9:23:07 AM
Method Description: Determinacion de Plomo
Sequence No.: 1
                                                           Autosampler Location:
Sample ID: Blanco
                                                           Date Collected: 11/18/2020 11:26:39 AM
Analyst:
                                                           Data Type: Original
Repl SampleConc StndConc BlnkCorr Time Signal
                      mg/L Signal
[0.00] 0.4167
       mg/L
                                                             Stored
                                             11:26:39 AM Yes
11:26:41 AM Yes
11:26:42 AM Yes
                               0.4167
0.4167
0.4167
                       [0.00]
 2
                       [0.00]
 ×.
Mean:
                      [0.00]
SD:
                     0.0000
                                0.0000
&RSD:
                      $00.0
                                 0.00
Auto-zero performed.
Sequence No.: 2
                                                        Autosampler Location:
Sample ID: std 1
                                                           Date Collected: 11/18/2020 11:27:02 AM
Analyst:
                                                          Data Type: Original
Replicate Data: std 1
                                                     Analyte: Pb 283.31
Repl SampleConc StndConc BlnkCorr Time Signal
# mg/L mg/L Signal Stored

        nc
        StndConc
        Bincorr
        Stored

        mg/L
        Signal
        Stored

        [2.00]
        0.0570
        11:27:02 AM
        Yes

        [2.00]
        0.0568
        11:27:04 AM
        Yes

        0.0567
        11:27:05 AM
        Yes

 2
 3
                                0.0569
                      [2.00]
Mean:
                      0.0000
SD:
                      0.00%
%RSD:
                                  0.29
Standard number 1 applied. [2.00]
Correlation Coef.: 1.000000 Slope: 0.02843 Intercept: 0.00000
Sequence No.: 3
                                                           Autosampler Location:
                                                           Date Collected: 11/18/2020 11:27:13 AM
Sample ID: std 2
Analyst:
                                                          Data Type: Original
Replicate Data: std 2
                                                        Analyte: Pb 283.31
Repl SampleConc StndConc BlnkCorr Time
                                                            Signal
                mg/L Signal
                                                             Stored
 ٠
        mg/L
                               0.1953
0.1973
0.1939
0.1955
                                              11:27:14 AM Yes
11:27:15 AM Yes
11:27:16 AM Yes
                      [8.00]
 2
                       [8.00]
 3
                       [8.00]
Mean:
                                0.0017
SD:
                      0.0000
%RSD:
                      800.0
                                  0.87
Standard number 2 applied. [8.00]
```

Method: Determinad	cion de Pb			Page	-		Date.	11/10/2020	AA. 40.23 AM
Correlation Coef.:	0.999029	Slope: 0	.02413	Interd	ept:	0.00369			
Sequence No.: 4 Sample ID: std 3 Analyst:				Auto Dato Data	osampl Coll Type	ler Location: lected: 11/18/ a: Original	2020 11:	27:26 AM	
Replicate Data: st	:d 3			Anal	lyte:	Pb 283.31			
<pre>kep1 SampleConc mg/L</pre>	StndConc mg/L	BinkCorr Signal	Time	51	ored				
1	[14.00]	0.2827	11:27:26	AM	Yes				
2	[14.00]	0.2840	11:27:27	AM	Yes				
3	[14.00]	0.2851	11:27:28	AM	Yes				
lean:	[14.00]	0.2839							
D:	0.0000	0.0012							
RSD:	applied [14 001							
Correlation Coef.:	0.992439	Slope: 0	.02029	Interd	:ept:	0.01231			
						er Toestion:			
ample ID: std 4 nalyst:				Date	a Type	lected: 11/18/ a: Original	2020 11:	27:37 AM	
eplicate Data: st	:d 4			Anal	lyte:	Pb 283.31			
epl SampleConc	StndConc	BlnkCorr	Time	Si	gnal				
# mg/L	mg/L	Signal		St	ored				
	110 001	0 3590	11.00.00		14				
1	[18.00]	0.3589	11:27:37	AM	Yes				
1 2 3	[18.00] [18.00] [18.00]	0.3589 0.3572 0.3550	11:27:37 11:27:38 11:27:40	AM AM AM	Yes Yes Yes				
1 2 3 Mean:	[18.00] [18.00] [18.00] [18.00]	0.3589 0.3572 0.3550 0.3570	11:27:37 11:27:38 11:27:40	AM AM AM	Yes Yes Yes				
1 2 3 dean: iD:	[18.00] [18.00] [18.00] [18.00] 0.0000	0.3589 0.3572 0.3550 0.3570 0.0019	11:27:37 11:27:38 11:27:40	AM AM AM	Yes Yes Yes				
1 2 3 Gean: ID: NRSD:	[18.00] [18.00] [18.00] [18.00] 0.0000 0.000	0.3589 0.3572 0.3550 0.3570 0.0019 0.54	11:27:37 11:27:38 11:27:40	AM AM AM	Yes Yes Yes				
1 2 3 Mean: D: RSD: RSD: tandard number 4 Correlation Coef.:	[18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied. [: 0.994826	0.3589 0.3572 0.3550 0.3570 0.0019 0.54 18.00] Slope: 0	11:27:37 11:27:38 11:27:40	AM AM AM Interd	Yes Yes Yes	0.01525			
1 2 3 3 HRSD: HRSD: HRSD: Handard number 4 Correlation Coef.: Sequence No.: 6 Sample ID: std 5 Inalyst:	[18.00] [18.00] [18.00] [18.00] 0.0000 0.0000 applied. 0.994826	0.3589 0.3572 0.3550 0.3570 0.0019 0.54 18.00] Slope: 0	11:27:37 11:27:38 11:27:40	AM AM AM Interd Date Date	Yes Yes Yes cept: csampl coll a Type	0.01525 ler Location: lected: 11/18/ a: Original	2020 11:	27:47 AM	
1 2 3 Mean: D: D: SSD: Standard number 4 Correlation Coef.: Sequence No.: 6 Jample ID: std 5 Inalyst: Melyst:	(18.00) (18.00) (18.00) (18.00) 0.0000 0.00% applied. [: 0.994826	0.3589 0.3572 0.3550 0.3570 0.0019 0.54 18.00] Slope: 0	11:27:37 11:27:38 11:27:40	AM AM AM Interd Date Date	Yes Yes Yes Sept: Coll a Type	0.01525 ler Location: lected: 11/16/ e: Original Pb 283.31	2020 11:	27:47 AM	
1 2 3 dean: D: SSD: teandard number 4 correlation Coef.: equence No.: 6 ample ID: std 5 unalyst: teplicate Data: st teplicate Data: st	(18.00) (18.00) (18.00) (18.00) 0.0000 0.000% applied. [: 0.994826	0.3589 0.3572 0.3550 0.0550 0.0019 0.54 18.00] Slope: 0	11:27:37 11:27:38 11:27:40 .01945 Time	AM AM Interd Auto Date Data Anal Si	Yes Yes Yes Sept: Coll a Type Lyte: ignal	0.01525 Ler Location: Lected: 11/18/ b: Original Pb 283.31	/2020 11:	27:47 л м	
1 2 3 Hean: D: RSD: tandard number 4 forrelation Coef.: Hequence No.: 6 ample ID: std 5 malyst: Heplicate Data: st Heplicate Data: st Heplicate Cata: st Heplicate Cata: st	<pre>[18.00] [18.00] [18.00] [18.00] [18.00] 0.0000 0.000 0.000 c.000 c.</pre>	0.3589 0.3572 0.3550 0.3570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal	11:27:37 11:27:38 11:27:40 .01945 Time	AM AM AM Interd Date Date Date Sist	Yes Yes Yes Sept: Sampla Colla Type Lyte: ignal Sored	0.01525 Ler Location: Lected: 11/18/ b: Original Pb 283.31	/2020 11::	27:47 ам	
1 2 3 Wean: D: RSD: tandard number 4 orrelation Coef.: equence No.: 6 ample ID: std 5 nalyst: eplicate Data: st eplicate Data: st eplicate Data: st f gg/L	[18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied. [: 0.994826 : d 5 stndConc mg/L [20.00]	0.3589 0.3572 0.3550 0.3570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3989	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48	AM AM AM Interd Date Date Date St St	Yes Yes Yes Sept: Sampl Coll A Type Lyte: Ignal Cored Yes	0.01525 ler Location: lected: 11/18/ a: Original Pb 283.31	2020 11:	27:47 AM	
1 2 3 lean: D: RSD: tandard number 4 orrelation Coef.: equence No.: 6 ample ID: std 5 nalyst: eplicate Data: st eplicate Data: st eplicate Data: st I 2 3	[18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied.[: 0.994826 : : : : : : : : : : : : : : : : : : :	0.3589 0.3572 0.3550 0.0570 0.0019 0.54 18.00J Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3999	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:49 11:27:49 11:27:49	AM AM AM Interd Date Date Date St AM AM	Yes Yes Yes Sept: Sample Coll a Type lyte: lgnal cored Yes Yes	0.01525 ler Location: lected: 11/18/ a: Original Pb 283.31	2020 11:	27:47 AM	
1 2 3 dean: D: RSD: tendard number 4 correlation Coef.: dequence No.: 6 sample ID: std 5 nalyst: teplicate Data: st tepl SampleConc mg/L 2 3 iean:	<pre>[18.00] [18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied.[: 0.994826 cd 5 stndConc mg/L [20.00] [20.00] [20.00] [20.00]</pre>	0.3589 0.3572 0.3570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3996 0.3996	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:50	AM AM AM Interd Date Date Date Si St AM AM	Yes Yes Yes Sept: Sample Coll a Type Lyte: Lyte: Lyte: Yes Yes Yes	0.01525 ler Location: lected: 11/18/ b: Original Pb 283.31	2020 11:	27:47 AM	
<pre>1 2 3 dean: D: RSD: tandard number 4 correlation Coef.: equence No.: 6 ample ID: std 5 malyst: teplicate Data: st tepl SampleConc \$ mg/L 1 2 3 dean: D: </pre>	<pre>[18.00] [18.00] [18.00] [18.00] [18.00] 0.0000 0.000% applied.[0.994826 cd 5 StndConc mg/L [20.00] [20.00] [20.00] [20.00] [20.00] [20.00]</pre>	0.3589 0.3572 0.3570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3995 0.3995 0.0005	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:49 11:27:49	AM AM AM Interc Date Date Date Si St AM AM	Yes Yes Yes Sept: Sampl Coll a Type Lyte: ignal Yes Yes Yes	0.01525 Ler Location: Lected: 11/18/ b: Original Pb 283.31	/2020 11:	27:47 ам	
1 2 3 bean: D: RSD: itandard number 4 iorrelation Coef.: bequence No.: 6 imample TD: std 5 inalyst: teplicate Data: st teplicate Data: st teplicate Data: st ample Z i SampleCone g isan: D: RSD: RSD: RSD: SampleCone g isan: D: RSD: SampleCone g isan: D: RSD: SampleCone g isan: D: RSD: SampleSone SampleCone SampleSo	[18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied.[: 0.994826 : :d 5 stndConc mg/L [20.00] [20.00] [20.00] [20.00] [20.00] [20.00] 0.0000 0.00%	0.3589 0.3572 0.3570 0.019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3996 0.3995 0.0005 0.13	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:49 11:27:50	AM AM AM Interd Date Date Date St AM AM AM	Yes Yes Yes Sample Coll A Type Lyte: Ignal Yes Yes Yes	0.01525 ler Location: lected: 11/18/ a: Original Pb 283.31	2020 11:	27:47 AM	
<pre>1 2 3 iean: D: KRSD: itandard number 4 iorrelation Coef.: itandard number 5 itandard number 5 itandard number 5 </pre>	[18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied. [0.994826 stndConc mg/L [20.00] [20.00] [20.00] [20.00] [20.00] [20.00] 0.00% applied. [0.3589 0.3572 0.3570 0.0019 0.54 18.00] Slope: 0 Signal 0.3989 0.3999 0.3996 0.3995 0.0005 0.13 20.00]	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:50	AM AM AM Interd Date Date Date Date Am AM AM AM	Yes Yes Yes cept: cosamply a Coll a Type lyte: lyte: lyte: Yes Yes	0.01525 ler Location: lected: 11/18/ b: Original Pb 283.31	/2020 11:	27:47 AM	
1 2 3 dean: D: RSD: tandard number 4 correlation Coef.: dequence No.: 6 ample ID: std 5 malyst: deplicate Data: st teplicate Data: st teplicate Data: st D: teplicate Data: st D: Esplicate Data: st teplicate D	<pre>[18.00] [18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied.[: 0.994826 :d 5 StndConc mg/L [20.00] [20.00] [20.00] [20.00] [20.00] [20.00] [20.00] [20.00] 0.00% applied.[: 0.996388</pre>	0.3589 0.3570 0.3570 0.019 0.54 18.00] Slope: 0 Slope: 0 Signal 0.3989 0.3996 0.3996 0.3995 0.3995 0.0005 0.13 20.00] Slope: 0	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:50 .01932	AM AM AM Interd Auto Date Date Date Anal Si St AM AM	Yes Yes Yes sample a Coll a Type Coll a Type Uyte: ignal Yes Yes Yes	0.01525 ler Location: lected: 11/18/ b: Original Pb 283.31 0.01583	/2020 11::	27:47 ам	
1 2 3 dean: ID: IC: IC: IC: IC: IC: IC: IC: IC: IC: IC	(18.00) (18.00) (18.00) 0.0000 0.000 applied. [0.994826 StndConc mg/L [20.00] [20.00] [20.00] [20.00] [20.00] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.3589 0.3572 0.3570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3999 0.3995 0.0005 0.3995 0.0005 0.3995 0.395 0.0005 0.395 0.0005 0.005 0.395 0.395 0.005 0.395 0.005 0.395 0.005 0.005 0.395 0.005 0.005 0.395 0.005 0.05	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:50 .01932	AM AM AM Interc Data Data Si St AM AM AM	Yes Yes Yes cept: ssampjo cond a Type lyte: ignal cored Yes Yes Yes Yes	0.01525 ler Location: lected: 11/18/ a: Original Pb 283.31 0.01583 on: Linear, Ca	2020 11:	27:47 AM	
1 2 3 Wean: D: RSD: Standard number 4 Forrelation Coef.: Standard number 4 Sequence No.: 6 Sample ID: std 5 Inalyst: Replicate Data: st teplicate Data: s	(18.00) [18.00] [18.00] (18.00] 0.0000 0.0000 applied. [0.994826 (0.	0.3589 0.3572 0.3570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3995 0.3995 0.0005 0.3995 0.0005 0.3995 0.395 0.0005 0.395 0.0005 0.0005 0.395 0.0005	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:49 11:27:50 .01932 .01932 tered Cal	AM AM AM Interc Date Date Date Anal Si St AM AM AM Interc Culate Conc	Yes Yes Yes Sampjo Sampjo Somo Lyte: Lyte: Lyte: Lyte: Lyte: Yes Yes Yes Yes	0.01525 ler Location: lected: 11/18/ a: Original Pb 283.31 0.01583 on: Linear, Ca	2020 11:	27:47 AM	
1 2 3 dean: ID: IRSD: tandard number 4 forrelation Coef.; dequence No.: 6 fample ID: std 5 inalyst: dequence Data: st teplicate Data:	(18.00) (18.00) (18.00) (18.00) 0.0000 0.00% applied. [0.994826 StndCone mg/L [20.00] [2	0.3589 0.3570 0.03570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3999 0.3999 0.3995 0.0005 0.13 20.00] Slope: 0 	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:50 .01932 .01932 .01932 .01932	AM AM AM Interc Date Date Date Date Date Date Date Date	Yes Yes Sample sample sample tored Lyte: Lyne: Lyne: Yes Yes Yes Yes Yes	0.01525 ler Location: lected: 11/18/ : Original Pb 283.31 0.01583 on: Linear, Ca Standard Deviation	2020 11: deculated	27:47 AM	
1 2 3 bean: D: KSD: tandard number 4 orrelation Coef.: bequence No.: 6 imample ID: std 5 inalyst: beplicate Data: st beplicate	<pre>[18.00] [18.00] [18.00] [18.00] 0.0000 0.000% applied.[: 0.994826 : 0.001 : 0.996388 : 0.002 : 0.002 : 0.002 : 0.003 : 0.002 : 0.003 : 0.002 : 0.002 : 0.003 : 0.003 : 0.005 : 0.005</pre>	0.3589 0.3570 0.3570 0.0019 0.54 18.00] Slope: 0 Slope: 0 Signal 0.3999 0.3996 0.3996 0.3996 0.3995 0.0005 0.13 20.00] Slope: 0 Slope: 0 1 1 1 1 1 1 1 1	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:50 .01932 .01932 .01932 .01932 .01932 .01932 .01932 .01945	AM AM AM Interd Data Data Data St St AM AM AM AM Interd Conc. mg/L 0.820	Yes Yes Yes cept: osampli a Type Lyte: ignal Yes Yes Yes Yes Yes	0.01525 ler Location: lected: 11/18/ a: Original Pb 283.31 0.01583 on: Linear, Ca Standard Deviation 0.00	2020 11: 	27:47 AM	
1 2 3 dean: D: RSD: andard number 4 correlation Coef.: dequence No.: 6 ample ID: std 5 malyst: teplicate Data: st teplicate Data: st teplicate Data: 1 2 3 dean: D: RSD: andard number 5 correlation Coef.: alibration data f ID Blanco std 1	[18.00] [18.00] [18.00] (18.00] 0.0000 0.00% applied. [0.994826 (0.994826 (0.994826 (0.994826 (0.994826 (0.00% [20.00] [20.00	0.3589 0.3572 0.3570 0.0019 0.54 18.00] Slope: 0 Signal 0.3989 0.3999 0.3999 0.3999 0.3995 0.0005 0.13 20.00] Slope: 0 	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:49 11:27:49 11:27:50 .01932 .01932 .01932 .01932 .01932	AM AM AM Interd Auto Date Data Anal Si St AM AM AM AM AM Conc. sg/L 0.8200 2.123	Yes Yes Sampj Sampj A Type Lyte: Ignal Yes Yes Yes Yes Yes Yes Yes	0.01525 ler Location: lected: 11/18/ a: Original Pb 283.31 0.01583 on: Linear, Ca Standard Deviation 0.00	2020 11: 2020 11: 202	27:47 AM	
1 2 3 dean: D: KSD: Standard number 4 correlation Coef.: Standard number 4 correlation Coef.: Stanple ID: std 5 inalyst: Ceplicate Data: st tepl SampleConc # mg/L 1 2 3 Stenn: D: KSD: Standard number 5 Correlation Coef.: Calibration data f ID Blanco std 1 std 2	<pre>[18.00] [18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied.[[: 0.994826 cd 5 StndConc mg/L [20.00] [20.</pre>	0.3589 0.3572 0.3570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3995 0.0005 0.3995 0.0005 0.13 20.00] Slope: 0 	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:49 11:27:50 .01932 tered Cal onc. g/L 0 - .00	AM AM AM Interc Data Anal Si St AM AM AM AM Interc Culate Conc. mg/L 0.820 2.123 9.298	Yes Yes Yes Cept: sampl sampl a Coll a Type lyte: ignal Yes Yes Yes Yes Yes Yes	0.01525 ler Location: lected: 11/18/ b: Original Pb 283.31 0.01583 on: Linear, Ca Standard Deviation 0.00 0.00 0.00	2020 11: 2020 11: 1culated %RSD 0.00 0.29 0.29 0.87	27:47 AM	
<pre>1 2 2 3 4ean: ID: IRSD: Itandard number 4 correlation Coef.: imalyst: teplicate Data: st tepl SampleConc # mg/L 2 3 teplicate Data: st teplic</pre>	[18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied. [0.994826 stndConc mg/L [20.00] [20.0]	0.3589 0.3570 0.03570 0.0019 0.54 18.00] Slope: 0 BlnkCorr Signal 0.3989 0.3999 0.3999 0.3995 0.0005 0.13 20.00] Slope: 0 31 gnal C gnal C 0 9 0 39 0 31 0 9 0 31 0 9 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 32 31 31 31 31 31 31 31 31 31 31	11:27:37 11:27:38 11:27:40 .01945 Time 11:27:48 11:27:48 11:27:49 11:27:50 .01932 .01932 .01932 .01932 .01932 .01932 .01932	AM AM AM AM Interc Anal Si St AM AM AM AM AM Interc Conc. mg/L 0.820 2.123 9.298 3.878	Yes Yes Yes samply a Type lyte: ignal cored Yes Yes Yes Yes Yes Yes Yes	0.01525 Ler Location: Lected: 11/18/ b: Original Pb 283.31 0.01583 on: Linear, Ca Standard Deviation 0.00 0.00 0.00 0.00 0.00 0.00	2020 11: 2020 11: 1culated %RSD 0.00 0.29 0.87 0.42	27:47 AM	
1 2 3 Sean: ID: IC: IC: IC: IC: IC: IC: IC: IC: IC: IC	<pre>[18.00] [18.00] [18.00] [18.00] [18.00] [18.00] 0.0000 0.00% applied.[[0.994826 cd 5 stndConc mg/L [20.00] [20.00] [20.00] [20.00] [20.00] [20.00] [20.00] 0.0000 0.00% applied.[[0.996388 cor Pb 283. Mean Si (Abs 0.000 0.055 0.15 0.28 0.35 0.28 0.35 0.28 0.38 0.28 0.38 0.38 0.28 0.38 0.38 0.38 0.38 0.38 0.38 0</pre>	0.3589 0.3570 0.3570 0.0019 0.54 18.00] Slope: 0 Slope: 0 Slope: 0 0.3989 0.3996 0.3996 0.3996 0.3996 0.3996 0.3995 0.0005 0.13 20.001 Slope: 0 Slope: 0 Slope: 0 Slope: 0	11:27:37 11:27:38 11:27:40 .01945 .01945 .01945 .01945 .01932	AM AM AM Interd Auto Date Date Date Anal St St AM AM AM AM Interd Conc. mg/L 0.820 2.123 9.298 3.878 7.661	Yes Yes Yes cept: osampli a Type Lyte: ignal Yes Yes Yes Yes Yes	0.01525 ler Location: lected: 11/18/ b: Original Pb 283.31 0.01583 on: Linear, Ca Standard Deviation 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2020 11: 2020 11: 2020 11: 2020 11: 2020 11: 2020 12: 2020 12: 202	27:47 AM	

Figura 97. Determinación de plomo en muestras, continuación.

Figura 98. Determinación de plomo en muestras, continuación.

Sequence No.: 7 Sequence No.: 7 Sample ID: 011 Analyst:	
Sequence No.: 7 Sample TL: 011 Analyst: Replicate Data: 011	
Analyte: Pb 283.31 Replicate Data: 011 Analyte: Pb 283.31 Signal Stored # mg/L Signal Stored 1 1.690 1.690 0.0485 11:29:38 AM Yes 2 1.657 1.657 0.0483 11:29:40 AM Yes 3 1.679 1.679 0.0483 11:29:41 AM Yes Mean: 1.675 0.067 0.003 11:29:41 AM Yes Sample Toold? O.0003 Autosampler Location: Data Type: Original Sequence No.: 8 Sample Toold? Date Collected: 11/18/2020 11:29:49 AM Pes Analyte: Date Collected: 11/18/2020 11:29:49 AM Pes Data Type: Original Autosampler Location: Sample Tool2 Analyte: Pb 283.31 BinkCorr Mutosampler Location: Sample Tool2 Analyte: Pb 283.31 BinkCorr Sample ID: 013 Autosampler Location: Sample ID: 013 Analyte: Pb 2	
Rep1 SampleConc my/L Stored my/L Stored 11:29:38 AM Yes 1 1.690 1.690 0.0485 11:29:38 AM Yes 2 1.657 1.670 0.0485 11:29:38 AM Yes 3 1.675 1.673 0.0483 11:29:40 AM Yes Mean: 1.675 1.673 0.0482 Spinol 0.0167 0.0167 0.0003 Yes 0.0057 0.0167 0.0167 Sample To: 012 Autosampler Location: Sample To: 012 Autosampler Location: Sample To: 012 Analyte: Pb 283.31 Thep1 Sample To: 0.0534 11:29:49 AM Yes 3 1.947 1.947 0.0534 11:29:49 AM Yes 3 1.947 1.947 0.0534 11:29:49 AM Yes 3 1.947 1.947 0.0540 11:29:49 AM Yes 3 1.947 0.9540 11:29:49 AM Yes Yes Sequence No.: 9 Sample To: 0.018 Date Collected: 11/16/2020 11:30:00 AM Yes	
# mg/L Signal Stored 1 1.690 1.690 0.0485 11:29:38 AM Yes 2 1.657 1.657 0.0479 11:29:40 AM Yes 3 1.679 1.675 0.0483 11:29:41 AM Yes Mean: 1.675 0.0483 11:29:41 AM Yes Sp: 0.0167 0.0483 11:29:41 AM Yes Sequence No.: 8 Autosampler Location: Date Collected: 11/18/2020 11:29:49 AM Analyst: Date Signal Stored 11:29:49 AM	
1 1.690 1.690 0.0485 11:29:38 AM Yes 2 1.657 1.657 0.0479 11:29:40 AM Yes 3 1.679 1.675 0.0483 11:29:41 AM Yes Mean: 1.675 1.675 0.0483 Example 1.008 1.008 0.67	
2 1.657 1.657 0.0479 11:23:40 AM Yes Mean: 1.675 1.675 0.0482 MYes SD: 0.0167 0.0167 0.0003 MYes SRDD: 1.00% 0.67 Autosampler Location: Sequence No.: 8 Autosampler Location: Data Collected: Sample ID: 012 Analyst: Data Type: Original Autosampler Pb 283.31 Repl SampleConc StndConc BinkCorr Time Signal % mg/L Signal Stored 1 1.947 1.947 0.0536 11:29:50 AM 2 1.945 1.945 0.0536 11:29:51 AM Solid Outstown 0.0520 0.003 0.838 0.152 0.0162 0.0003 0.838 Sample D: 013 Data Type: Original Analyte: Pb 283.31 Pata Stored Pata Type: Original 1.1118/2020 11:30:00 AM Mean: 1.956 0.0536 D: 0.0162 0.0162 0.003 Replicate Data: 013 Nalyte: Pb 283.31	
3 1.079 1.079 0.0883 11123141 AB 185 Mean: 1.675 0.0167 0.0003 SD: 0.0167 0.0167 0.0003 SRDD: 1.008 0.67 Autosampler Location: Sequence No.:: 6 Autosampler Location: Sample ID: 012 Analyte: Pb 283.31 Repl SampleCone StndCone BlnkCorr Time Signal * mg/L signal 1 1.947 1.947 0.0535 11:29:50 AM 1 1.947 1.947 0.0534 11:29:50 AM Yes 3 1.974 1.974 0.0540 11:29:51 AM Yes Mean: 1.956 0.0534 11:29:51 AM Yes Sample Do: 0.0162 0.0003 Utosampler Location: Sample Do: 0.584 0.58 Date Collected: 11/16/2020 11:30:00 AM Autosampler Location: Sample Do: 9 Signal Nalyte: Pb 283.31 <td colspan="2</td> <td></td>	
Nomin 1.013 1.013 0.0167 SBD: 0.0167 0.0067 Sequence No.: 8 Autosampler Location: Sample D: 012 Date Collected: 11/18/2020 Sample Conc Stored 11/18/2020 11:29:49 Malyst: Date Collected: 11/18/2020 11:29:49 Repl SampleConc Signal Stored 1 1.947 1.947 0.0535 11:29:50 AM 2 1.945 1.956 0.0534 11:29:51 AM Sample D: 0.0162 0.0162 0.0003 11:29:51 AM Yes 3 1.974 1.974 0.0540 11:29:51 AM Yes 3 1.974 1.976 0.0536 11:29:51 AM Yes 3 1.974 1.976 0.0536 11:29:51 AM Yes Sample D: 0.0162 0.0162 0.0003 RB Stored Stored Stored Sample D: 0.162 0.0162 0.0162 0.0162 Stored	
BJL: 0.10101 0.67 SRDD: 1.008 0.67 Sequence No.: 8 Autosampler Location: Date Collected: 11/18/2020 11:29:49 AM Data Type: Sample ID: 012 Analyte: Data Type: Original	
Sequence No.: 8 Autosampler Location: Date Collected: 11/16/2020 11:29:49 AM Data Type: Original Manalyst: Analyte: Pb 283.31 Replicate Data: 012 Analyte: Pb 283.31 Mean: 1.956 1.945 0.0530 11:29:49 AM Yes 2 1.947 1.947 0.0535 11:29:50 AM Yes 0.0530 0.0536 20 0.0162 0.00536 0.0536 0.0536 0.0536 0.0536 Sequence No.: 9 Autosampler Location: Date Collected: 11/16/2020 11:30:00 AM Analyst: Page Sample Conc StndConc BinkCorr Signal Stored 1 1.717 1.717 0.0490 11:30:00 AM Yes Signal Stored <td< td=""><td></td></td<>	
Analyst: Data Type: Original Replicate Data: 012 Analyte: Pb 283.31 Repl SampleConc SindConc BinkCorr Time Signal 1 1.947 1.947 0.0535 11:29:49 AM Yes 2 1.945 1.947 0.0534 11:29:50 AM Yes 3 1.974 1.956 0.0534 11:29:51 AM Yes Mean: 1.956 1.956 0.0536 11:29:51 AM Yes MESD: 0.638 0.0536 0.0536 11:29:50 AM Yes Stored 1.956 1.956 0.0536 11:29:51 AM Yes Mean: 1.956 0.0536 0.0003 Stored 11:29:50 AM Store 0.838 0.838 0.838 0.838 0.838 Store 0.838 0.838 0.838 0.838 0.838 Analyst: Data Type: Original Data Type: Original Total Particle Stored Stored Stored 1 1.717 1.717 0.6496 11:30:00 AM Yes <	
Replicate Data: 012 Analyte: Pb 283.31 Repl SampleConc SindConc BinkCorr Time Signal 1 1.947 1.947 0.0535 11:29:94 MM Yes 2 1.945 1.945 0.0534 11:29:50 MM Yes 3 1.974 1.974 0.0540 11:29:51 AM Yes 3 1.974 1.956 0.0536 11:29:51 AM Yes Mean: 1.956 0.9562 0.0003 Stored Store 0.0162 0.0003 Stored Stored Sequence No.: 9 Autosampler Location: Date Collected: 11/18/2020 11:30:00 AM Analyst: Data Type: Original Data Type: Original Time Signal Stored 1 1.717 1.717 1 1.717 1.748 0.0490 11:30:00 AM 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 1.734 0.0493	
Repl SampleConc StndConc BinkCorr Time Signal # mg/L signal Stored 1 1.947 1.947 0.0535 11:29:50 AM Yes 2 1.945 1.945 0.0534 11:29:50 AM Yes 3 1.974 1.965 0.0536 11:29:51 AM Yes 3 1.974 0.9640 11:29:51 AM Yes Mean: 1.956 0.0536 11:29:51 AM Yes Stored 0.0162 0.0003 Stored Stored Stored 0.83% 0.58 Stored Stored	
# mg/L mg/L Signal Stored 1 1.947 1.947 0.0535 11:29:49 AM Yes 2 1.945 1.945 0.0534 11:29:50 AM Yes 3 1.974 1.974 0.0540 11:29:51 AM Yes Mean: 1.956 1.956 0.0534 11:29:51 AM Yes Mean: 1.956 0.956 0.0003 Stored Stored SD: 0.0162 0.0003 Stored Stored Stored Sample TD: 013 0.83% 0.58 Date Collected: 11/18/2020 11:30:00 AM Analyst: Date Collected: 11/18/2020 11:30:00 AM Peplicate Data: Signal Signal # mg/L mg/L Signal Stored 1 1.717 0.0490 11:30:00 AM Yes 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 <t< td=""><td></td></t<>	
1 1.947 1.947 0.0535 11:29:34 MM Yes 2 1.945 1.945 0.0534 11:29:51 AM Yes 3 1.974 1.974 0.0540 11:29:51 AM Yes Mean: 1.956 1.956 0.0536 SD: 0.0162 0.00162 0.0003 %RSD: 0.83% 0.83% 0.58 	
2 1.945 1.945 0.0534 11:29:50 AM Yes Mean: 1.956 1.956 0.0536 SD: 0.0162 0.0162 0.0003 %RSD: 0.83% 0.83% 0.58 Autosampler Location: Sample ID: 013 Date Collected: 11/18/2020 11:30:00 AM Analyst: Date Collected: 11/18/2020 11:30:00 AM Peplicate Data: Olsmanne # mg/L Signal # mg/L Signal # Mean: 11:30:00 AM 1 1.717 1.717 0.0490 11:30:00 AM Yes 3 1.737 1.737 0.0490 11:30:01 AM Yes 3 1.737 1.734 0.0494 11:30:02 AM Yes Mean: 1.734 0.0493 11:30:02 AM Yes SD: 0.0157 0.0157 0.0003 I	
3 1.914 1.914 0.0340 11129131 AB 168 Mean: 1.956 0.0536 0.003 0.003 11129131 AB 168 Sp: 0.0162 0.0162 0.0003 0.003 11129131 AB 168 Sp: 0.0162 0.0162 0.0003 0.003 11129131 AB 168 Sequence No.: 9 Autosampler Location: Date Collected: 11/16/2020 11:30:00 AM Analyst: Data Type: Original Autosampler Location: Replicate Data: 013 Analyte: Pb 283.31 Repl SampleConc Signal Stored 1 1.717 0.0490 11:30:00 AM Yes 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 1.737 0.0494 11:30:02 AM Yes Mean: 1.734 1.737 0.0493 11:30:02 AM Yes SD: 0.0157 0.0157 0.0003 Yes	
Mean: 1.734 1.737 0.0103 Sequence No.: 9 Autosampler Location: Sequence No.: 9 Autosampler Location: Sample ID: 013 Date Collected: 11/18/2020 11:30:00 AM Analyst: Data Type: Original Replicate Data: 013 Analyte: Pb 283.31 8 mg/L Signal 1 1.717 0.0490 1 1.737 0.0490 2 1.748 1.748 3 1.737 1.737 0.0493 11:30:00 AM Sb: 0.0157	
BRED: 0.83% 0.83% 0.58 Sequence No.: 9 Autosampler Location: Date Collected: 11/18/2020 Sample ID: 013 Data Type: Original Repl SampleConc StndConc BinkCorr Time Signal # mg/L mg/L Signal Stored 1 1.717 1.748 0.0490 11:30:00 AM 2 1.748 1.748 0.0496 11:30:01 AM 3 1.737 1.737 0.0494 11:30:02 AM Mean: 1.734 1.744 0.0493 SD: 0.0157 0.0003	
Sequence No.: 9 Autosampler Location: Date Collected: 11/18/2020 11:30:00 AM Data Type: Original Analyst: Date Type: Original Replicate Data: 013 Analyte: Pb 283.31 Repl SampleConc Signal Stored 1 1.717 0.0490 11:30:00 AM Yes 2 1.748 1.748 0.0496 3 1.737 1.737 0.0494 3 1.734 1.743 0.0493 Sb: 0.0157 0.0003	
Sequence No.: 9 Autosampler Docation: Date Collected: 11/18/2020 11:30:00 AM Data Type: Original Analyst: Date Collected: 11/18/2020 11:30:00 AM Replicate Data: 013 Analyte: Pb 283.31 Repl Sample Docos StndConc BlnkCorr # mg/L Time Signal Stored 1 1.717 0.0490 11:30:01 AM Yes 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 0.734 0.0493 11:30:02 AM Yes SD: 0.0157 0.0157 0.0003 Xes Xes	
Analyte: Pb 283.31 Repl SampleConc StndConc BinkCorr Time Signal # mg/L mg/L Signal Stored 1 1.717 1.717 0.0490 11:30:00 AM Yes 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 1.737 0.0494 11:30:02 AM Yes Mean: 1.734 0.0493 SD: 0.0157 0.0157 0.0003	
Rep1 SampleConc StndConc BinkCorr Time Signal # mg/L signal Stored 1 1.717 1.717 0.0490 11:30:00 AM Yes 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 0.0494 11:30:02 AM Yes Mean: 1.734 0.0493 150:00 Yes SD1_ 0.0157 0.0003 Yes	
# mg/L mg/L Signal Stored 1 1.717 1.717 0.0490 11:30:00 AM Yes 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 1.737 0.0494 11:30:02 AM Yes Mean: 1.734 0.0493 11:30:02 AM Yes SD: 0.0157 0.0157 0.0003	
1 1.717 1.717 0.0490 11:30:00 AM Yes 2 1.748 1.748 0.0496 11:30:01 AM Yes 3 1.737 0.0494 11:30:02 AM Yes Mean: 1.734 1.734 0.0493 SD: 0.0157 0.0003	
1.737 1.737 0.0494 11:30:02 AM Yes Mean: 1.734 1.734 0.0493 SD: 0.0157 0.0157 0.0003	
Mean: 1.734 1.734 0.0493 SD: 0.0157 0.0157 0.0003	
SD: 0.0157 0.0157 0.0003	
%RSD: 0.91% 0.91% 0.62	
Semience No. : 10	
Sample ID: 014 Date Collected: 11/18/2020 11:30:10 AM	
Replicate Data: 014 Analyte: Pb 283.31	
Repl SampleConc StndConc BlnkCorr Time Signal	
mg/L mg/L Signal Stored	
1 Z.IZU Z.IZU U.UD08 II:JU:U.AM Yes	
a alaas alaas uuuuuuuuuuuuuuuuuuuuuuuuuu	
S 2.000 2.000 0.0000 1130113 AM 100	
SD: 0.0107 0.0107 0.0002	
%RSD: 0.51% 0.51% 0.37	
Semience No. : 11 Butosemiler Toostion :	
Sample ID: 015 Date Collected: 11/18/2020 11:30:21 AM Analyst: Data Type: Original	

Method	i: Determinad	ion de Pb		Pag	re 4		Date: 11/18/2020 11:46:23 AM
Replic	ate Data: 01	.5		x,	nalyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal		
	mg/L	mg/L	Signal		Stored		
1	1.903	1,903	0.0526	11:30:21 AM	1 Yes		
2	1.890	1.890	0.0523	11:30:23 AM	Yes		
3	1.872	1.872	0.0520	11:30:24 AM	i ies		
mean:	0.0155	0.0155	0.0523				
SDCD.	0.0155	0.0155	0.57				
skap:	0.828	0.025	0.57				
Sequer	TD: 022				utosamp.	Ler Location:	11.31.37 M
Analys	it:			0	ata Type	e: Original	21.51.57 AM
Replic	ate Data: 02	2		x	nalyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal		
	mg/L	mg/L	Signal		Stored		
1	2.360	2.360	0.0614	11:31:38 AM	Yes		
2	2.395	2.395	0.0621	11:31:39 AM	Yes		
3	2.405	2.405	0.0623	11:31:41 AM	Yes		
Mean:	2.387	2.387	0.0619				
SD:	0.0240	0.0240	0.0005				
%RSD:	1.00%	1.00%	0.75				
Sequer	ce No.: 13			,	utosamp	ler Location:	11.01.40 M
Sample	1D: 033			L	ate Col	Lected: 11/18/2020	11:31:48 AM
Analys	ic :				ata Type	e: Original	
	ata Data ol					nh 003 31	
Replic	ate Data: 0.	StadCone	BlokCorr	Timo	fignel	PD 283.31	
A CODI	ma/L	mg/T.	Signal	1 1 1040	Stored		
1	3.235	3 235	0.0783	11.31.48 AN	Ves		
2	3.290	3.290	0.0794	11:31:49 AM	Yes		
3	3.337	3.337	0.0803	11:31:50 AM	Yes		
Mean:	3.288	3.288	0.0793				
SD:	0.0511	0.0511	0.0010				
%RSD:	1.55%	1.55%	1.24				
Sequer	ce No.: 14			λ	utosamp	ler Location:	
Sample	ID: 034			D	ate Col	lected: 11/18/2020	0 11:31:59 AM
Analys	it:			D	ata Type	e: Original	
Replic	ate Data: 03	4			nalyte:	РЬ 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal		
	mg/L	mg/L	Signal	11.01.00	Stored		
1	3.323	3.323	0.0800	11:31:59 AM	i Yes		
2	3.347	3.347	0.0805	11:32:00 AM	Yes		
3	3.392	3.392	0.0814	11:32:01 AM	Yes		
Mean:	3.354	3.354	0.0806				
SD:	0.0353	0.0353	0.0007				
€RSD:	1,05%	1.05%	0.85				
sequer	ce No.: 15				utosamp.	Ler Location:	11.00.00 84
Analys	1D: 033			D	ate Col. ata Type	e: Original	11:32:20 AM
						-	
Replic	ate Data: 03	33			nalyte:	Pb 283.31	
Repl	SampleConc	StndConc	BinkCorr	Time	Signal		
	mg/L 3 305	mg/L 3 305	Signal 0.0797	11.32.21 34	Stored		
		3.303	0.0101	ARTORIES AD	100		

Figura 99. Determinación de plomo en muestras, continuación.

_

Figura 100. Determinación de plomo en muestras, continuación.

Method	i: Determinac	ion de Pb		1	Page	a 5	Date: 11/18/2020 11:46:23 AM
2	3.327	3.327	0.0801	11:32:22	AM	Yes	
3	3.346	3.346	0.0805	11:32:23	AM	Yes	
Mean:	3.326	3.326	0.0801				
SD:	0.0206	0.0206	0.0004				
%RSD:	0.62%	0.62%	0.50				
Sequer	nce No.: 16				A	utosampl	ler Location:
Sample Analys	e ID: 041 st:				D4 D4	ate Coll ata Type	lected: 11/18/2020 11:33:27 AM e: Original
Replic	cate Data: 04	1			Ar	nalyte:	Pb 283.31
Repl	SampleConc	StndConc	BinkCorr	Time		Signal	
1	3.160	3,160	0.0769	11:33:28	AМ	Yes	
2	3.197	3,197	0.0776	11:33:29	AM	Yes	
3	3.207	3.207	0.0778	11:33:30	AM	Yes	
Mean:	3.188	3.188	0.0774				
SD:	0.0250	0.0250	0.0005				
%RSD:	0.79%	0.79%	0.62				
Segue						tosarra	ler Togstion:
Sample	ID: 042				D	ate Coll	lected: 11/18/2020 11:33:37 AM
Analys	st:				Da	ata Type	e: Original
Replic	cate Data: 04 SampleConc	12 StndConc	BlnkCorr	Time	Ar	signal	Pb 283.31
	mg/L	mg/L	Signal	1 21110		Stored	
1	3.221	3.221	0.0781	11:33:37	AM	Yes	
2	3.282	3.282	0.0792	11:33:38	AM	Yes	
3	3.242	3.242	0.0785	11:33:40	AM	Yes	
Mean:	3.249	3,249	0.0786				
SD: %RSD:	0.0310 0.95%	0.0310 0.95%	0.0006 0.76				
Sequer	nce No.: 18				A	utosamp]	ler Location:
Analys	st:				Da	ata Type	e: Original
Benli	ate Data: 04						DL 203 31
Replic	SampleConc	StndConc	BlnkCorr	Time	A	Signal	EN AUG.GA
	mg/L	mg/L	Signal			Stored	
1	3.427	3.427	0.0820	11:33:46	AM	Yes	
2	3.512	3.512	0.0837	11:33:48	AM	Yes	
3	3.494	3.494	0.0833	11:33:49	AM	Yes	
Mean:	3.478	3.478	0.0830				
SD:	0.0449	0.0449	0.0009				
%RSD:	1,29%	1,29%	1,05				
Sequer	nce No.: 19				A	utosampl	ler Location:
Sample Analys	a ID: 044 st:				D4 D4	ate Coll ata Type	lected: 11/18/2020 11:33:56 AM e: Original
Replic	cate Data: 04	4			Ar	nalyte:	Pb 283.31
Repl	SampleConc	StndConc	BlnkCorr	Time		Signal	
	mg/L	mg/L	Signal	11.00.71		Stored	
1	3,441	3.441	0.0823	11:33:56	AM	Yes	
2	3.441	3.441	0.0823	11.33:57	AM	Tes	
Mean	3.458	3.458	0.0826	***33:38	1425	*69	
SD:	0.0302	0.0302	0.0006				
%RSD:	0.87%	0.87%	0.71				

Method: Determinacion de Pb Page 6 Date: 11/18/2020 11:46:23 AM Sequence No.: 20 Autosampler Location: Date Collected: 11/18/2020 11:34:07 AM Sample ID: 045 Analyst: Data Type: Original Replicate Data: 045 Analyte: Pb 283.31 SampleConc StndConc Repl BlnkCorr Time Signal . mg/L mg/L Signal Stored 3.612 11:34:07 AM 3.612 3.603 0.0856 Yes 11:34:09 AM 11:34:10 AM 0.0854 Yes 3.596 3 3.596 0.0853 Yes Mean: 3.604 3.604 0.0855 SD: 0.0078 0.0078 0.0002 %RSD: 0.22% 0.22% 0.18 Sequence No.: 21 Autosampler Location: Sample ID: 051 Date Collected: 11/18/2020 11:34:18 AM Data Type: Original Analyst: Analyte: Pb 283.31 Replicate Data: 051 SampleConc StndConc BlnkCorr Repl Time Signal Signal 0.0709 . mg/L mg/L Stored 2.848 2.848 11:34:18 AM Yes 3.304 0.0797 11:34:20 AM Yes 11:34:21 AM 3 3,205 3.205 0.0778 Yes 0.0761 Mean: 3.119 3.119 SD. 0.2396 0.2396 0.0046 %RSD: 7.68% 7.68% 6.08 Autosampler Location: Date Collected: 11/18/2020 11:34:47 AM Sequence No.: 22 Sample ID: 051 Analyst: Data Type: Original Replicate Data: 051 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal Signal 0.0786 . mg/L mg/L Stored 3.248 3.287 11:34:48 AM 3.248 Yes 3.287 0.0793 11:34:49 AM Yes 11:34:50 AM 0.0790 3 3.271 3.271 Yes Mean: 3.269 3.269 0.0790 SD: 0.0196 0.0196 0.0004 %RSD: 0.60% 0.60% 0.48 Sequence No.: 23 Autosampler Location: Sample ID: 062 Date Collected: 11/18/2020 11:35:56 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: 062 SampleConc StndConc BlnkCorr Time Signal Repl Signal 0.0480 . mg/L mg/L Stored 1.663 11:35:56 AM 1.663 Yes 1.697 1.697 0.0486 11:35:58 AM Yes 1.715 1.715 0.0490 11:35:59 AM Yes 3 Mean: 1.691 1.691 0.0485 SD: 0.0264 0.0264 0.0005 %RSD: 1.56% 1.56% 1.05 Sequence No.: 24 Autosampler Location: Sample ID: 063 Date Collected: 11/18/2020 11:36:07 AM Data Type: Original Analyst:

Figura 101. Determinación de plomo en muestras, continuación.

Page 7 Date: 11/18/2020 11:46:23 AM Method: Determinacion de Pb Replicate Data: 063 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr mg/L mg/L Signal Repl Time Signal mg/L . Stored 1.594 1.594 0.0466 11:36:07 AM Yes 2 1.582 1.582 0.0464 11:36:08 AM Yes 3 1.575 1.575 0.0463 11:36:09 AM Yes Mean: 1.584 1.584 0.0464 0.0097 0.0097 SD: 0.0002 %RSD: 0.61% 0.61% 0.40 Sequence No.: 25 Autosampler Location: Sample ID: 064 Date Collected: 11/18/2020 11:36:19 AM Analyst: Data Type: Original Replicate Data: 064 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Time Signal Repl ٠ mg/L mg/L Signal Stored 11:36:19 AM Yes 1.787 1.787 0.0504 11:36:20 AM 1.695 2 1.695 0.0486 Yes 11:36:22 AM Yes 3 1.752 1.752 0.0497 1.745 0.0495 Mean: 1.745 0.0462 0.0462 0.0009 SD: %RSD: 2.65% 2.65% 1.80 Sequence No.: 26 Autosampler Location: Sample ID: 064 Date Collected: 11/18/2020 11:36:44 AM Data Type: Original Analyst: Replicate Data: 064 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L Signal Stored 1.770 11:36:44 AM 1.770 0.0500 Yes 1.840 1.840 0.0514 11:36:46 AM 2 Yes 1.830 1.830 0.0512 11:36:47 AM Yes 3 Mean: 1.813 1.813 0.0509 SD: 0.0376 0.0376 0.0007 %RSD: 2.07% 2.07% 1.43 Sequence No.: 27 Autosampler Location: Sample ID: 065 Date Collected: 11/18/2020 11:36:54 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: 065 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 1.852 1.852 0.0516 11:36:54 AM Yes 1.826 1.826 0.0511 11:36:55 AM Yes 11:36:57 AM Yes 2 3 1.813 1.813 0.0509 1,830 0.0512 Mean: 1,830 0.0198 0.0198 0.0004 SD: %RSD: 1.08% 1.08% 0.75 Sequence No.: 28 Autosampler Location: Date Collected: 11/18/2020 11:37:19 AM Sample ID: 064 Analyst: Data Type: Original Replicate Data: 064 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored .

Figura 102. Determinación de plomo en muestras, continuación.

Figura 103. Determinación de plomo en muestras, continuación.

Date: 11/18/2020 11:46:23 AM Method: Determinacion de Pb Page 8 1 1.793 1.793 0.0505 11:37:19 AM Yes 1.790 1.790 0.0504 11:37:21 AM 11:37:22 AM 2 Yes 3 Yes 1.790 1.790 0.0504 Mean: 0.0034 0.0034 0.0001 SD: %RSD: 0.19% 0.19% 0.13 Sequence No.: 29 Autosampler Location: Date Collected: 11/18/2020 11:38:26 AM Sample ID: 071 Analyst: Data Type: Original Replicate Data: 071 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 2.205 11:38:27 AM 2.205 0.0584 Yes 2.186 2.186 11:38:28 AM Yes 3 2.171 2.171 0.0578 11:38:29 AM Yes Mean: 2.187 2.187 0.0581 SD: 0.0172 %RSD: 0.79% 0.0172 0.0003 0.79% 0.57 Sequence No.: 30 Autosampler Location: Sample ID: 072 Date Collected: 11/18/2020 11:38:37 AM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: 072 Repl SampleConc StndConc BlnkCorr Signal Time mg/L Stored . mg/L Signal 1,137 1,137 0.0378 11:38:37 AM Yes 0.0373 2 1.111 1.111 11:38:38 AM Yes 0.0380 11:38:39 AM Yes 3 1.147 1.147 1.132 1.132 Mean: 0.0377 SD: 0.0186 0.0186 0.0004 %RSD: 1.64% 1.64% 0.95 -----Sequence No.: 31 Autosampler Location: Sample ID: 073 Analyst: Date Collected: 11/18/2020 11:38:46 AM Data Type: Original Replicate Data: 073 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L . mg/L Signal Stored 11:38:46 AM 2.197 2.197 0.0583 Yes 2.267 2.267 0.0596 11:38:48 AM Yes 3 2.285 2.285 0.0600 11:38:49 AM Yes Mean: 2.249 2.249 0.0593 0.0465 0.0465 SD: 0.0009 %RSD: 2.07% 2.07% 1.52 Sequence No.: 32 Autosampler Location: Sample ID: 073 Date Collected: 11/18/2020 11:39:08 AM Analyst: Data Type: Original Replicate Data: 073 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal mg/L mg/L Signal Stored . 0.0591 2.238 2.238 11:39:09 AM Yes 11:39:10 AM 2 Yes 0.0599 11:39:11 AM Yes 3 2.281 2.281 2.230 2.230 0.0589 Mean: SD: 0.0558 0.0558 0.0011

Figura 104. Determinación de plomo en muestras, continuación.

Method: Determinacion de Pb Page 9 Date: 11/18/2020 11:46:23 AM %RSD: 2.50% 2.50% 1.83 Sequence No.: 33 Autosampler Location: Sample ID: 082 Date Collected: 11/18/2020 11:39:59 AM Analyst: Data Type: Original Replicate Data: 082 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored Yes 11:40:00 AM 4.115 4.186 4.115 0.0953 4.186 11:40:01 AM Yes 4,191 4.191 0.0968 11:40:02 AM Yes 3 Mean: 4.164 4.164 0.0963 0.0425 0.0425 0.0008 SD: %RSD: 1.02% 1.02% 0.85 Sequence No.: 34 Autosampler Location: Sample ID: 083 Analyst: Date Collected: 11/18/2020 11:40:11 AM Data Type: Original Analyte: Pb 283.31 Replicate Data: 083 SampleConc StndConc BlnkCorr Time Signal Repl . mg/L mg/L Signal Stored 4,447 11:40:11 AM 4.447 0.1017 Yes 4.438 4.438 0.1016 11:40:12 AM Yes 2 3 4.445 4.445 0.1017 11:40:13 AM Yes 4.444 0.1017 Mean: 4.444 0.0047 0.0047 0.0001 SD: %RSD: 0.11% 0.11% 0.09 Sequence No.: 35 Autosampler Location: Sample ID: 084 Date Collected: 11/18/2020 11:40:21 AM Analyst: Data Type: Original Replicate Data: 084 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr # mg/L mg/L Signal Time Signal Stored 4.386 4.386 0.1006 11:40:21 AM Yes 2 4.347 4.347 0.0998 11:40:22 AM 11:40:23 AM Yes 4.338 0.0996 Yes Mean: 4.357 4.357 0.1000 0.0254 SD: 0.0254 0.0005 %RSD: 0.58% 0.49 Sequence No.: 36 Autosampler Location: Sample ID: 085 Date Collected: 11/18/2020 11:40:31 AM Analyst: Data Type: Original Replicate Data: 085 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored . 3.978 3.978 0.0927 11:40:31 AM Yes 11:40:33 AM 2 Yes 3.979 3,979 0.0927 11:40:34 AM 3.963 0.0924 Mean: 3.963 0.0267 SD: %RSD: 0.67% 0.67% 0.56 Sequence No.: 37 Autosampler Location: Sample ID: 091 Date Collected: 11/18/2020 11:41:30 AM

Method	i: Determinad	cion de Pb		1	Page	10	Date: 11/18/2020 11:46:23 AM
Analys	it:				Dat	a Type: Original	
Benlie	ate Data of					lute: Db 202 21	
Replic	SampleConc	StadCone	BlokCorr	Time	Ana	ignal	
Nepi	sampieconc	schacone	BINKCOFF	1100		ignal	
	mg/L	mg/L	Signal	11.41.20		tored	
1	4.265	4,265	0.0982	11:41:30	AM	Ies	
2	4.394	4.394	0.1007	11:41:32	AM	Yes	
3	4.373	4.373	0.1003	11:41:33	AM	Yes	
Mean:	4.344	4.344	0.0998				
SD:	0.0692	0.0692	0.0013				
%RSD:	1.59%	1.59%	1.34				
Sequen	ce No.: 38				Aut	osampler Location:	
Sample Analys	1D: 092				Dat Dat	e Collected: 11/18/2 a Type: Original	020 11:41:40 AM
Replic	ate Data: 0	92			Ana	lyte: Pb 283.31	
Rep1	SampleConc	StodConc	BlokCorr	Time	e	lignal	
	ma/L	ma/T	Signal			tored	
	A 715	A 215	a losa	11.41.40	3.14	Vec	
-	4.710	4.710	0.1069	11.41.40	3.14	100	
-	A 76A	4.707	0.1008	11.41.41	3.14	100	
3	4.704	4.104	0.1079	11141143	110	143	
mean:	4,729	4.729	0.1072				
SD:	0.0306	0.0306	0.0006				
%RSD:	0.65%	0.65%	0.55				
Sequen Sample Analys	nce No.: 39 a ID: 093 at:				Aut Dat Dat	osampler Location: e Collected: 11/18/2 a Type: Original	020 11:41:50 AM
Replic	ate Data: 09	93			Ana	lyte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	s	lignal	
	mg/L	mg/L	Signal		s	tored	
1	4.707	4.707	0.1068	11:41:50	AM	Yes	
2	4.694	4.694	0.1065	11:41:51	AM	Yes	
3	4.759	4.759	0.1078	11:41:52	AM	Yes	
Mean:	4.720	4.720	0.1070				
SD:	0.0342	0.0342	0.0007				
%RSD:	0.73%	0.73%	0.62				
Sequen	ce No.: 40				Aut	osampler Location:	020 11-42-03 AM
Analys	it:				Dat	a Type: Original	
Replic	ate Data: 09	94			Ana	lyte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	s	lignal	
	mg/L	mg/L	Signal		s	tored	
1	4.772	4,772	0.1080	11:42:04	λМ	Yes	
2	4.711	4.711	0.1069	11:42:05	AM	Yes	
3	4.716	4.716	0.1069	11:42:06	AM	Yes	
Means	4.733	4.733	0.1073	46.00	1000		
SD +	0.0336	0.0336	0.0006				
%RSD:	0.71%	0.71%	0.61				
Sector	ce No · 41					ogampler Location	
Sample Analys	ID: 0101				Dat	e Collected: 11/18/2 a Type: Original	020 11:43:04 AM
Replic Repl	ate Data: 01 SampleConc	101 StndConc	BlnkCorr	Time	Ana	lyte: Pb 283.31 Signal	

Figura 105. Determinación de plomo en muestras, continuación.

Method	l: Determinac	ion de Pb		1	Page	11	Date: 11/18/2020 11:46:23 AM
	mg/L	mg/L	Signal			Stored	
1	5.324	5.324	0.1187	11:43:04	АМ .	Yes	
2	5.460	5.460	0.1213	11:43:05	AM	Yes	
3	5.393	5,393	0.1200	11:43:06	AM	Yes	
Mean:	5.392	5.392	0.1200				
SD:	0.0681	0.0681	0.0013				
%RSD:	1.26%	1.26%	1,10				
Sequen	ce No.: 42				Aut	tosampler	Location:
Sample	ID: 0102				Dat	te Collec	ted: 11/18/2020 11:43:14 AM
Analys	t:				Dat	ta Type:	Original
	D 01					- Lut	
Replic	SampleConc	StodConc	BlokCorr	Time	An	alyte: Pb Signal	263.31
	mg/L	mg/L	Signal	1 2 10 10		Stored	
1	5,776	5,776	0.1274	11:43:14	AM .	Yes	
2	5.818	5.818	0.1282	11:43:15	AM	Yes	
3	5.862	5.862	0.1291	11:43:17	AM	Yes	
Mean:	5.819	5.819	0.1282				
SD:	0.0427	0.0427	0.0008				
%RSD:	0.73%	0.73%	0.64				
Sequen	ce No.: 43				Au	tosampler	Location:
Sample	ID: 0103				Dat	te Collec	ted: 11/18/2020 11:43:25 AM
Analys	C :				Dat	са туре:	Original
Replic	ate Data: 01	03			Ar.	alute: Ph	283 31
Replic	SampleConc	StadConc	BlokCorr	Time	An	signal	203.31
	mg/L	mg/L	Signal	1 2000		Stored	
1	5.585	5.585	0.1237	11:43:25	AM .	Yes	
2	5,600	5,600	0.1240	11:43:26	AM	Yes	
3	5.605	5.605	0.1241	11:43:27	AM	Yes	
Mean:	5.597	5.597	0.1240				
SD:	0.0103	0.0103	0.0002				
%RSD:	0.18%	0.18%	0.16				
Sequen	ce No.: 44				Aut	tosampler	: Location:
Analys	* 1D: 0104				Dat	te Collec	Original
marle					Da	ca sipe:	or eganine.
Replic	ate Data: 01	.04			An	alyte: Pb	283.31
Repl	SampleConc	StndConc	BlnkCorr	Time	1	Signal	
	mg/L	mg/L	Signal		1	Stored	
1	5.576	5.576	0.1236	11:43:36	AM	Yes	
2	5.554	5.554	0.1231	11:43:37	AM	Yes	
3	5.615	5.615	0.1243	11:43:38	AM	Yes	
sean:	0.0310	3.581	0.1237				
%RSD:	0.56%	0.56%	0.48				
Sequen	ce No.: 45				Aut	tosampler	Location:
Sample	ID: 0105				Dat	te Collec	ted: 11/18/2020 11:43:46 AM
Analys	C :				Dat	ca Type:	Original
Replic	ate Data: 01	05			he	alute: Db	
Replic	SampleConc	StndConc	BlnkCorr	Time	An	signal	203.31
	mg/L	mg/L	Signal		1	Stored	
1	5.481	5,481	0.1217	11:43:46	AM	Yes	
2	5.548	5,548	0.1230	11:43:47	AM	Yes	
3	5.584	5.584	0.1237	11:43:48	AM	Yes	
wean:	3.338	3.338	0.1228				

Figura 106. Determinación de plomo en muestras, continuación.

SD: 0.0523 0.0523 0.0010 %RSD: 0.94% 0.94% 0.82 Sequence No.: 46 Autosampler Location: Sample ID: 0111 Analyst: Date Collected: 11/18/2020 11:44:56 AM Data Type: Original Replicate Data: 0111 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal ٠ mg/L mg/L 5.598 Signal 0.1240 Stored 5.598 11:44:57 AM Yes 2 5.556 5.556 0.1232 11:44:58 AM 11:44:59 AM Yes 5.561 5.561 0.1233 Yes Mean: 5.571 5.571 0.1235 SD: 0.0228 0.0228 0.0004 %RSD: 0.41% 0.41% 0.36 Sequence No.: 47 Autosampler Location: Sample ID: 0112 Date Collected: 11/18/2020 11:45:06 AM Analyst: Data Type: Original Replicate Data: 0112 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal ٠ mg/L mg/L Signal Stored 11:45:06 AM Yes 5.981 6.106 5.981 6.106 0.1314 0.1338 11:45:07 AM Yes 3 6.148 6.148 0.1346 11:45:08 AM Yes Mean: 6.079 6.079 0.1333 0.0869 0.0869 0.0017 SD: %RSD: 1.43% 1.43% 1.26 Autosampler Location: Date Collected: 11/18/2020 11:45:15 AM Sequence No.: 48 Sample ID: 0113 Analyst: Data Type: Original Replicate Data: 0113 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Repl Time Signal . mg/L mg/L Signal Stored 6.104 6.104 0.1337 11:45:15 AM Yes 6.144 11:45:17 AM 11:45:18 AM 2 Yes 6.177 6.177 0.1352 Yes Mean: 6.141 6.141 0.1345 SD: 0.0368 0.0368 0.0007 %RSD: 0.60% 0.60% 0.53 Sequence No.: 49 Autosampler Location: Sample ID: 0114 Analyst: Date Collected: 11/18/2020 11:45:25 AM Data Type: Original Replicate Data: 0114 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 11:45:25 AM 5.951 6.021 5.951 6.021 0.1308 Yes 2 11:45:26 AM Yes з 6.029 6.029 0.1323 11:45:28 AM Yes Mean: 6.000 6.000 0.1318 SD: 0.0431 0.0431 0.0008 %RSD: 0.72% 0.72% 0.63 Sequence No.: 50 Autosampler Location:

Figura 107. Determinación de plomo en muestras, continuación.

Page 12

Date: 11/18/2020 11:46:23 AM

Method: Determinacion de Pb

Method	: Determinac	ion de Pb		1	Page	13		Date:	11/18/2020	11:46:23	АМ
Sample Analys	ID: 0115 t:				Dat Dat	e Colles a Type:	cted: 11/18/20 Original	20 11:	45:35 AM		
Replic	ate Data: 01	15			Ana	lyte: Pl	283.31				
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal					
	mg/L	mg/L	Signal		5	Stored					
1	6.023	6.023	0.1322	11:45:36	AM	Yes					
2	6.071	6.071	0.1331	11:45:37	AM	Yes					
3	6.133	6.133	0.1343	11:45:38	AM	Yes					
Mean:	6.076	6.076	0.1332								
SD:	0.0552	0.0552	0.0011								
%RSD:	0.91%	0.91%	0.80								

Figura 108. Determinación de plomo en muestras, continuación.

Figura 109. Determinación de plomo en muestras cada once horas.

Method: Determinacion de Pb Page 1 Date: 11/25/2020 1:06:57 PM Analysis Begun Logged In Analyst: Administrator Technique: AA Flame Spectrometer: PinAAcle 900F, S/N PFBS13050203 Autosampler: Sample Information File: C:\Users\Public\PerkinElmer\AA\Data\Sample Information\ 201125 Pb en agua LF Mollinedo.sif Batch ID: 201125 Results Data Set: 201125 Pb LFMollinedo Results Library: C:\Users\Public\PerkinElmer\AA\Data\Results\Results.mdb Method Loaded Method Name: Determinacion de Pb Method Last Saved: 10/16/2020 9:23:07 AM Method Description: Determinacion de Plomo ------Sequence No.: 1 Autosampler Location: Sample ID: Blanco Date Collected: 11/25/2020 12:41:53 PM Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: Blanco Repl SampleConc StndConc BlnkCorr Time Signal mg/L [0.00] Signal Stored ٠ mg/L 12:41:54 PM Yes 0.4173 12:41:55 PM Yes 12:41:56 PM Yes [0.00] 0.4177 2 [0.00] 3 0.4177 0.4176 Mean: 0.0000 0.0003 SD: %RSD: 800.0 0.06 Auto-zero performed. Sequence No.: 2 Autosampler Location: Sample ID: Blanco Date Collected: 11/25/2020 12:41:58 PM Analyst: Data Type: Original Replicate Data: Blanco Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored [0.00] 12:41:58 PM Yes 12:42:00 PM Yes -0.0009 12:42:01 PM Yes 0.0004 3 10.001 Mean: [0.00] -0.0005 0.0000 0.0008 SD: &RSD: \$00.0 145.62 Auto-zero performed. Sequence No.: 3 Autosampler Location: Sample ID: std 1 Date Collected: 11/25/2020 12:42:12 PM Analyst: Data Type: Original Replicate Data: std 1 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Signal
[2.00] 0.0561
[2.00] 0.0554 . mg/L Stored 12:42:12 PM Yes 12:42:13 PM Yes [2.00] 0.0548 12:42:14 PM Yes Mean: [2.00] 0.0554 0.0000 SD: %RSD: \$00.0 1.19 Standard number 1 applied. [2.00] Correlation Coef.: 1.000000 Slope: 0.02771 Intercept: 0.00000

Figura 110. Determinación de plomo en muestras cada once horas, continuación.

Method: Determinacion de Pb Page 2 Date: 11/25/2020 1:06:57 PM Autosampler Location: Date Collected: 11/25/2020 12:42:22 PM Sequence No.: 4 Sample ID: std 2 Analyst: Data Type: Original Analyte: Pb 283.31 Replicate Data: std 2 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored [8.00] [8.00] 0.1887 12:42:22 PM Yes 12:42:23 PM Yes [8.00] 12:42:25 PM 0.1887 Yes [8.00] Mean: 0.1892 0.0008 SD: SRSD: 800.0 0.43 Standard number 2 applied. [8.00] Correlation Coef.: 0.998924 Slop Slope: 0.02333 Intercept: 0.00375 Sequence No.: 5 Autosampler Location: Sample ID: std 3 Date Collected: 11/25/2020 12:42:33 PM Analyst: Data Type: Original Replicate Data: std 3 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored [14.00] [14.00] 12:42:33 PM Yes 0.2741 12:42:34 PM Yes 12:42:35 PM Yes [14.00] 0.2758 3 Mean: [14.00] 0.2747 SD. 0.0000 0.0010 %RSD: \$00.0 0.35 Standard number 3 applied. [14.00] Slope: 0.01962 Intercept: 0.01211 Correlation Coef.: 0.992359 Sequence No.: 6 Autosampler Location: Sample ID: std 4 Date Collected: 11/25/2020 12:42:45 PM Analyst: Data Type: Original Replicate Data: std 4 Analyte: Pb 283.31 Signal Repl SampleConc StndConc BlnkCorr Time ٠ mq/L mg/L Signal Stored [18.00] 0.3383 12:42:45 PM Yes [18.00] 12:42:46 PM Yes 12:42:47 PM Yes 2 0.3411 [18.00] 0.3357 Mean: [18.00] 0.3384 0.0000 0.0027 SD: %RSD: \$00.0 0.81 Standard number 4 applied. [18.00] Correlation Coef.: 0.993809 Slope: 0.01852 Intercept: 0.01595 Sequence No.: 7 Autosampler Location: Sample ID: std 5 Date Collected: 11/25/2020 12:42:56 PM Analyst: Data Type: Original Replicate Data: std 5 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L [20.00] [20.00] mg/L Signal Stored . 12:42:56 PM Yes 12:42:57 PM Yes 0.3763 Yes 12:42:58 PM Yes [20.00] 0.3743 1 [20.00] 0.3752 Mean: SD: 0.0000 0.0010

Method: Determinacion de Pb Date: 11/25/2020 1:06:57 PM Page 3 %RSD: 800.0 0.27 Standard number 5 applied. [20.00] Intercept: 0.01730 Correlation Coef.: 0.995352 Slope: 0.01821 Calibration data for Pb 283.31 Equation: Linear, Calculated Intercept Entered Calculated Mean Signal Conc. Conc. Standard mg/L ID (Abs) mg/L Deviation %RSD Blanco 0.0000 -0.950 2.093 0.00 145.62 0 2.00 std 1 0.0554 0.00 1.19 std 2 8.00 0.43 0.1892 9.438 0.00 std 3 0.2747 14.00 14.133 0.00 0.35 std 4 0.3384 18.00 17.631 0.00 0.81 std 5 0.3752 20.00 19.655 0.00 0.27 Correlation Coef.: 0.995352 Slope: 0.01821 Intercept: 0.01730 Autosampler Location: Date Collected: 11/25/2020 12:44:30 PM Sequence No.: 8 Sample ID: 021 Analyst: Data Type: Original Replicate Data: 021 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L mg/L Signal Stored . 2.092 0.0554 12:44:31 PM 2.092 Yes 2.011 12:44:32 PM Yes 2.026 2.026 0.0542 12:44:33 PM Yes Mean: 2.043 2.043 0.0545 0.0008 0.0432 0.0432 SD: %RSD: 2.11% 2.11% 1.44 Autosampler Location: Sequence No.: 9 Sample ID: 023 Date Collected: 11/25/2020 12:44:40 PM Analyst: Data Type: Original Replicate Data: 023 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 1.919 12:44:40 PM 1,919 0.0522 Yes 1,905 0.0520 12:44:41 PM Yes 2 1,917 3 1,917 0.0522 12:44:43 PM Yes 1,914 0.0521 Mean: 1,914 0.0075 0.0075 0.0001 SD: %RSD: 0.39% 0.39% 0.26 Sequence No.: 10 Autosampler Location: Sample ID: 024 Date Collected: 11/25/2020 12:44:50 PM Analyst: Data Type: Original Replicate Data: 024 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 1.727 1.727 0.0487 12:44:50 PM Yes 1.663 1.663 0.0476 12:44:51 PM Yes 12:44:52 PM 3 1.698 1.698 0.0482 Yes Mean: 1.696 1.696 0.0482 0.0320 0.0320 0.0006 SD: %RSD: 1.89% 1.89% 1,21 Sequence No.: 11 Autosampler Location: Sample ID: 025 Date Collected: 11/25/2020 12:45:00 PM Analyst: Data Type: Original

Figura 111. Determinación de plomo en muestras cada once horas, continuación.

Figura 112. Determinación de plomo en muestras cada once horas, continuación.

Method	i: Determinac	ion de Pb		1	Page 4	D	ate: 11/25/2020 1:06:57 PM
Replic	cate Data: 02	5	Blakforn	= 1	Analyte:	РЬ 283.31	
Repi	sampieconc mg/L	stndconc mg/L	Signal	TIME	Signal		
	1.723	1.723	0.0487	12:45:00	PM Ves		
2	1.683	1 683	0.0479	12:45:00	PM Vee		
3	1.720	1.720	0.0486	12:45:02	PM Yes		
Mean:	1.708	1.708	0.0484				
SD:	0.0220	0.0220	0.0004				
%RSD:	1.29%	1.29%	0.83				
Sequer	nce No.: 12				Autosampl	er Location:	
Sample Analy:	a ID: 031 st:				Date Coll Data Type	ected: 11/25/2020 : Original	12:45:51 PM
Replic	cate Data: 03	1			Analyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal		
	mg/L	mg/L	Signal		Stored		
1	3.775	3,775	0.0860	12:45:51	PM Yes		
2	3.854	3.854	0.0875	12:45:53	PM Yes		
3	3.892	3.892	0.0882	12:45:54	PM Yes		
Mean:	3.840	3.840	0.0872				
SD:	0.0596	0.0596	0.0011				
%RSD:	1.55%	1.55%	1,24				
Semier					Autosampl	er Location:	
Sample	TD: 032				Date Coll	ected: 11/25/2020	12:46:01 PM
Analyze	10:032				Date Coll	Criginal	12:40:01 PM
Anary					Ducu 13pe	originar	
Replic	ate Data: 03	2			Analyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal		
	mg/L	mg/L	Signal		Stored		
1	3.399	3.399	0.0792	12:46:01	PM Yes		
2	3,423	3.423	0.0796	12:46:02	PM Yes		
3	3.356	3.356	0.0784	12:46:04	PM Yes		
Mean:	3.393	3.393	0.0791				
SD:	0.0343	0.0343	0.0006				
%RSD:	1.01%	1.01%	0.79				
Semier					Autosampl	er Location:	
Sample	ID: 035				Date Coll	ected: 11/25/2020	12:46:11 PM
Analy	it:				Data Type	: Original	
Replic	ate Data: 03	5	Blakerer		Analyte:	Pb 283.31	
Repl	SampleConc	StndConc	BinkCorr	Time	Signal		
	mg/L	mg/L	Signal	10.44.55	Stored		
1	2.943	2.943	0.0709	12:46:11	PM Yes		
2	3.000	3.000	0.0719	12:40:12	PM Tes		
J	2.344	2.344	0.0709	15:40:13	rn tes		
spean:	2.903	2.903	0.0712				
aD: apen-	1 115	1 119	0.84				
shau:	*****	*****	0.04				
Semier	ce No.: 15				Autosamol	er Location:	
Sample	ID: 052				Date Coll	ected: 11/25/2020	12:47:04 PM
Analys	st:				Data Type	: Original	
Replic	SampleConc	StndConc	BlnkCorr	Time	Analyte: Signal	Pb 283.31	
	mg/L	mg/L	Signal	2.000	Stored		

Figura 113. Determinación de plomo en muestras cada once horas, continuación.

Method	i: Determinad	cion de Pb		1	Page	5		Date:	11/25/2020	1:06:57 PM
	0 071	0 075	0 0707	12.47.05	THE	No.o				
1	3.3/1	3.3/1	0.0787	12:47:05	PM	ies				
5	3.302	3,302	0.0789	12:47:00	DM	Yee				
Maana	3 308	3 308	0.0202		1.1.1	100				
cn.	0.0387	0.0387	0.0007							
SRSD.	1.149	1.149	0.89							
show:			0.03							
Sequer Sample	ce No.: 16 ID: 053				Aut	tosamp te Col	ler Location: lected: 11/25/20	20 12:	47:15 PM	
Analys	it:				Dat	а Тур	e: Original			
Replic	ate Data: 05	53			Ana	alyte:	Pb 283.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal				
	mg/L	mg/L	Signal		5	Stored				
1	3.449	3.449	0.0801	12:47:15	PM	Yes				
2	3.519	3.519	0.0814	12:47:16	PM	Yes				
3	3.475	3.475	0.0806	12:47:17	PM	Yes				
Mean:	3.481	3.481	0.0807							
SD:	0.0353	0.0353	0.0006							
%RSD:	1.01%	1.01%	0.80							
Comuce	ce No : 17						les Location:			
Sequer	TD: 054				Aut	cosamp	lected: 11/25/20	20 12-	47-25 DM	
Analys	it:				Dat	ta Typ	e: Original	20 12:	47:25 PM	
Replic	ate Data: 05	54			Ana	alyte:	Pb 283.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	1	Signal				
	mg/L	mg/L	Signal		1	Stored				
1	3.594	3.594	0.0827	12:47:25	PM	Yes				
2	3.560	3.560	0.0821	12:47:27	PM	Yes				
3	3.604	3.604	0.0829	12:47:28	PM	Yes				
Mean:	3.586	3.586	0.0826							
SD:	0.0230	0.0230	0.0004							
%RSD:	0.64%	0.64%	0.51							
Sequer	ce No.: 18				Aut	tosamp	ler Location:			
Sample Analys	ID: 055				Dat Dat	te Col ta Typ	lected: 11/25/20 e: Original	20 12:	47:41 PM	
Replic	ate Data: 05	55			Ana	alyte:	Pb 283.31			
Repl	SampleConc	StndConc	BlnkCorr	Time	5	Signal				
	mg/L	mg/L	Signal			Stored				
1	3.440	3.440	0.0799	12:47:42	PM	Yes				
2	3.305	3.305	0.0775	12:47:43	PM	Yes				
3	3.402	3.402	0.0793	12:47:44	PM	Yes				
Mean:	3.382	3.382	0.0789							
SD:	0.0698	0.0698	0.0013							
%RSD:	2.07%	2.07%	1.61							
Sequer Sample Analys	ice No.: 19 1D: 061 it:				Aut Dat Dat	te Col ta Typ	ler Location: lected: 11/25/20 e: Original	20 12:	47:52 PM	
Berli	aka Batan ar					1	nh 000 01			
Replic	sate Data: Of SampleConc	StndConc	BlnkCorr	Time	Ana	signal	PD 283.31			
	mg/L	mg/L	Signal		5	Stored				
1	2.029	2.029	0.0543	12:47:52	PM	Yes				
2	2.019	2.019	0.0541	12:47:53	PM	Yes				
3	2.034	2.034	0.0543	12:47:54	PM	Yes				
Mean:	2.027	2.027	0.0542							
SD:	0.0080	0.0080	0.0001							

Method	: Determinac	ion de Pb		1	Page 6	Date: 11/25/2020 1:06:57 PM
SDCD.	0 305	0 305	0.27			
SROD:	0.334	0.394	0.27			
Sequen	Ce No.: 20				Autosampler Location: Date Collected: 11/25	/2020 12-48-52 PM
Analys	t:				Data Type: Original	1010 11:40:51 14
					B1-+ Bb 000 01	
Replic	SampleConc	StndConc	BlnkCorr	Time	Signal	
	mg/L	mg/L	Signal	1 1 1 1 1	Stored	
1	2.078	2.078	0.0551	12:48:52	PM Yes	
2	2.228	2,228	0.0579	12:48:54	PM Yes	
3	2,147	2,147	0.0564	12:48:55	PM Yes	
Mean:	2,151	2,151	0.0565			
SD:	0.0749	0.0749	0.0014			
%RSD:	3.48%	3.48%	2.42			
Sequen	ce No.: 21				Autosampler Location:	
Sample	ID: 075				Date Collected: 11/25	/2020 12:49:02 PM
Analys					bata Type: Original	
Replic	ate Data: 07	5			Analyte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal	
	mg/L	mg/L	Signal		Stored	
1	2.369	2.369	0.0604	12:49:02	PM Yes	
2	2.376	2.376	0.0606	12:49:03	PM Yes	
3	2.423	2.423	0.0614	12:49:04	PM Yes	
Mean:	2.389	2,389	0.0608			
SD:	0.0298	0.0298	0.0005			
%RSD:	1.25%	1.25%	0.89			
					Nutoesenler Toestion	
Sample	ID: 081				Date Collected: 11/25	/2020 12:49:11 PM
Analys	t:				Data Type: Original	
Replic	ate Data: 08	1			Analyte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal	
•	mg/L	mg/L	Signal		Stored	
1	4.373	4.373	0.0969	12:49:11	PM Yes	
2	4.400	4,400	0.0986	12:49:13	PM Ies DM Vee	
Mean	4.462	4.462	0.0986	********	4 m 4 10 0	
SD:	0.0874	0.0874	0.0016			
%RSD:	1.96%	1.96%	1.62			
Sequen	ce No.: 23				Autosampler Location:	
Sample	ID: 095				Date Collected: 11/25	/2020 12:49:21 PM
Analys	t:				Data Type: Original	
Berli	ate Data: 00				Analute: Db 000 01	
Replic	SampleConc	StndConc	BlnkCorr	Time	Signal	
	mg/L	mg/L	Signal		Stored	
1	4.429	4.429	0.0980	12:49:21	PM Yes	
2	4.416	4.416	0.0977	12:49:22	PM Yes	
3	4.395	4.395	0.0973	12:49:23	PM Yes	
Mean:	4.413	4.413	0.0977			
SD:	0.0170	0.0170	0.0003			
*RSD:	0.384	0.386	0.32			
Sequen	ce No.: 24				Autosampler Location:	
Sample	ID: 074				Date Collected: 11/25	/2020 12:49:49 PM

Figura 114. Determinación de plomo en muestras cada once horas, continuación.

E' 117 D (''''	1 1 (1 1	· · · ·
Figura 115. Determinación	de plomo en muestra	as cada once horas,	continuacion.

Method	i: Determinad	cion de Pb		1	Page	7	Date: 11/25/2020 1:06:57 PM
Analys	it:				Dat	a Type: Original	
Replic	ate Data: 07	4			Ana	lyte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	S	ignal	
	mg/L	mg/L	Signal		S	tored	
1	2.239	2.239	0.0581	12:49:50	PM	Yes	
2	2.187	2.187	0.0571	12:49:51	PM	Yes	
3	2,264	2.264	0.0585	12:49:52	PM	Yes	
Mean:	2.230	2.230	0.0579				
SD:	0.0394	0.0394	0.0007				
%RSD:	1,77%	1.77%	1,24				
Semier	ce No : 25				 A.ut	esempler Location:	
Sample	ID: P11				Dat	e Collected: 11/25/20 a Type: Original	020 12:51:20 PM
Replic	ate Data: Pl	1			Ana	lyte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	S	ignal	
	mg/L	mg/L	Signal		S	tored	
1	9.699	9.699	0.1939	12:51:21	PM	Yes	
2	9.707	9.707	0.1941	12:51:22	PM	Yes	
3	9.571	9.571	0.1916	12:51:24	PM	Yes	
Mean:	9.659	9.659	0.1932				
SD:	0.0765	0.0765	0.0014				
%RSD:	0.79%	0.79%	0.72				
Sequen	ce No.: 26				Aut	osampler Location:	
Sample	ID: P12				Dat	e Collected: 11/25/20	020 12:51:32 PM
Analys	it:				Dat	a Type: Original	
Replic	ate Data: Pl	2			Ana	lyte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	S	ignal	
	mg/L	mg/L	Signal		S	tored	
1	8.860	8.860	0.1786	12:51:32	PM	Yes	
2	9.001	9.001	0.1812	12:51:33	PM	Yes	
3	8,901	8,901	0.1794	12:51:34	PM	Yes	
Mean:	8,920	8,920	0.1797				
SD:	0.0726	0.0726	0.0013				
%RSD:	0.81%	0.81%	0.74				
	No. AT						
Sample	ID: P13				Dat	e Collected: 11/25/20	020 12:51:41 PM
Analys	it:				Dat	a Type: Original	
Replic	ate Data: Pl		pl-h-	-	Ana	LYCE: PD 283.31	
Repl	SampleConc	StndConc	BinkCorr	Time	S	ignal	
	mg/L	mg/L	Signal		S	tored	
1	9.326	9.326	0.1871	12:51:41	PM	Yes	
Z	9.220	9.220	0.1852	12:51:42	PM	res	
3	9.127	9.127	0.1835	12:51:44	PM	Yes	
Mean:	9.224	9.224	0.1853				
SD:	0.0997	0.0997	0.0018				
%RSD:	1.08%	1.08%	0.98				
Sequen	ce No.: 28				Aut	osampler Location:	
Sample	ID: P14				Dat	e Collected: 11/25/20	020 12:51:51 PM
Analys	it:				Dat	a Type: Original	
Perli	ate Drta D	4			200	lute: Db 263 31	
Replic	SampleConc	StndConc	BlnkCorr	Time	S	ignal	

Figura 116. Determinación de plomo en muestras cada once horas, continuación.

Method	i: Determinad	ion de Pb		1	Page	8	Date: 11/25/2020 1:06:57 PM
	ma/T	ma/T.	Signal			Stored	
1	9.267	9.267	0.1861	12:51:52	PM .	Yes	
2	9.270	9.270	0.1861	12:51:53	PM	Yes	
3	9.371	9.371	0.1880	12:51:54	PM	Yes	
Mean:	9.303	9.303	0.1867			100	
SD:	0.0593	0.0593	0.0011				
%RSD:	0.64%	0.64%	0.58				
Sequer	nce No.: 29				Aut	tosamp	ler Location:
Sample	b ID: P15				Dat	te Col	lected: 11/25/2020 12:52:02 PM
Analys	st:				Dat	ta Typ	e: Original
Replic	ate Data: Pl	5			An	alvte:	Pb 283.31
Repl	SampleConc	StndConc	BlnkCorr	Time		Signal	
	mg/L	mg/L	Signal		1	Stored	
1	9.412	9.412	0.1887	12:52:02	PM	Yes	
2	9.460	9.460	0.1896	12:52:04	PM	Yes	
3	9.420	9.420	0.1888	12:52:05	PM	Yes	
Mean:	9.431	9,431	0.1890				
SD:	0.0259	0.0259	0.0005				
%RSD:	0.27%	0.27%	0.25				
Sequer Sample	nce No.: 30 a ID: P21				Aut	tosamp te Col	ler Location: Lected: 11/25/2020 12:53:56 PM
Analys	st:				Dat	ta Typ	e: Original
Replic	cate Data: P2	1			An	alvte:	Pb 283.31
Repl	SampleConc	StndConc	BlnkCorr	Time	1	Signal	
	mq/L	mg/L	Signal			Stored	
1	10.46	10.46	0.2078	12:53:57	PM	Yes	
2	10.52	10.52	0.2088	12:53:58	PM	Yes	
3	10.56	10.56	0.2096	12:53:59	PM	Yes	
Mean:	10.51	10.51	0.2088				
SD:	0.049	0.049	0.0009				
%RSD:	0.47%	0.47%	0.43				
Sequer	nce No.: 31				Au	tosamp	ler Location:
Analys	# 1D: P22 #t:				Dat	ta Type	ected: 11/25/2020 12:54:07 PM a: Original
Replic	cate Data: P2	22			An	alyte:	Pb 283.31
Repl	SampleConc	StndConc	BinkCorr	Time	-	signal	
	mg/L	mg/L	Signal	10.24.07		Stored	
1	10.84	10.84	0.2147	12:54:07	PM	Yes	
2	10.82	10.82	0.2143	12:54:08	PM	Yes	
3	10,78	10.78	0.2137	12:54:09	PM	Yes	
Mean:	10.81	10.81	0.2142				
SD:	0.030	0.030	0.0005				
%RSD:	0.28%	0.28%	0.25				
Sequer	nce No.: 32				Au	tosamp.	ler Location:
Sample Analy:	a ID: P23 st:				Dat	te Coli ta Typ	lected: 11/25/2020 12:54:16 PM a: Original
Benlin	anta Data a						NL 003 31
Replic	SampleConc	StndCone	BlnkCorr	Time	An	Signal	PD 283.31
	mg/L	mg/L	Signal			Stored	
1	10.75	10.75	0.2130	12:54:16	PM '	Yes	
2	10.86	10.86	0.2151	12:54:17	PM	Yes	
3	11.03	11.03	0.2181	12:54:18	PM	Yes	
Mean:	10.88	10.88	0.2154				

Method: Determinacion de Pb Page 9 Date: 11/25/2020 1:06:57 PM SD: 0.140 0.140 0.0025 %RSD: 1.28% 1.28% 1.18 Sequence No.: 33 Autosampler Location: Sample ID: P24 Date Collected: 11/25/2020 12:54:28 PM Analyst: Data Type: Original Replicate Data: P24 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L 10.86 . mg/L Signal Stored 0.2150 12:54:29 PM 10.86 Yes 12:54:30 PM 12:54:31 PM 10.91 2 10.91 Yes 11.06 11.06 0.2188 Yes Mean: 10,95 10.95 0.2166 SD: 0.106 0.106 0.0019 %RSD: 0.97% 0.97% 0.89 Sequence No.: 34 Autosampler Location: Sample ID: P25 Date Collected: 11/25/2020 12:54:39 PM Analyst: Data Type: Original Replicate Data: P25 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal mg/L Signal Stored . mg/L 10.90 10.90 0.2158 12:54:39 PM Yes 12:54:40 PM Yes 10.97 10.97 0.2172 12:54:42 PM Yes 2 Mean: 10.95 10.95 0.2166 0.0007 SD: 0.041 0.041 %RSD: 0.37% 0.37% 0.34 Sequence No.: 35 Autosampler Location: Sample ID: P31 Analyst: Date Collected: 11/25/2020 12:55:44 PM Data Type: Original Replicate Data: P31 Analyte: Pb 283.31 SampleConc StndConc BlnkCorr Signal Repl Time . mg/L mg/L Signal Stored 12:55:44 PM 11.50 11.50 0.2267 Yes 12:55:46 PM Yes 12:55:47 PM 3 11.75 11,75 0.2313 Yes Mean: 11.60 11.60 0.2285 SD: 0.137 0.137 0.0025 %RSD: 1.18% 1.18% 1.09 Sequence No.: 36 Autosampler Location: Date Collected: 11/25/2020 12:55:55 PM Sample ID: P32 Analyst: Data Type: Original Replicate Data: P32 Analyte: Pb 283.31 Repl SampleConc StndConc BlnkCorr Time Signal . mg/L mg/L Signal Stored 12:55:55 PM 12.05 12.05 0.2367 Yes 12.07 12.07 0.2371 12:55:56 PM Yes 2 11.99 12.04 11.99 12:55:58 PM 3 0.2357 Yes 0.2365 Mean: SD: 0.040 0.040 0.0007 %RSD: 0.33% 0.33% 0.31 Sequence No.: 37 Autosampler Location:

Figura 117. Determinación de plomo en muestras cada once horas, continuación.

Method	i: Determinad	ion de Pb		P	age	10	Date: 11/25/2020 1:06:57 PM
Sample Analys	a ID: P33 at:				Date Data	Collected: 11/25/202 Type: Original	0 12:56:06 PM
Replic	ate Data: P3	13			Anal	vte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Si	gnal	
	mg/L	mg/L	Signal		St	ored	
1	12.01	12.01	0.2359	12:56:06	PM	Yes	
2	11.99	11,99	0.2356	12:56:07	PM	Yes	
3	12.15	12.15	0.2385	12:56:08	PM	Yes	
mean:	12.05	12.05	0.2367				
%RSD:	0.087	0.72%	0.67				
Sequer	nce No.: 38				Auto	sampler Location:	
Sample	ID: P34				Date	Collected: 11/25/202	0 12:56:16 PM
Analys	it:				Data	Type: Original	
Replic	ate Data: P3	4			Anal	yte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Si	gnal	
	mg/L	mg/L	Signal		St	ored	
1	12.37	12.37	0.2425	12:56:16	PM	Yes	
2	12.37	12.37	0.2426	12:56:18	PM	Yes	
3	12.13	12.13	0.2383	12:56:19	PM	Yes	
Mean:	12.29	12.29	0.2411				
SD:	0.136	0.136	0.0025				
%RSD:	1,11%	1,11%	1.03				
Sample Analys	1D: P35 at:				Date Data	Collected: 11/25/202 Type: Original	0 12:56:27 PM
Replic	ate Data: P3	15			Anal	yte: Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Si	gnal	
	mg/L	mg/L	Signal	10.74.07	St	ored	
1	12.15	12,15	0.2385	12:56:27	PM	Yes	
2	12.24	12,24	0.2402	12:56:28	PM	Yes	
3	12.20	12,20	0.2395	12:56:29	PM	Yes	
Mean:	12.20	12.20	0.2394				
SD:	0.046	0.046	0.0008				
%RSD:	0.38%	0.38%	0.35				
Sequer Sample Analys	nce No.: 40 MID: P41 Mt:				Auto Date Data	sampler Location: Collected: 11/25/202 Type: Original	0 12:57:31 PM
	ate Data D	•				Th 000 01	
Replic	SampleConc	StadCore	BlokCorr	Time	Anal	yce: PD 203.31	
A COL	ma/L	mg/L	Signal	1100	01 C+	gnal	
1	11.96	11.96	0.2351	12:57:32	PM	Vas	
5	12.00	12.00	0.2359	10.57.33	DM	Ves	
3	12.19	12.19	0.2393	12:57:34	PM	Yes	
Meanz	12.05	12.05	0.2368				
SD:	0.120	0.120	0.0022				
%RSD:	1.00%	1.00%	0.93				
Securit	ne No · 41				But	appler Location:	
Sample	ID: P42				Date	Collected: 11/25/202	0 12:57:41 PM
Analys	it:				Data	Type: Original	
Replic	ate Data: P4	2			Anal	yte: Pb 283.31	

Figura 118. Determinación de plomo en muestras cada once horas, continuación.

Method	i: Determinac	ion de Pb		1	Page	11		Date: 11/25/2020 1:06:57 PM
Repl	SampleConc	StndConc	BinkCorr	Time		Signal		
	12 82	12 82	0 2507	12.57.41	DM	Vee		
-	10.00	10 00	0.2507	10.57.40	2.15	100		
2	12.82	12.82	0.2507	12:57:42	5.60	ies		
3	12.71	12,71	0.2488	12:57:43	PM	res		
Mean:	12,78	12.78	0.2501					
SD:	0.063	0.063	0.0011					
%RSD:	0.49%	0.49%	0.46					
Sequer	nce No.: 42				Au	tosampl	ler Location:	
Sample	ID: P43				Da	te Coll	lected: 11/25/202	20 12:57:51 PM
Analys	st:				Da	ta Type	e: Original	
-							-	
Replic	ate Data: P4	3			λn	alyte:	Pb 283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time		Signal		
	mg/L	mg/L	Signal			Stored		
1	12.60	12.60	0.2467	12:57:51	PM	Yes		
2	12.78	12.78	0.2501	12:57:52	PM	Ves		
3	12 80	12.80	0.2504	12:57:53	DM	Ves		
Means	10 73	10 73	0.2304	***21:23	1.14	169		
wean:	46.13	46.73	0.2491					
SD:	0.113	0.113	0.0020					
%RSD:	0.88%	0.88%	0.82					
Sequer	nce No.: 43				Au	tosamp.	ler Location:	
Sample	ID: P44				Da	te Coll	lected: 11/25/202	20 12:58:01 PM
Analys	st:				Da	ta Type	e: Original	
Benlie	ate Date: DA					- 1	nh 000 01	
Replic	ate Data: P4	a ChadCono	Diskossa	T i	An	alyce:	PD 203.31	
Repi	SampleConc	StndConc	BINKCOFF	Time		Signai		
	mg/L	mg/L	Signal			Stored		
1	12.57	12,57	0.2461	12:58:01	PM	Yes		
2	12.79	12.79	0.2503	12:58:03	PM	Yes		
3	12.88	12.88	0.2519	12:58:04	PM	Yes		
Mean:	12.75	12,75	0.2494					
SD:	0.164	0.164	0.0030					
%RSD:	1.29%	1.29%	1.20					
Sequer	nce No.: 44				Au	tosampl	ler Location:	
Sample	ID: P45				Da	te Coll	lected: 11/25/202	20 12:58:11 PM
Analys	st:				Da	ta Type	e: Original	
Deplie	ate Dates DA	e				- 1 t	ph 000 01	
Replic	ate Data: P4	5 ShadGong	Diskoass	=1=0	An	alyte:	PD 283.31	
Repi	sampieconc	Stnaconc	BINKCOFF	Time		signai		
	mg/L	mg/L	Signal			Stored		
1	12.77	12.77	0.2499	12:58:12	PM	Yes		
2	12.77	12.77	0.2499	12:58:13	PM	Yes		
3	12.89	12.89	0.2521	12:58:14	PM	Yes		
Mean:	12.81	12.81	0.2506					
SD:	0.070	0.070	0.0013					
%RSD:	0.55%	0.55%	0.51					
Sequer	nce No.: 45				Au	tosampl	ler Location:	
Sample	ID: P51				Da	te Coll	lected: 11/25/202	20 12:59:41 PM
Analys	it:				Da	ta Type	a: Original	
							pl. 000 01	
Replic	ate Data: P5	1	Blahfar	-	An	alyte:	PD 283.31	
Nepi	sampieconc	sthaCone	BINKCOFF	1100		signal		
	mg/L	mg/L	signal	10.70.75	-	stored		
1	12.24	12,24	0.2402	12:59:41	PM	Yes		
2	12.26	12.26	0.2405	12:59:42	PM	Yes		
3	12,24	12.24	0.2402	12:59:44	PM	Yes		

Figura 119. Determinación de plomo en muestras cada once horas, continuación.

Figura 120. Determinación de plomo en muestras cada once horas, continuación.

Method	i: Determina	cion de Pb			Page 12			Date: 11/25/2020 1:06:58 PM
Mean	12.24	12.24	0.2403					
SD:	0.010	0.010	0.0002					
%RSD:	0.08%	0.08%	0.07					
Sequer	TD: 052				Autosam	ller	Location:	20 12-59-51 DM
Analus	1D: P52				Date Co.	Lieci	Ced: 11/25/202	10 12:59:51 PM
Analys					Data iy	pe: v	Original	
Replic	ate Data: P	52			Analyte	Pb	283.31	
Repl	SampleConc	StndConc	BlnkCorr	Time	Signa	1		
	mg/L	mg/L	Signal		Store	4		
1	12.47	12.47	0.2444	12:59:51	PM Yes			
2	12,52	12,52	0.2454	12:59:52	PM Yes			
3	12,51	12,51	0.2450	12:59:54	PM Yes			
Mean:	12.50	12.50	0.2449					
SD:	0.025	0.025	0.0005					
%RSD:	0.20%	0.20%	0.19					
Sequer	nce No.: 47				Autosam	pler	Location:	
Sample	a ID: P53				Date Co.	llect	ted: 11/25/202	20 1:00:03 PM
Analys	st:				Data Ty	pe: (Original	
Renlic	ate Data: P	53			Analyte	Ph	283.31	
Dep 1	formleCone	ShadCone	Blakforn	T / m	Rigge		203.32	
Kepi	sampieconc	sthaconc	Binkcorr	1100	Signa.	÷		
	mg/L	mg/L	Signal 0.0480	1.00.03	DM Yee			
-	12.07	12.07	0.2480	1:00:03	PM IES			
2	12.03	12.03	0.2472	1:00:04	PM ies			
3	12,61	12.61	0.2468	1:00:06	PM Yes			
Mean:	12.63	12.63	0.2474					
SD:	0.034	0.034	0.0006					
%RSD:	0.27%	0.27%	0.25					
Seguer	ce No : 49				Butosam	nler	Location:	
Sample	ID: P54				Date Co	llec	ted: 11/25/202	20 1:00:15 PM
Analys	it:				Data Ty	pe: (Original	
Replic	ate Data: P	54			Analyte	: Pb	283.31	
Repl	SampleConc	StndConc	BinkCorr	Time	Signa	1		
•	mg/L	mg/L	Signal		Store	4		
1	12.71	12.71	0.2487	1:00:15	PM Yes			
2	12,77	12,77	0.2499	1:00:17	PM Yes			
3	12.88	12.88	0.2519	1:00:18	PM Yes			
Mean:	12.79	12.79	0.2502					
SD:	0.088	0.088	0.0016					
%RSD:	0.69%	0.69%	0.64					
Sequer	nce No.: 49				Autosam	pler	Location:	
Sample	a ID: P55				Date Co.	llect	ted: 11/25/202	20 1:00:27 PM
Analys	st:				Data Ty	pe: (Original	
Replic	ate Data: D				Analute	Ph	283.31	
Repli	SampleConc	StudCone	BlokCorr	Time	Signa	1 20		
	ma/L	ma/L	Signal		Store	4		
1	12.75	12 75	0.2495	1+00+27	PM Vec			
5	10 77	10 22	0 2400	1.00.27	DM Ver			
4	10.00	12.11	0.2498	1.00.26	DM Les			
J	10 74	10 74	0.2484	1100153	rn ies			
cp.	0.030	0.030	0.2492					
201	0.039	0.039	0.0007					
*RSD:	0.316	0.318	0.28					

C. IFORMACIÓN ADICIONAL

Figura 1	21. F	Relación	de las s	sustancias	inorgánica	as con	significado	para	la salud,	con su	us respe	ectivos l	ímites
					perm	isible	s (LMP).						

Substancia	LMP, en miligramos por litro
Arsénico (As)	0.010
Bario (Ba)	0.700
Boro (B)	0.300
Cadmio (Cd)	0.003
Cianuro (CN ⁻)	0.070
Cromo (Cr)	0.050
Mercurio (Hg)	0.001
Plomo (Pb)	0.010
Selenio (Se)	0.010

(Norma COGUANOR NGO 29 001, 1985).

Enlace		Energía de ei	nlace [kJ (kcal)]	Frecuencia de estiramiento (cm ⁻¹)			
	La frecuenc	ia disminuye	con el incremento d	e la masa atóm	nica		
С-Н	Salatore Salata Salata Salat	420 (100)		3000			
C-D	átomos más pesados	420 (100)		2100	$\overline{\nu}$ disminuye		
c-c		350 (83)		1200	hattanhordene tid		
DECEMBER	Laf	recuencia aun	nenta con la energía	a de enlace			
с-с	na alexena e entre a	350 (83)	CARAVA ED SAUDESTS	1200			
C = C		611 (146)	enlace más fuerte	1660	$\overline{\nu}$ aumenta		
C≡C		840 (200)	V	2200	ALC REPEACE		
A STATE AND ADDRESS				1200			
C-N		305 (73)		1200	and the second second		
C = N		615 (147)	enlace más fuerte	1650	$\overline{\nu}$ aumenta		
C≡N		891 (213)	4	2200	•		
				lom sem	obstaiV -S		
с-о		360 (86)	enlace más fuerte	1100	$\overline{\nu}$ aumenta		
C=0	and disciple and	745 (178)	ing and the state	1700	is entropienter de		

Figura	122.	Frecuencia	de	los	estiramientos	de	los	enlaces.
--------	------	------------	----	-----	---------------	----	-----	----------

(Wade y Simekm, 2017).

Grupo	Intensidad	Intervalo Jª (cm ⁻¹)	Grupo	tensidad	Intervalo a (cm ⁻¹)
A. Cromóforos hidrocarbonados					
1. Tensión C—H			B. Cromóforos carbonílicos		
a. Alcano	m—s	2962-2853	1. Vibraciones de tension de cetonas	c	1725-1705
b. Alqueno monosustituido	m	3040-3010	a. Saturados, aciclicos	5	1120 1100
(vinilo)	y m	3095-3075	D. Saturados, ciclicos	S	1725-1705
Alqueno, disustituido, cis	m	3040-3010	Anilio de 6 miembros (y mayores)	s	1750-1740
Alqueno, disustituido, trans	m	3040-3010	Anilio de 5 miembros	S	~1775
Alqueno disustituido, gem	m	3095-3075	c a Brinsaturados acíclicos	S	1685-1665
Alqueno, trisustituido	m	3040-3010	d a B-insaturados, aciencos	3	
c. Alquino	S	~3300	Anillo de 6 miembros (v mayores)	s	1685-1665
d. Aromático	v	~3030	Anillo de 5 miembros	S	1725-1708
2. Torsión del C—H		her endering the second	e α β α' β' -insaturados acíclicos	S	1670-1663
a. Alcano, C—H	w	~1340	f Arilo	s	1700-1680
Alcano, $-CH_2$ -	m	1485-1445	g. Diarilo	s	1670-1660
Alcano, $-CH_3$	m	1470-1430	h. B-Dicetonas	S	1730-1710
	y s	1380-1370	i. β-Dicetonas (enólicas)	S	1640-1540
Alcano, gem-dimetilo	S	1385-1380	i. 1.4-quinonas	S	1690-1660
	y s	1370-1365	k. cetenas	S	~2150
Alcano, ter-butilo	m	1395-1385	2. Aldehídos	The second	And the second second
	y s	~1365	a. Vibraciones de tensión del grupo ca	rbonilo:	
b. Alqueno, monosustituido (vinile	o) s	995-985	Saturados, alifáticos	s	1740-1720
	S	915-905	α, β -insaturados, alifáticos	S	1705-1680
	y s	1420-1410	$\alpha, \beta, \gamma, \delta$ -insaturados, alifático	S	1680-1660
Alqueno, disustituido, cis	S	~690	Arilo	S	1715-1695
Alqueno, disustituido, trans	S	970-960	b. Vibraciones de tensión C—H	and a second	Salary Course
	y m	1310-1295	dos bandas	w	2900-2820
Alqueno disustituido, gem	S	895-885		y w	2775-2700
	y s	1420-1410	3. Vibraciones de tensión de ésteres		Contraction of the second
Alqueno, trisustituido	S	840-790	a. Saturados, acíclicos	S	1750-1735
c.Alquino	S	~630	b. Saturados, cíclicos		A Charles and a charles and
d. Aromático: tipo de sustitución:	in sher that the side	540 M	δ -Lactonas (y anillos más grandes)	S	1750-1735
Cinco atomos de	v, s	~750	y-Lactonas	S	1780-1760
nidrogeno adyacentes	y v, s	~700	β -Lactonas	S	~1820
Cuatro atomos de hidrógeno		750	c. Insaturados:		
adyacentes	v, s	~750	tipo éster vinílico	S	1800-1770
Tres atomos de hidrógeno		790	α , β -insaturados y arilo	S	1730-1717
adyacentes	v, m	~/80	α , β -insaturados, δ -lactona	S	1730-1717
Dos átomos de hidrógeno		020	α , β -insaturados, γ -lactona	S	1760-1740
adyacentes	v, m	~830	a, y-insaturados, y-lactona	S	~1800
Un atomo de hidrógeno	v, m	~880	d. α -cetoesteres	S	1755-1740
5. rension de enlaces múltiplesC—C		1680 1620	e. p-cetoesteres (enólicos)	S	~1650
a. Alqueno, no conjugado	V Lin	1645	I. Carbonatos	S	1780-1740
Alqueno, monosustituido (vinilo) m	~1045	g. hoesteres	S	~1690
Alqueno, disustituido, cis	m	~1038	4. Acidos carboxílicos		
Alqueno, disustituido, trans	m	~10/5	a. vibraciones de tensión del grupo ca	rbonilo	
Alqueno disustituido, gem	m	~1055	Saturados alitâticos	S	1725-1700
Alqueno, trisustituido	m	~1009	a, p-insaturados alifáticos	S	1715-1690
Alqueno, tetrasustituido	W	~1009	Ariio h Tangién del amor bille it	S	1700-1680
Dieno	W	~1050	b. Tension del grupo hidroxilo (unido)),	
h 41-1	y w	2140-2100	c Tensión del anión anten il	w	2700-2500
b. Alquino, monosustituido	m	2260-2100	c. relision del anion carboxilato	S	1610-1550
Alquino, disustituido	V, W	-1960	5 Vibracionas da tansién d	y s	1400-1300
c. Aleno	III V m	~1060	a Saturados acíalizas		
and the second se	y III	~1600	a. Saturados, aciciicos	S	1850-1800
C. Ατο mánue	V			y s	1790-1740
	m	~1500			
	vm	~1450			(continúa)

(Wade y Simekm, 2017).

Figura 124. IR: Frecuencias infrarrojo características de los grupos (s = fuerte, m = medio, w = débil).

(Wade y Simekm, 2017).

Figura 125. IR: Frecuencias infrarrojo características de los grupos (s = fuerte, m = medio, w = débil); continuación.

(Wade y Simekm, 2017).

Figura 126. Relaciones entre el tamaño de la tubería, la velocidad volumétrica del flujo y la velocidad del fluido.

Dimensiones, capacidades y pesos de tuberías estándar de acero[†]

Tamaño	Diámetro		Fenesor	Diámetro	Área de la sección transversal	Área de la sección	Circun ft, o su	ferencia, perficie,	Capacid velocida	ad para la d de 1 ft/s	Peso de la
de tubería, in.	exterior, in.	Número de cédula	de pared, in.	interior, in.	del metal, in. ²	interior, ft ²	Exterior	Interior	• U.S. gal/min	Agua, lb/h	tubería, lb/ft
1	0.405	40	0.068	0.269	0.072	0.00040	0.106	0.0705	0.179	89.5	0.24
0		80	0.095	0.215	0.093	0.00025	0.106	0.0563	0.113	56.5	0.31
$\frac{1}{4}$	0.540	40	0.088	0.364	0.125	0.00072	0.141	0.095	0.323	161.5	0.42
		80	0.119	0.302	0.157	0.00050	0.141	0.079	0.224	112.0	0.54
3	0.675	40	0.091	0.493	0.167	0.00133	0.177	0.129	0.596	298.0	0.57
u.		80	0.126	0.423	0.217	0.00098	0.177	0.111	0.440	220.0	0.74
12	0.840	40	0.109	0.622	0.250	0.00211	0.220	0.163	0.945	472.0	0.85
		80	0.147	0.546	0.320	0.00163	0.220	0.143	0.730	365.0	1.09
3	1.050	40	0.113	0.824	0.333	0.00371	0.275	0.216	1.665	832.5	1.13
		80	0.154	0.742	0.433	0.00300	0.275	0.194	1.345	672.5	1.47
1	1.315	40	0.133	1.049	0.494	0.00600	0.344	0.275	2.690	1345	1.68
		80	0.179	0.957	0.639	0.00499	0.344	0.250	2.240	1120	2.17
$1\frac{1}{4}$	1.660	40	0.140	1.380	0.668	0.01040	0.435	0.361	4.57	2285	2.27
		80	0.191	1.278	0.881	0.00891	0.435	0.335	3.99	1995	3.00
$1\frac{1}{2}$	1.900	40	0.145	1.610	0.800	0.01414	0.497	0.421	6.34	3170	2.72
2		80	0.200	1.500	1.069	0.01225	0.497	0.393	5.49	2745	3.63
2	2.375	40	0.154	2.067	1.075	0.02330	0.622	0.541	10.45	5225	3.65
		80	0.218	1.939	1.477	0.02050	0.622	0.508	9.20	4600	5.02
$2\frac{1}{2}$	2.875	40	0.203	2.469	1.704	0.03322	0.753	0.647	14.92	7460	5.79
-		80	0.276	2.323	2.254	0.02942	0.753	0.608	13.20	6 6 0 0	7.66
3	3.500	40	0.216	3.068	2.228	0.05130	0.916	0.803	23.00	11 500	7.58
		80	0.300	2.900	3.016	0.04587	0.916	0.759	20.55	10275	10.25
$3\frac{1}{2}$	4.000	40	0.226	3.548	2.680	0.06870	1.047	0.929	30.80	15400	9.11
		80	0.318	3.364	3.678	0.06170	1.047	0.881	27.70	13850	12.51
4	4.500	40	0.237	4.026	3.17	0.08840	1.178	1.054	39.6	19800	10.79
		80	0.337	3.826	4.41	0.07986	1.178	1.002	35.8	17900	14.98
5	5.563	40	0.258	5.047	4.30	0.1390	1.456	1.321	62.3	31150	14.62
		80	0.375	4.813	6.11	0.1263	1.456	1.260	57.7	28850	20.78
6	6.625	40	0.280	6.065	5.58	0.2006	1.734	1.588	90.0	45000	18.97
		80	0.432	5.761	8.40	0.1810	1.734	1.508	81.1	40 5 50	28.57
8	8.625	40	0.322	7.981	8.396	0.3474	2.258	2.089	155.7	77850	28.55
		80	0.500	7.625	12.76	0.3171	2.258	1.996	142.3	71150	43.39
10	10.75	40	0.365	10.020	11.91	0.5475	2.814	2.620	246.0	123000	40.48
		80	0.594	9.562	18.95	0.4987	2.814	2.503	223.4	111 700	64.40
12	12.75	40	0.406	11.938	15.74	0.7773	3.338	3.13	349.0	174500	53.56
		80	0.688	11.374	26.07	0.7056	3.338	2.98	316.7	158350	88.57

Basados en ANSI B36. 10-1959, con autorización de ASME.

Figura 127. Gráfica del factor de fricción para tuberías circulares.

(Adaptado de L. W. Moody, "Friction Factors for Pipe Flow", Trans. ASME66:672[1944]).

Figura 129. Lectura de la potencia y eficiencia de la bomba de entrada a la columna del sistema natural.

Figura 130. Ficha técnica de lavadora con salida por banda transportadora GEWA XL.

40

GEWA XL

Lavadora con salida por banda transportadora

Excelentes resultados de lavado para altas cantidades de lechugas

La recientemente desarrollada lavadora GEWA XL se presenta con su diseño ergonómico y compacto. Es especialmente adecuada para aplicaciones industriales

de altas capacidades, gracias a un sistema innovador altamente eficiente y con un uso mínimo de energía. Lechugas, ensaladas, por ejemplo tipo Iceberg hasta 5 t / h

o variedades de babyleaf hasta 1.5 t / h, se lavan efectiva y suavemente gracias a un sistema de flujo helicoidal optimizado. Esto significa que este sistema rotatorio fue diseñado e implementado por primera vez para esta máquina de alta capacidad de KRONEN.

FUNCIÓN & DESCRIPCIÓN:

Los productos de hoja se entregan en forma particularmente cuidadosa, por medio de su ingreso en un torrente de agua (flume), ideal para productos de hojas grandes y baby leaf. Poscen un suministro de agua orientándola ingeniosamente, a través de tuberías de fácil higienización que no requieren de ningún ajuste. Gracias a la combinación de tecnologias innovadoras, el producto gira de manera muy cuidadosa, distribuyéndose controladamente a través de todo el volúmen del tanque de lavado.

Gracias a su construcción muy compacta se cuida mucho el uso del espacio y la reducción de la cantidad de agua. Igualmente con esta máquina, el sistema helicoidal KRONEN asegura que el producto en el tanque circule una distancia en forma de espiral, cubriendo unas 4 veces el largo del propio tanque. La lechuga se distribuye óptimamente, de manera que el agua tenga acceso para limpiarlo 360° durante el proceso de limpieza.

Los productos lavados son transportados por el torrente de agua hacia un sistema transportador de descarga recientemente diseñado. Por encima de la banda, se encuentran dos sistemas de rociado o duchas que se pueden conectar individualmente, y otorgarán un enjuague adicional a las lechugas.

Al transitar por la banda transportadora de salida, los productos ya van perdiendo agua, es decir, el agua en exceso comienza a desprenderse del producto en esta etapa. Un ventilador de succión está colocado debajo de la malla transportadora, en combinación con un sistema de soplador de cuchilla de aire, reduciendo en más del 50% el acarreo de agua.

La nueva GEWA XL con su sistema de lavado innovador, ofrece condiciones inmejorables para obtener ensaladas microbiológicamente seguras para el consumo.

www.kronen.eu

(Kronen, 2019).

Figura 131. Ficha técnica de lavadora con salida por banda transportadora, continuación.

Funciones inteligentes y que ahorran energía:

La lavadora GEWA XL se caracteriza por su extraordinaria performance y se destaca por sus funciones inteligentes y que ahorran energía:

- Gracias a su proceso de rotación y su tiempo de permanencia en baño de aprox. 45 segundos, los productos se lavan cuidadosa y escrupulosamente, logrando una reducción de gérmenes optimizada.
- El "WMS" Water Management System o sistema de administración de agua permite controlar centralizadamente el llenado γ vaciado de la lavadora, al igual que el suministro de agua fresca.
- A lo largo del tanque de lavado completo está instalado un sofisticado y mejorado separador de insectos.
- El diseño moderno y ergonómico de la GEWA XL facilita, pues es muy necesario, el trabajajo de limpieza simple y rápido. La GEWA XL está equipada con plataformas. De este modo todas las cañerías son de muy fácil acceso. Todas ellas están provistas de conectores de caño tipo industria láctea, con lo cual se desmontan o se abren para ser higienizados mecánicamente con cepillos provistos especialmente.
- La trampa de arenas o unidad de sedimentación elimina eficientemente las arenas y piedras pequeñas, así como otros componentes contaminantes pesados.
- El diseño del tanque en combinación con la circulación innovadora del agua, ofrecen una enorme ventaja en la higiene: la reduccion de biofilms.
- El sistema lateral de extracción de partes finas o filtro automático, asegura una operación contínua, mismo en el caso de productos formadores de espumas conteniendo pequeñas particulas o insectos. Los residuos orgánicos se eliminan mediante una esprea optimizada.
- Gracias a estas ventajas funcionales, el tiempo de vida útil y por lo tanto la calidad del producto se incrementan.
- La succión de alta calidad en la banda de salida previene el inncesario acarreo de agua, reduciendo notablemente la humedad residual.

Max. capacidad:	Iceberg = 5000 kg/h, Baby I	eaf = 1500 kg/h
Dimensiones máx. secció	n de lavado (l x a x a): 3721 x 2	2321 x 1920 mm
Volumen tanque de lava	do:	max 2 m ³
Volumen tanque de filtre	0:	max 1 m ³
Rendimiento:		16 kW

Desarrollamos y fabricamos maquinaria, máquinas especiales y también líneas completas para el proceso de la industria alimenticia. Ofrecemos soluciones personalizadas para usted, incorporando exitosamente máquinas unitarias en líneas eficientes.

Nos alegramos de su contacto con nosotros.

KRONEN GmbH Römerstraße 2a 77964 Kehl am Rhein

Teléfono: + 49(0)7854/9646-0 Fax: + 49(0)7854/9646-500 info@kronen.eu

www.kronen.eu

(Kronen, 2019).
Figura 132. Ficha téncnica de horno deshidratador Aingetherm, modelo HD 120-1000 AG P.

(Aingetherm, 2018).

Figura 133. Ficha técnica de Molino de martillos 650.

305

Figura 134. Ficha técnica de ensacadora automática para sacos ILERSAC.

BENEFICIOS

LA ENSACADORA AUTOMÁTICA ILERSAC A APORTA...

- Automatización total del proceso de ensacado
- Flexibilidad y rapidez en los cambios de formato
- Optimización de la producción en el punto de ensacado
- Versatilidad
- Reducción de los costes de utilización
- Rápido retorno de la inversión
- Manejo sencillo y fácil

APLICACIONES

ILERSAC A es aplicable en todo tipo de indústrias:

- Agro-alimentario: semillas, cereales, piensos, pet-foods, premezclas.
- Alimentario: azúcar, sémolas, legumbres, frutos secos, harinas, ingredientes, leche en polvo, cacao en polvo, almidones.
- Químico y petroquímico: granza de plástico, PVC, fertilizantes.
- Construcción y minería: sepiolitas, perlita, morteros, sal, vidrio, frita.
- Reciclaje: pellets de biomasa, neumático triturado, compost.

www.tmipal.com

(Timpal, 2019).

Figura 135. Ficha técnica de ensacadora automática para sacos ILERSAC, continuación.

CARACTERÍSTICAS

 Producciones de hasta 750 sacos/h en función de las características del producto y formatos a ensacar.

- Apta para sacos planos de papel, plástico o rafia laminada, en un rango de 5 a 50kg.
- Boca de ensacado neumática de apertura interna.
- · Almacén doble de sacos vacíos, cambio automático de bandejas.

 Dosificación por gravedad, cinta transportadora, canal vibrante o sinfines en función de las propiedades del producto.

- Configuración en peso neto o peso bruto según velocidad requerida.
- · Pantalla de manejo sencilla e intuitiva para el operador.

 Los procesos de pesaje, llenado del saco, evacuación y cierre del saco lleno se levan a cabo de manera automática dentro de una misma unidad.

· Diseño simple para una ensacadora precisa, robusta y rentable.

OPCIONES

• Kit de manejo de sacos con fuelles laterales – sin recuperación posterior.

Boca motorizada para aplicaciones multi-formato.

 Compactación del producto mediante vibración inferior, golpeo lateral, densificación por sonda según propiedades del producto y tipo de saco.

- Sistemas de cierre integrados, sellado, cosido.
- Versiones anti-corrosión para productos agresivos.
- Versiones articicorrosion para productos agresivos.
 Versiones ATEX para trabajo en Zonas Clasificadas.
- · Fabricaciones en acero inoxidable.

a datos tác nicos lygilanos sion orienta livos. 714 se reserva el derechio de realizar modificacione.

www.tmipal.com

(Timpal, 2019).

P	P1	11-3	App roximate	P1	P
Equipment	Stze	Unit	cost, \$000	Size range	Exponent
Agitator, turbine, top entry, open, FOB Agitator, turbine, top entry, closed, FOB	10 (7.5) 10 (7.5)	hp (kW) hp (kW)	10.7	2-30 (15-22.4) 2-200 (15-150)	0.45
Blower, centrifugal, 4 lbf/in ² (27.6 kN/m ²), DEL, excluding motor	10 (4.72)	10 ³ sft ³ /min (sm ³ /s)	67	0.5-150 (0.24-71)	0.60
Cone crusher, FOB, crusher only	100 (74.6)	hp (kW)	130	30-300 (22.4-224)	0.92
Jaw crusher, FOB, excluding motor Law crusher, FOB, excluding motor	10 (7.5) 100 (74.6)	hp (kW) hp (kW)	34	1-60 (0.75-44.7) 60-400 (44.7-300)	0.65
Centrifugal pump, C/S, FOB, excluding motor	10 (7.5)	hp (kW)	1.6	0.5-40 (0.37-30)	0.30
Centrifugal pump, C/S, FOB, excluding motor	100 (74.6)	hp (kW)	4.4	40-400 (30-300)	0.67
Conveyor, belt, C/S, FOB, excluding	100 (9.3)	$ft^2 \langle m^2 \rangle$	6.7	60-200 (5.6-18.6)	0.50
Conveyor, screw, C/S, DEL, excluding motor	70(540)	ft × m diameter (m × mm diameter)	10	50–100 (390–780)	0.46
Centrifuge, automatic batch,	20 (1.86)	Filter area, ft ²	100	7-80 (0.65-7.43)	0.65
horizontal, C/S, FOB Compressor, reciprocating, <1000	300 (224)	(m ⁻) hp (kW)	133	1-20000 (0.75-1490)	0.84
Ibt/in², FOB, including motor Crystallizer, forced circulation, C/S,	100 (91)	ton/day (Mg/day)	283	10-1000 (9.1-970)	0.59
FOB Dryer, drum, C/S, FOB, excluding	100 (9.3)	$ft^{2}\left(m^{2}\right)$	73	10-400 (0.9-37)	0.52
motor Dryer, vacuum, shelf, C/S, FOB,	100 (9.3)	$ft^{2}\left(m^{2}\right)$	17	15-1000 (1.4-93)	0.56
excluding trays, vacuum equipment Dust collector, cloth, shaker type,	10 ⁴ (4.7)	sft³/min (m³/s)	17	$10^{3}-5 \times 10^{4} (0.47-23.6)$	0.79
FOB, including motors Dust collector multicyclones, FOB	10^{4} (4.7)	sft ³ /min (m ³ /s)	7	10^{5} -1.5 x 10^{5} (0.47-70.8)	0.66
past concercit, interacycronics, a con-	10 ^s (4.7)	ft ³ /min at 40°C	77	10 ³ -8 × 10 ⁴ (0.47-73.8)	0.39
Electrostatic precipitator, FOB	$2 \times 10^{5} (94)$	(m ³ /s)	383	8×10^{4} -10 ⁶ (37.8-472)	0.81
FOB FOB	3 (10-)	lb/h (air/mmHg absolute)	2.7	0.2-30 (6.8 × 10-4-0.1)	0.50
Ejector, two-stage, FOB, including condenser, piping	$1\;(3.4\times 10^{-3})$	$[kgh/(N/m^2)]$	6.3	0.2–10 (6.8 × 10 ⁻⁴ –3.4 ×	0.43
Ejector, multistage, FOB, including	$10\langle 3.4\times 10^{-2}\rangle$	$[kg'h/(N/m^2)]$	16.7	0.2-100 (6.8 × 10 ⁻⁴ -0.34)	0.26
Filter, vertical-pressure leaf, C/S, DEL	100 (9.3)	ft ² (m ²)	17	30-1500 (2.8-140)	0.57
Filter, plate and frame, C/S, DEL	100 (9.3)	$ft^2 (m^2)$	5.7	10-1000 (0.9-93)	0.55
Filter, vacuum rotary drum, C/S, EOB including motor	100 (9.3)	$ft^2 (m^2)$	63.3	10-1500 (0.9-140)	0.48
Heat exchanger, shell-tube, floating head, C/S, DEL; fixed tube × 0.85;	1000 (93)	$ft^2 \left< m^2 \right>$	21.7	20-20000 (1.9-1860)	0.59
U tube × 0.87; kettle × 1.35 Heat exchanger, thermal screw, C/S,	100 (9.3)	$ft^2 \langle m^2 \rangle$	33	10-400 (0.9-37)	0.78
FOB, excluding motor	100 (0.28)	110 -1/-3	20	FA 1000 (0.0.2.0)	0.40
Motors, ac induction, wound rotor,	10 (0.38) 10 (7.5)	hp (kW)	12.3	10-25 (7.5-18.6)	0.48
TEFC, FOB Motors, ac induction, wound rotor,	70 (52)	hp (kW)	19.3	25-200 (18.6-149)	0.77
Piping, typical straight run, C/S, FOB,					
\$/ft Installed: \$/ft × 6 to 7	6 (152)	Nominal diameter	0.0093	1-24 (25-610)	1.33
Complex network: FOB \$/ft × 2		in (mm)			
Installed: \$/ft × 13	1000 (2.8)	110 -1 (-3)	6.2	100 80000 (0.4.200)	0.00
psig), C/S	1000 (3.3)	U.S. ga (m)	0.3	100-00000 (0.4-302)	0.62
FOB	100 (0.38)	U.S. gal (m [*])	9.3	10-4000 (0.04-15.1)	0.53
Refrigeration, packaged mechanical, INST	100 (351.7)	U.S. tons (kW)	133	10-1000 (35.2-3520)	0.73
Screen, vibrating, single-deck, DEL, including motor	500 (46)	$ft^2 (m^2)$	10	150-700 (14-65)	0.62
Stack, carbon steel Tanks: atm, horizontal cylinder, C/S, FOB	1000 (3.8)	ft (m) U.S. gal (m ³)	4.7	$\begin{array}{c} 20{-}150 \; (6.1{-}45.7) \\ 100{-}40000 \; (0.4{-}151) \end{array}$	1.00 0.57
Vertical cylinder, C/S, FOB	1000 (3.8)	U.S. gal (m ³)	3.3	100-20000 (0.4-76)	0.30
Vertical jacketed, C/S, FOB	1000 (3.8)	U.S. gal (m ³)	15	70-1500 (0.26-5.7)	0.57
motor	1000 (3.8)	(food lb/mar)0.05	12.3	100-20000 (0.4-76)	0.50
Towers, distillation including internals, INST	4000 (trays)	$\left(\frac{10^{6}}{10^{6}}\right)$	3300	300-30000	1.00

Figura 136.	Exponentes	típicos d	el costo	del equipo	frente a la capacidad	•
-------------	------------	-----------	----------	------------	-----------------------	---

NOTE: All costs are North American values with M & S = 1000.

(Perry et al., 1997).

Details (solids-fluid, grass-roots plant)	Factor assumed	Cost, \$	Percentage of total
Equipment, delivered	1.00	1,000,000	23.4
Installed	0.41	410,000	9.6
Piping	0.34	340,000	8.0
Electrical	0.13	130,000	3.0
Instruments	0.13	130,000	3.0
Battery-limit building and service	0.30	300,000	7.0
Excavation and site preparation	0.15	150,000	3.5
Auxiliaries	0.52	520,000	12.2
Total physical plant	2.98	2,980,000	69.7
Field expense	0.39	390,000	9.1
Engineering	0.39	390,000	9.1
Direct plant costs	3.76	3,760,000	87.9
Contractor's fees, overhead, profit	0.13	130,000	3.0
Contingency	0.39	390,000	9.1
Total fixed-capital investment	4.28	4,280,000	100.0

Figura 137. Estimación usando factores de la Figura 134.

(Perry et al., 1997).

Figura 138. Factores típicos para convertir el costo del acero al carbono en costos de aleación equivalentes.

Material	Pumps, etc.	Other equipment
All carbon steel	1.00	1.00
Stainless steel, Type 410	1.43	2.00
Stainless steel, Type 304	1.70	2.80
Stainless steel, Type 316	1.80	2.90
Stainless steel, Type 310	2.00	3.33
Rubber-lined steel	1.43	1.25
Bronze	1.54	
Monel	3.33	
Material		Heat exchangers
Carbon steel shell and tubes		1.00
Carbon steel shell, aluminum tubes		1.25
Carbon steel shell, monel tubes		2.08
Carbon steel shell, 304 stainless tubes		1.67
304 stainless steel shell and tubes		2.86

(Perry et al., 1997).

Grass roots and large additions				
	Range, %	Median, %		
Auxiliary buildings	3–9	5.0		
Steam generation	2.6-6	3.0		
Refrigeration, including distribution	1-3	2.0		
Water supply, cooling, and pumping	0.4 - 3.7	1.8		
Finished-product storage	0.7 - 2.4	1.5		
Process-waste systems	0.4 - 1.8	1.1		
Raw-materials storage	0.3 - 3.2	1.1		
Steam distribution	0.2 - 2	1.0		
Electrical distribution	0.4 - 2.1	1.0		
Air compressor and distribution	0.2 - 3.0	1.0		
Water distribution	0.1 - 2	0.9		
Fire protection system	0.3 - 1.0	0.7		
Water treatment	0.2 - 1.1	0.6		
Railroads	0.3 - 0.9	0.6		
Roads and walks	0.2 - 1.2	0.6		
Gas supply and distribution	0.2 - 0.4	0.3		
Sanitary-waste disposal	0.1 - 0.4	0.3		
Communications	0.1 - 0.3	0.2		
Yard and fence lighting	0.1 - 0.3	0.2		

Figura 139. Rangos típicos de instalaciones auxiliares como porcentaje del costo total de la planta instalada.

310

Size 1	UBB	ELOHDE VISCO	alibration	And M. Brown and
Constan		Ser	ial Number	
mm^{2}/s^{2} , (cS)	(/s)	Expanded Uncertainty	* (k=2)	L831
0.009896		°/o	(***)	Cinematic Viscosity Range
		0.156		mm ² /s, (cSt)
			And the owner of the	2 - 10
			Contraction of the	
n alignment with the Calibratio	n and Measurement Capab	ilities of National Metrology Ind	titutes the exercise of	
ALIPDATION DA	ty of the viscosity of water	(ISO/TR 3666 (1998), 0.17%) is	s not taken into accoun	incertainty is relative to the viscosity of t.
ALIDKATION DA	IA AT 40°C - Th	e viscometer constan	nt is the same a	at all temperatures
Viscosity	Kinematic Viscosity	Efflux	Time	p - a a a a a
Standard	mm ² /s, (cSt)	Secon	ids .	Constant
Shandard				IIIIII /S ICNUSI
I2	2.435	246.09		a accession
12 13	2.435 3.836	246.09 387.56		0.009894 0.009898
12 13	2.435 3.836	246.09 387.56	Ave	0.009894 0.009898 rage = 0.009896
ematic viscosities of the m. Anal. Ed. 16,708(194 farch 1954, Research Pap matic viscosities are trace IST fixed-point calibratio gravitational constant, g in the United States. To actor [g (at your laborato	2.435 3.836 standards used in calif 4), ASTM D 2162, an over 2479. cable to the viscosity of n of SPRTs. , is 980.1 cm/sec ² at o make this small corr ry) / 980.1].	246.09 387.56 brating were established in id the Journal of Research of water, ISO 3666, at 20°C the Cannon Instrument C rection in the viscometer c	Ave Master Viscomete of the National Bu (ITS-90). Temper Company. The gra onstant, multiply t	0.009894 0.009898 rage = 0.009896 ers as described in Ind. Eng. reau of Standards, Vol. 52, No. rature measurements are traceable witational constant varies up to he above viscometer constant by
I2 I3 ematic viscosities of the m. Anal. Ed. 16,708(194 larch 1954, Research Pap ematic viscosities are trace IST fixed-point calibratio gravitational constant, g is in the United States. To actor [g (at your laborato	2.435 3.836 standards used in calif 4), ASTM D 2162, an eer 2479. eable to the viscosity of n of SPRTs. , is 980.1 cm/sec ² at o make this small con ry) / 980.1].	246.09 387.56 brating were established in ad the Journal of Research of water, ISO 3666, at 20°C the Cannon Instrument C rection in the viscometer c Calibrated by SRB on 5	Ave Master Viscomete of the National Bu (ITS-90). Temper Company. The gra onstant, multiply th 5/30/2012	0.009894 0.009898 rage = 0.009896 ers as described in Ind. Eng. recau of Standards, Vol. 52, No. rature measurements are traceable witational constant varies up to the above viscometer constant by
I2 I3 ematic viscosities of the matic viscosities are trace matic viscosities are trace IST fixed-point calibratio gravitational constant, g in the United States. The actor [g (at your laborato	2.435 3.836 standards used in calif 4), ASTM D 2162, an er 2479. eable to the viscosity of n of SPRTs. , is 980.1 cm/sec ² at p make this small com ry) / 980.1].	246.09 387.56 brating were established in ad the Journal of Research of water, ISO 3666, at 20°C the Cannon Instrument C rection in the viscometer of Calibrated by SRB on 5 under supervision of	Ave Master Viscomete of the National Bu (ITS-90). Temper Company. The gra onstant, multiply to 5/30/2012	0.009894 0.009898 rage = 0.009896 ers as described in Ind. Eng. reau of Standards, Vol. 52, No. rature measurements are traceable witational constant varies up to he above viscometer constant by
I2 I3 ematic viscosities of the m. Anal. Ed. 16,708(194 farch 1954, Research Pap ematic viscosities are trace IST fixed-point calibratio gravitational constant, g in the United States. To actor [g (at your laborato	2.435 3.836 standards used in calif 4), ASTM D 2162, an er 2479. cable to the viscosity of n of SPRTs. , is 980.1 cm/sec ² at p make this small corr ry) / 980.1].	246.09 387.56 brating were established in ad the Journal of Research of water, ISO 3666, at 20°C the Cannon Instrument C rection in the viscometer c Calibrated by SRB on 5 under supervision of	Ave Master Viscomete of the National Bu (ITS-90). Temper Company. The gra constant, multiply to 5/30/2012	0.009894 0.009898 rage = 0.009896 ers as described in Ind. Eng. reau of Standards, Vol. 52, No. rature measurements are traceable ivitational constant varies up to he above viscometer constant by mical Director
I2 I3 ematic viscosities of the m. Anal. Ed. 16,708(194 larch 1954, Research Pap matic viscosities are traco IST fixed-point calibratio gravitational constant, g in the United States. To actor [g (at your laborato	2.435 3.836 standards used in calif 4), ASTM D 2162, an er 2479. cable to the viscosity of n of SPRTs. . is 980.1 cm/sec ² at o make this small com ry) / 980.1].	246.09 387.56 brating were established in ad the Journal of Research of water, ISO 3666, at 20°C the Cannon Instrument C rection in the viscometer c Calibrated by SRB on 5 under supervision of	Ave Master Viscomete of the National Bu C (ITS-90). Temper Company. The gra onstant, multiply to 5/30/2012	0.009894 0.009898 rage = 0.009896 ers as described in Ind. Eng. reau of Standards, Vol. 52, No. rature measurements are traceable witational constant varies up to he above viscometer constant by mical Director ory Technical Director

Figura 140. Certificado de calibración de viscosímetro CANNON- Instrument Company-

(CANNON, 2012).

Figura 141. Seguimiento del índice de costos de equipos de Marshall & Swift.

TECHNICAL ARTICLE Tracking the Marshall & Swift Equipment Cost Index Jude T. Sommerfeld, PE ABSTRACT: Values of the Marshall & Swift (M&S) all-industry equipment cost indices are tabulated, dating back to their inception in 1913. The data since 1936 were correlated with time. It was found that both an exponential correlation and a bilinear correlation reproduced these data well, with correlation coefficients in excess of 0.98. The bilinear correlation consists of two straight lines, intersecting in the years 1966-1967. This bilinear correlation is favored for the prediction of future values of this index in the next century. Key Words: Marshall & Swift equipment cost index, historical cost data, future cost predictions ne of the most popular and well-known tools for timeprogram or working on a spreadsheet; and scaling the capital investthe prediction of future values of this ment costs for engineering index over a small future-time horiprojects is the Marshall & Swift (M&S) zon, such as for 10 to 12 years. equipment cost index. Actually, 47 of these M&S industrial indices exist [1]. For Values in these various indices are upexample, there are separate indices develdated regularly (often quarterly) and are oped and reported for five industries: reported in various engineering industry journals, such as Chemical Engineering, which is published by McGraw-Hill. The process; electrical power; first exposure of most engineers to these mining and milling; indices, however, is usually in various clasrefrigeration; and sical and current textbooks [1, 3, 7] used steam/power. in plant design and economics courses. Probably the most common application of Within the process industries, different these indices is to scale up a capital in-M&S indices are published for the cevestment cost for a plant of given size or ment, chemical, glass, paper, and petrole-um industries. An M&S all-industry capacity as reported in an earlier year to an equivalent cost for a similar plant of the equipment cost index also is compiled, same size in the current year. This scaleand this composite index is the subject of up exercise is performed by multiplying this article. the reported cost by a ratio of appropriate The purpose of this article is not sim-M&S indices, specifically the index for the ply to present the temporal behavior of the new year of interest divided by the index M&S all-industry equipment cost index. for the original year in which the cost was reported. As pointed out by Peters and Rather, the primary objective was to de-Timmerhaus [7], these indices permit fair-ly accurate estimates if the time difference velop an accurate correlation for this behavior with two benefits in mind: involved is less than 10 years. the ability to analytically compute his-

When moving forward in time, this ratio is generally greater than unity to account for inflation over the time period of interest. Indeed, in two of the textbooks cited above [3, 7], tabulations of capital investment costs for dozens of plants producing various chemical commodities in given (annual) amounts and in units of the current textbook dollars (e.g., 1987 or 1990) are presented. A careful inspection of these tables, however, discloses that the figures are based primarily upon similar tabulations [4, 5] compiled many years earlier (i.e., in 1967 or 1970), with these earlier figures upscaled to the later years using M&S or similar indices. Included in the latter category would be the **Chemical Engineering** plant cost index, the **Engineering-News Record** construction cost inflation index, and the Nelson-Farrar refinery construction index.

THE ORIGIN AND HISTORY OF THE M&S INDICES

The M&S indices were originally known as the Marshall and Stevens indices, and were first introduced in 1937 by the consulting engineering firm of the same name, located in Chicago, IL. Values for all of these indices were computed based on historical cost figures dating back to 1913, with a base value of 100 arbitrarily chosen for all of the indices in the year 1926. The actual details of these computations are presented in a classic article by one of the firm's partners [8]. It is of interest here to point out that these indices were originally developed and intended for use primarily by actuarial personnel, as a guide to the amount of insurance that should be carried on plant equipment with changing values. It was not contemplated that they would be used by estimators, much less successfully, even for preliminary cost estimating. Periodic summaries of the behavior of these indices over time also have been published [2].

Table 1 summarizes values of the allindustry M&S equipment cost index since 1913, for which year a value of 57.9 is given. In these early years, values for this index were reported only every 2 or 3 years until 1936, after which annual values were reported. One sees from this table the two great inflationary periods occurring immediately after World Wars I and II. Similarly, the reduced values of this index in the Great Depression years of the 1930s are readily apparent.

29

Cost Engineering Vol. 41/No. 4 APRIL 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Sommerfeld, 1999).

torical values of M&S indices for pos-

sible use in engineering software,

without having to resort to table look-

up procedures when in a computer

Figura 142. MOBICON 2000 CUBE.

Campos de aplicación Soluciones

Sobre nosotros Carbonología Empleo

Empleo Contacto

Q EN NL FR DE IT PL ES

SOLUCIONES

Inicio > Soluciones > Filtros como solución > Mobicon 2000 CUBE

MOBICON 2000 CUBE

El **MOBICON** es un filtro móvil de carbón activo, especialmente desarrollado para el tratamiento y purificación de agua y líquidos. Este filtro está protegido por un derecho de diseño comunitario registrado, referencia 007732722-0012

Flujo hidráulico (m3/h)	20
Presión máx. (bar)	5
Volumen útil máx. (m³)	2
Dimensiones (A x A x L) (m)	2.25 × 1.7 × 1.7 m

WATCH VIDEO

(Desotec, 2019).

XV. GLOSARIO

- 1. Absorbancia, A: Es el logaritmo de la relación entre la energía inicial de un haz de radiación (P_o) y su energía tras haber pasado por un medio absorbente (Skoog, West, Holler y Crouch, 2015).
- Absorción: Es el proceso en el cual una sustancia es incorporada en otra sustancia. Es un proceso en el cual un haz de radiación electromagnética es atenuado al pasar a través de un medio (Skoog, West, Holler y Crouch, 2015).
- Absorción atómica: Proceso en el cual los átomos no excitados en un horno, flama o plasma absorben radiación característica de una fuente de radiación y atenúan la potencia o energía radiante de la misma (Skoog, West, Holler y Crouch, 2015).
- Adsorción: Proceso mediante el cual una sustancia se une fisicamente a la superficie de los sólidos. (Skoog, West, Holler y Crouch, 2015).
- Bioacumulación: Es la acumulación neta de metales u otras sustancias persistentes) en un organismo a partir de fuentes tanto bióticas (otros organismos) como abióticas (suelo, aire y agua) (GreenFacts, 2020).
- 6. **Biomasa:** Cantidad o masa de materia orgánica procedente de organismos vivos que se puede encontrar en un lugar y un momento determinados (GreenFacts, 2020).
- Bureta: Tubo graduado que se utiliza para dispensar volúmenes conocidos de manera exacta (Skoog, West, Holler y Crouch, 2015).
- Coliformes: Constituyen un conjunto de especies bacterianas que comparten determinadas características. Estos organismos se consideran como indicadores de la contaminación de la comida y del agua (Porto, 2020).
- Corrientes fluviales: Son flujos superficiales lineales que recogen y evacuan el agua que les llega de sus vertientes. Son ríos (Arroyo, 2018).
- 10. **Deforestación:** Es la pérdida de bosques y selvas debido al impacto de actividades humanas o causas naturales (Soto, 2020).
- 11. **Densidad:** Proporción de la masa de un objeto por unidad de volumen; normalmente se mide en unidades de g/cm^3 para líquidos y g/L para gases (Skoog, West, Holler y Crouch, 2015).
- 12. **Desviación:** Diferencia entre una media individual y la media (o mediana) de un conjunto de datos (Skoog, West, Holler y Crouch, 2015).
- 13. **Efluente:** Agua o aguas residuales que fluyen fuera de un embalse o de una planta de tratamiento (Aguamarket, 2019).

- 14. Espectrofotómetro: Espectrómetro diseñado para la medición de la absorción de radiaciones ultravioleta, visible o infrarroja. El instrumento incluye una fuente de radiación, monocromador y mecanismo eléctrico para medir la proporción de las intensidades de la muestra y haz de referencia (Skoog, West, Holler y Crouch, 2015).
- 15. Espectrómetro: Instrumento equipado con un monocromador o policromador, con un fotodetector y con un sistema electrónico de lectura que despliega un número proporcional a la intensidad de una banda espectral aislada (Skoog, West, Holler y Crouch, 2015).
- 16. **Espectrómetro de transformada de Fourier:** Espectrómetro en el cual se utiliza un interferómetro y transformadas de Fourier para obtener un espectro (Skoog, West, Holler y Crouch, 2015).
- Espectroscopia de absorción atómica (EAS): Método analítico basado sobre la absorción de radiación electromagnética (REM) en un contenedor que almacena los átomos del analito (Skoog, West, Holler y Crouch, 2015).
- Estación hidrométrica: Son reglas graduadas colocadas escalonadamente en un río, arroyo, laguna o embalse que miden la cantidad de agua disponible en estos cuerpos de agua originados por las lluvias y los escurrimientos (Gobierno de México, 2016).
- Estequiometría: Combinación de proporciones entre cantidades molares de especies químicas en una reacción química (Skoog, West, Holler y Crouch, 2015).
- 20. Fotocatalisis: Hace referencia a la excitación de un sólido (fotocatalizador), normalmente un semiconductor de banda ancha como el TiO_2 , mediante la irradiación con luz de una energía igual o mayor a su band-gap, generando la transición de un electrón de la banda de valencia a la banda de conducción y formando pares electrón-hueco (Skoog, West, Holler y Crouch, 2015).
- 21. Gases de efecto invernadero: Gases integrantes de la atmósfera, de origen natural y antropogénico, que absorben y emiten radiación en determinadas longitudes de ondas del espectro de radiación infrarroja emitido por la superficie de la Tierra, la atmósfera y las nubes. El vapor de agua, dióxido nitroso (N2O), metano (CH4) y ozono (O3) son los principales gases de efecto invernadero en la atmósfera terrestre (GreenFacts, 2020).
- 22. Granulometría: Es la distribución por tamaños de las partículas de un árido. Para conocer la distribución de tamaños de las partículas que componen una muestra de árido es necesario separarla mediante cedazos o tamices (García, 2009).
- 23. Incertidumbre de muestreo, s_s : Desviación estándar asociada al proceso de obtención de muestras que ayuda a determinar la desviación estándar de un análisis (Skoog, West, Holler y Crouch, 2015).

- 24. Interferograma: Figura geométrica que cuantifica la variación de posiciones de puntos dispuestos en una rejilla como consecuencia de su deformación mediante el uso de la interferencia de las ondas de luz (Real Aademia de Ingeniería, 2018).
- 25. Interferómetro: Dispositivo no dispersivo que obtiene información espectral a través de interferencias constructiva y destructiva; se utiliza en los instrumentos infrarrojos de transformada de Fourier (Skoog, West, Holler y Crouch, 2015).
- Límite máximo permisible (LMP): Es el valor de la concentración de cualquier característica de calidad del agua, arriba de la cual, el agua no es adecuada para consumo humano (Norma COGUANOR NGO 29 001, 1985).
- 27. Lixiviación: También llamada extracción sólido-líquido, es un proceso en el que se extrae uno o varios solutos de un sólido, mediante la utilización de un disolvente líquido. Estas dos fases entran en contacto y el soluto (os) pueden difundirse desde el sólido a la fase líquida, lo que da lugar a una separación de los componentes originales del sólido (Geominero, 1999).
- 28. Metaloide: Son elementos que presentan propiedades tanto de los no metales como de los metales. Los metaloides se comportan como no metales, química y físicamente; sin embargo, en su propiedad física más importante, la conductividad eléctrica, se parecen a los metales. Estos son: Boro (B), silicio (Si), Germanio (Ge), Arsénico (As), antimonio (Sb), telurio (Te) y polonio (Po) (Volk, 2010).
- 29. **Pectina:** Es el principal componente enlazante de la pared celular de los vegetales y frutas (Food-Info, 2017).
- pH: Logaritmo negativo de la actividad del ion hidrógeno de una disolución (Skoog, West, Holler y Crouch, 2015).
- Pipeta: Dispositivo tubular de vidrio o plástico para transferir volúmenes definidos de una disolución de un contenedor hacia otro (Skoog, West, Holler y Crouch, 2015).
- 32. Porosidad: Es la relación del volumen de huecos con su volumen (Pimienta, 1980).
- 33. **Selectividad:** Tendencia de un reactivo o de un método instrumental para reaccionar o responder de manera similar ante solo algunas especies químicas (Skoog, West, Holler y Crouch, 2015).
- 34. **Tara:** Contrapeso utilizado en una balanza analítica para compensar por la masa de un contenedor; acción de llevar a cero la balanza (Skoog, West, Holler y Crouch, 2015).
- 35. Vía antrópica: Producido o modificado por la actividad humana (RAE, 2014).